An overview of non-archimedean pluripotential theory and its outlook

Eiji INOUE (RIKEN iTHEMS, Japan)

18, December, 2022, Several Complex Variables Winter Seminar

Contents

- Global pluripotential structure
- 2 Complex analytic case
- **3** Use in the study of cscK metric
- 4 Non-archimedean (trivially valued) case
- 5 Use in the study of K-stability

Global pluripotential structure

Global pluripotential structure

- X: a compact Hausdorff space.
- $\mathcal{C}^+(X)$: the set of usc functions on X valued in $[-\infty,\infty)$.
- $\mathcal{M}(X)$: the set of Radon probability measures on X.

We call the following structure ($\mathcal{PSH}, E, E^{\vee}, MA$) a global pluripotential (g.p.p.) structure on X. This terminology is used only in this talk.

- A convex subset PSH ⊔ {−∞} ⊂ C⁺(X) which includes constants and is closed under pointwise decreasing limit.
- A monotone concave function $E : \mathcal{PSH} \to [-\infty, \infty)$ such that E(t) = t.
- A convex function $E^{\vee} : \mathcal{M} \to [0, \infty]$.

$$\mathcal{E}^{1}(X, E) := \{ \phi \in \mathcal{PSH} \mid E(\phi) > -\infty \}, \\ \mathcal{M}^{1}(X, E^{\vee}) := \{ \mu \in \mathcal{M}(X) \mid E^{\vee}(\mu) < \infty \}.$$

• A map MA : $\mathcal{E}^1(X, E)/\mathbb{R} \to \mathcal{M}^1(X, E^{\vee})$.

Axiom

These E, E^{\vee} are to satisfy the following (Legendre duality):

$$egin{aligned} E^ee(\mu) &= \sup\{E(\phi) - \int_X \phi d\mu \mid \phi \in \mathcal{E}^1(X,E)\}\ E(\phi) &= \inf\{E^ee(\mu) + \int_X \phi d\mu \mid \mu \in \mathcal{M}^1(X,E^ee)\} \end{aligned}$$

and MA is to satisfy the subdifferential relation

$$\int_{X} \phi \mathrm{MA}(\phi) = E(\phi) - E^{\vee}(\mathrm{MA}(\phi)).$$

Topology on $\mathcal{M}^1(X, E^{\vee})$: the coarsest topology which makes $E^{\vee} : \mathcal{M} \to [0, \infty)$ and $\mathcal{M}^1 \to \mathbb{R} : \mu \mapsto \int_X f d\mu$ continuous for every continuous $f \in C^0(X)$.

■ Topology on $\mathcal{E}^1(X, E)$: the coarsest topology which makes $E : \mathcal{E}^1 \to \mathbb{R}$ and $\mathcal{E}^1 \to \mathbb{R} : \phi \mapsto \int_X \phi \mathrm{MA}(\psi)$ continuous for every $\psi \in \mathcal{PSH} \cap C^0(X)$. (cf. Chern–Levine–Nirenberg)

Basic properties

We will see three examples of g.p.p. structure: real MA, complex MA and non-archimedean MA.

Before going on, let us check some basic properties derived from the minimal assumptions in the first page.

1 For
$$\phi \in \mathcal{PSH}$$
, $\phi + t \in \mathcal{PSH}$.

2 If
$$\phi \in \mathcal{PSH}$$
 is bounded, then $\phi \in \mathcal{E}^1$.

- **3** $\lim_{i} E(\phi_i) = E(\phi)$ for every decreasing limit $\phi_i \searrow \phi \in \mathcal{PSH}$.
- 4 lim $E(\phi_i) = E(\phi)$ for every uniform limit $\phi_i \to \phi \in \mathcal{PSH}$.
- **5** $\lim_i \int_X \phi_i d\mu = \int_X \phi d\mu$ for every decreasing limit $\phi_i \searrow \phi \in \mathcal{PSH}$.

In particular, decreasing limit $\phi_i \searrow \phi$ is a convergent net in $\mathcal{E}^1(X, E)$. 3 is a consequence of Dini's lemma (compactness). Complex analytic case

How to define \mathcal{PSH} ? – complex analytic case

 $B^n \subset \mathbb{C}^n$: a (poly)disc

Definition

An usc function $\phi: B^n \to [-\infty, \infty) \not\equiv -\infty$ is called psh if $f^*\phi: B^1 \to [-\infty, \infty)$ is subharmonic (at $0 \in B^1$) or identically $-\infty$ for every holomorphic map $f: B^1 \to B^n$: namely,

$$\phi(f(0)) \leq \frac{1}{\pi r^2} \int_{B^1_r} \phi(f(z)) d\mu(z) \quad (\leq \frac{1}{2\pi r} \int_0^{2\pi} \phi(f(re^{i\theta})) d\theta)$$

for every 0 < r < 1.

Note: This definition a priori uses the Lebesgue measure, which is a special structure we can use in the archimedean setup.

For a compact Kähler manifold $X = (\varphi_{\alpha} : B^n \to X)_{\alpha}$ and a Kähler metric $\omega = (dd^c f_{\alpha})_{\alpha}$, we define

$$PSH(X,\omega) := \{\phi : X \to [-\infty,\infty) \mid \phi \circ \varphi_{\alpha} + f_{\alpha} : B^{n} \to [-\infty,\infty) \text{ is psh } \}$$

Global regularization

Consider
$$\rho_t(z) := t^{-2}\rho(|z|/t)$$
 on \mathbb{C} defined by $\rho : [0,\infty) \to [0,\infty)$: C^{∞} ,
 $\rho|_{[0,0.5)} \equiv 1$, $\rho|_{[1,\infty)} \equiv 0$ with $2\pi \int_0^1 r\rho(r)dr = 1$.
Then for $\rho_t * \phi(z) = \int_{\mathbb{C}} \rho_t(z-w)\phi(w)d\mu(w)$,

$$\begin{aligned} \frac{1}{\pi r^2} \int_{B_r^1} \rho_t * \phi(z) d\mu(z) &= \int_{B_t^1} d\mu(w) \rho_t(w) \frac{1}{\pi r^2} \int_{B_r^1} \phi(z-w) d\mu(z) \\ &\geq \int_{B_t^1} d\mu(w) \rho_t(w) \phi(0-w) = \rho_t * \phi(0) \end{aligned}$$

and since $\frac{1}{2\pi r} \int_{0}^{2\pi} \phi(re^{i\theta}) d\theta \searrow \phi(0)$ for psh,

$$\rho_t * \phi(0) = 2\pi \int_0^1 r \rho(r) \left(\frac{1}{2\pi rt} \int_0^{2\pi} \phi(rte^{i\theta}) d\theta\right) dr \searrow \phi(0)$$

Theorem (Błocki–Kołdziej)

For every $\phi \in PSH(X, \omega)$, there exists a sequence $\phi_i \in PSH(X, \omega) \cap C^{\infty}(X)$ which decreases to ϕ pointwisely.

Approximation by Fubini–Study metrics

Let (X, L) be a polarized manifold. For smooth $\omega_{\phi} \in c_1(L)$, take the hermitian metric h_{ϕ} on L so that $-\sqrt{-1}\partial\bar{\partial}\log h_{\phi} = \omega_{\phi}$. Consider Kodaira embedding $f_k^{\phi}: X \to \mathbb{P}^{N_k}$ defined by an orthogonal basis $s_0^{\phi}, \ldots, s_{N_k}^{\phi}$ on $H^0(X, L^{\otimes k})$ w.r.t. the inner product induced by $h_{\phi}^{\otimes k}$. Then $\omega_{\phi,k} := k^{-1} (f_k^{\phi})^* \omega_{\mathrm{FS}}$ is independent of the choice of the o.n.b. and

Theorem (Tian)

 $\omega_{\phi,k}$ converges to ω_{ϕ} in the C^{∞} -topology (in the order $O(k^{-1})$).

Thus $PSH(X, \omega)$ is the decreasing limit closure of

$$\operatorname{FS}(X,\omega) := \{\phi: X \to \mathbb{R} \mid \exists h \text{ s.t. } \phi = k^{-1} \log \sum_{i=0}^{N_k} \frac{|s_i|_{h_\omega}^2}{\|s_i\|_h^2} \},$$

where (s_i) is a orthogonal basis w.r.t. $\|\cdot\|_h$. We will construct \mathcal{PSH} on Berkovich space X^{NA} in analogy of this fact.

How to define $E : PSH(X, \omega) \to [-\infty, \infty)$

For smooth $\phi \in \mathrm{PSH}(X,\omega) \cap \mathcal{C}^\infty(X)$, we put

$$E(\phi) := -\frac{1}{(n+1)!} \int_0^1 dt \int_X (\omega_{\phi_t} - \dot{\phi}_t)^{n+1} = \frac{1}{n!} \int_0^1 dt \int_X \dot{\phi}_t \omega_{\phi_t}^n$$

by taking smooth path $\omega_{\phi_t} := \omega + dd^c \phi_t$ connecting ω and ω_{ϕ} . For $\phi_t = t\phi$, we compute

$$E(\phi) = \sum_{k=0}^{n} \frac{\int_{0}^{1} t^{k} dt}{(n-k)! k!} \int_{X} \phi \, \omega^{n-k} (dd^{c}\phi)^{k} = \frac{1}{(n+1)!} \sum_{\ell=0}^{n} \int_{X} \phi \, \omega^{n-\ell} \omega_{\phi}^{\ell}.$$

In particular, *E* is monotonic: $E(\phi) \leq E(\psi)$ if $\phi \leq \psi$. For general $\phi \in PSH(X, \omega)$, we put

$$E(\phi) := \inf \{ E(\psi) \mid \psi \in \operatorname{PSH}(X, \omega) \cap C^{\infty}(X) \}.$$

The extended functional is monotonic and convex.

How to define MA : $\mathcal{E}^1(X, \omega) \to \mathcal{M}(X)$?

Now we have

$$\mathcal{E}^{1}(X,\omega) := \{\phi \in \mathrm{PSH}(X,\omega) \mid E(\phi) > -\infty\}.$$

For $\phi \in \mathrm{PSH}(X,\omega) \cap \mathcal{C}^\infty(X)$, we put

$$\operatorname{MA}(\phi) := \frac{1}{\int_X \omega^n} (\omega + dd^c \phi)^n.$$

For bounded $\phi \in PSH(X, \omega)$, we can use Bedford–Taylor product:

$$egin{aligned} &\int_X arphi \wedge (\omega + dd^c \phi)^{k+1} := \int_X arphi \wedge \omega \wedge (\omega + dd^c \phi)^k \ &+ \int_X \phi dd^c arphi \wedge (\omega + dd^c \phi)^k, \end{aligned}$$

using the fact that $(\omega + dd^c \phi)^k \ge 0$ gives a measure valued form. For $\phi \in PSH(X, \omega)$, we take the limit $MA(\phi) := \lim_{\tau \to \infty} MA(\max\{\phi, \tau\})$.

Another approach: energy pairing, I

To define MA(ϕ) for general $\phi \in \mathcal{E}^1(X, \omega)$, we introduce the following symmetric pairing: for $\phi_i \in PSH(X, \omega_i) \cap C^{\infty}(X)$, we put

$$\langle \phi_0,\ldots,\phi_n
angle_{\omega_0,\ldots,\omega_n} := -\int_0^1 dt \int_X \prod_{i=0}^n (\omega_{i,\phi_i(t)} - \dot{\phi}_i(t)).$$

Using $\phi_i(t) = t\phi_i$, we can compute

$$\langle \phi_0, \ldots, \phi_n \rangle = \sum_{\ell=0}^n \int_X \phi_i \omega_0 \wedge \cdots \widehat{\omega_\ell} \wedge \omega_{\ell+1, \phi_{\ell+1}} \wedge \cdots \wedge \omega_{n, \phi_n}.$$

In particular, $\langle \phi_0, \ldots, \phi_n \rangle$ is monotonic and affine in each variable. Therefore, we can define $\langle \phi_0, \ldots, \phi_n \rangle$ for $\phi_i \in PSH(X, \omega_i)$ by putting

$$\langle \phi_0, \ldots, \phi_n \rangle := \inf\{ \langle \psi_0, \ldots, \psi_n \rangle \mid \phi_i \leq \psi_i \in \mathrm{PSH}(X, \omega_i) \cap C^\infty(X) \}$$

Another approach: energy pairing, II

Now we consider the case $\omega_0 = \cdots = \omega_n = \omega$. By the previous formula, we have

$$\int_{X} (\phi_0 - \phi'_0) \mathrm{MA}(\phi) = \frac{1}{\int_{X} \omega^n} (\langle \phi_0, \phi^{\cdot n} \rangle_{\omega^{\cdot n+1}} - \langle \phi'_0, \phi^{\cdot n} \rangle_{\omega^{\cdot n+1}}).$$

for $\phi_0, \phi'_0, \phi \in PSH(X, \omega) \cap C^{\infty}(X)$. We can define the difference for general $\phi_0, \phi'_0, \phi \in \mathcal{E}^1(X, \omega)$ thanks to the following lemma:

Lemma

We have

$$\langle \phi_0,\ldots,\phi_n\rangle \geq \frac{1}{(n+1)!}\langle (\sum_{\ell=0}^n \phi_\ell)^{n+1}\rangle \geq (2^n n!)^n \sum_{\ell=0}^n E(\phi_\ell).$$

Apply Riesz representation theorem

The set $\mathcal{D} := \{\phi_0 - \phi'_0 \mid \phi_0, \phi'_0 \in \mathrm{PSH}(X, \omega) \cap C^{\infty}(C)\}$ is dense in $C^0(X)$. For $f = \phi_0 - \phi'_0 \in \mathcal{D}$ and $\phi \in \mathcal{E}^1(X, \omega)$, we put

$$T_{\phi}(f) := rac{1}{\int_{X} \omega^n} (\langle \phi_0, \phi^{\cdot n}
angle - \langle \phi_0', \phi^{\cdot n}
angle),$$

which is well defined by the affinity on the first variable.

Since $|T_{\phi}(f)| \leq ||f||_{C^0}$ for $\phi \in PSH(X, \omega) \cap C^{\infty}(X)$, the same inequality holds for general $\phi \in \mathcal{E}^1(X, \omega)$.

By the monotonicity, $T_{\phi}(f) \ge 0$ for $f \in \mathcal{D}$. Therefore, T_{ϕ} extends to a positive bounded linear map $C^{0}(X) \to \mathbb{R}$.

By Riesz–Markov–Kakutani theorem, there exists a Radon measure μ_{ϕ} on X such that

$$T_{\phi}(f) = \int_X f d\mu_{\phi}.$$

We denote it by $MA_{\omega}(\phi)$.

MA is subdifferential

We put
$$E_{\natural}(\phi) := (\int_X \omega^n/n!)^{-1} E(\phi)$$
. For $\mu \in \mathcal{M}(X)$, we put
 $E^{\vee}(\mu) := \sup\{E_{\natural}(\phi) - \int_X \phi d\mu \mid \phi \in \mathcal{E}^1(X, \omega)\} \in [0, \infty],$ $\mathcal{M}^1(X, \omega) := \{\mu \in \mathcal{M}(X) \mid E^{\vee}(\mu) < \infty\}.$

We have

$${\it E}_{
atural}(\psi) - \int_X \psi {
m MA}_{\omega}(\phi) \leq {\it E}_{
atural}(\phi) - \int_X \phi {
m MA}_{\omega}(\phi)$$

For instance when n = 1,

$$egin{aligned} & \left(rac{1}{2}\langle\psi,\psi
angle-(\langle\psi,\phi
angle-\langle0,\phi
angle)
ight)-\left(rac{1}{2}\langle\phi,\phi
angle-(\langle\phi,\phi
angle-\langle0,\phi
angle)
ight)\ &=rac{1}{2}\langle(\psi-\phi),(\psi-\phi)
angle\ &=\int_X(\psi-\phi)dd^c(\psi-\phi)=-\int_Xd(\psi-\phi)\wedge d^c(\psi-\phi)\leq 0. \end{aligned}$$

Finally, we get ...

Therefore, we get

$$\int_X \phi \mathrm{MA}_{\omega}(\phi) = E(\phi) - E^{\vee}(\mathrm{MA}_{\omega}(\phi)).$$

Since

$$\int_{X} \phi \mathrm{MA}_{\omega}(\phi) = \frac{1}{\int_{X} \omega^{n}} (\langle \phi, \dots, \phi \rangle - \langle \mathbf{0}, \phi, \dots, \phi \rangle) > -\infty,$$

we have $MA_{\omega}(\phi) \in \mathcal{M}^1(X, \omega)$.

In conclusion, for every Kähler metric ω on X, (PSH $(X, \omega), E_{\natural}, E^{\vee}, MA_{\omega}$) is a g.p.p. structure on X.

pluripotential Calabi-Yau theorem

A g.p.p. structure ($\mathcal{PSH}, E, E^{\vee}, MA$) on X is said to satisfy pluripotential Calabi–Yau theorem if the map

$$\mathrm{MA}:\mathcal{E}^1(X,E)/\mathbb{R}\to\mathcal{M}^1(X,E^{\vee})$$

is a homemomorphism.

Theorem

For every compact Kähler manifold (X, ω) , the g.p.p. structure $(PSH(X, \omega), E_{\natural}, E^{\vee}, MA_{\omega})$ satisfy pluripotential Calabi–Yau theorem.

Injectivity and continuity: Introduce quasi-distances I, I^{\vee} on $\mathcal{E}^1(X, \omega)$ and $\mathcal{M}^1(X, \omega)$ compatible with the topology and show

$$I(\varphi, \psi) \approx I^{\vee}(\mathrm{MA}_{\omega}(\varphi), \mathrm{MA}_{\omega}(\psi)).$$

Surjectivity: Find maximizer of $\phi \mapsto E(\phi) - \int_X \phi d\mu$, using the compactness of $PSH(X, \omega)/\mathbb{R}$.

Use in the study of cscK metric

Extension of Mabuchi functional

Consider the Mabuchi functional defined on $PSH(X, \omega) \cap C^{\infty}(X)$:

$$\mathcal{M}(\phi) := -rac{1}{\int_X \omega^n} \int_0^1 dt \int_X \dot{\phi}_t(s(\omega_{\phi_t}) - \underline{s}) \omega_{\phi_t}^n.$$

Using

 $s(\omega_{\phi})\omega_{\phi}^{n} = n\operatorname{Ric}(\omega_{\phi}) \wedge \omega_{\phi}^{n-1} = n\sqrt{-1}\overline{\partial}\partial \log \frac{\omega_{\phi}^{n}}{\omega^{n}} \wedge \omega_{\phi}^{n-1} + n\operatorname{Ric}(\omega) \wedge \omega_{\phi}^{n-1}$, we get Chen-Tian formula:

$$\begin{split} \mathcal{M}(\phi) &= \int_{X} \frac{\mathrm{MA}_{\omega}(\phi)}{\mathrm{MA}_{\omega}(0)} \log \frac{\mathrm{MA}_{\omega}(\phi)}{\mathrm{MA}_{\omega}(0)} \mathrm{MA}_{\omega}(0) \\ &- \frac{1}{\int_{X} \omega^{n}} (\langle 0.\phi^{\cdot n} \rangle_{\rho_{+},\omega^{\cdot n}} - \langle 0,\phi^{\cdot n} \rangle_{\rho_{-},\omega^{\cdot n}}) + \underline{s} \mathcal{E}_{\natural}(\phi), \end{split}$$

where smooth Kähler metrics ρ_+, ρ_- are chosen so that $\rho_+ - \rho_- = \operatorname{Ric}(\omega)$.

Entropy and Compactness

The first term

$$\int_{X} \frac{\mathrm{MA}_{\omega}(\phi)}{\mathrm{MA}_{\omega}(0)} \log \frac{\mathrm{MA}_{\omega}(\phi)}{\mathrm{MA}_{\omega}(0)} \mathrm{MA}_{\omega}(0)$$

is called the relative entropy and denoted by $\operatorname{Ent}(\operatorname{MA}_{\omega}(0), \operatorname{MA}_{\omega}(\phi))$. The relative entropy $\operatorname{Ent}(\mu, \nu)$ is defined for general $\mu, \nu \in \mathcal{M}(X)$ using the Radon–Nikodym derivative $d\nu/d\mu$ when ν is absolutely continuous w.r.t. μ and put $\operatorname{Ent}(\mu, \nu) = +\infty$ otherwise. This is lower semi-continuous w.r.t. the topology on $\mathcal{M}^1(X, \omega)$ (Legendre duality). Now we get the (greatest) lsc extension

$$\mathcal{M}: \mathcal{E}^1(X, \omega) \to (-\infty, \infty].$$

Theorem (Berman-Boucksom-Eyssidieux-Guedj-Zeriahi)

Suppose a sequence $\{\phi_i\}$ has bounded $\sup \phi, E(\phi)$ and Ent $(MA_{\omega}(0), MA_{\omega}(\phi))$. Then $\{\phi_i\}$ contains a convergent subsequence in the topology of $\mathcal{E}^1(X, \omega)$.

Darvas-Rubinstein's result

Conjecture (Darvas-Rubinstein)

The minimizers of $\mathcal{M}: \mathcal{E}^1(X, \omega) \to (-\infty, \infty]$ are smooth.

Theorem (Darvas–Rubinstein)

Suppose the conjecture holds, then the following are equivalent:

- 1 X admits a cscK metric.
- **2** \mathcal{M} is $G = \operatorname{Aut}(X)$ -invariant and there exists $\sigma, C > 0$ such that

$$\mathcal{M}(\phi) \geq \sigma \inf_{g \in G} J(g^*\phi) - C,$$

where

$$J(\phi) = \int_X \phi \mathrm{MA}_\omega(0) - E_{\natural}(\phi) \ge 0.$$

Chen-Cheng's result

Darvas-Rubinstein's conjecture is solved by Chen-Cheng:

Theorem (Chen-Cheng)

The minimizers of $\mathcal{M}:\mathcal{E}^1(X,\omega) o (-\infty,\infty]$ are smooth.

Darvas introduced a complete distance d_1 on $\mathcal{E}^1(X, \omega)$. A continuous path $\Phi : [0, \tau) \to \mathcal{E}^1(X, \omega)$ is called a psh geodesic if $\Phi(e^{-\log |z|})(x)$ on $\overline{\Delta} \times X$ is psh in the interior and $E(\Phi(t))$ is affine, which is known to satisfy $d_1(\Phi(t), \Phi(t')) = c|t - t'|$. It is known by Berman–Darvas–Lu that $\mathcal{M} : \mathcal{E}^1(X, \omega) \to (-\infty, \infty]$ is convex along psh geodesics.

Theorem (Chen–Cheng)

The following are equivalent

- There are no cscK metrics.
- There is a psh geodesic ray $\Phi : [0, \infty) \to \mathcal{E}^1(X, \omega)$ with $\lim_{t\to\infty} t^{-1}\mathcal{M}(\Phi(t)) \leq 0$ which is not parallel to a geodesic ray generated by a holomorphic vector field X.

Non-archimedean (trivially valued) case

Semivaluations

Let X^{sch} be an irreducible projective scheme over \mathbb{C} . For each scheme theoretic point $\mathfrak{p} \in X$, consider the irreducible subvariety $V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}}$ and its rational function field $\mathbb{C}(V(\mathfrak{p}))$. We put

$$X(\mathfrak{p}) := \left\{ v : \mathbb{C}(V(\mathfrak{p})) \to (-\infty, \infty] \mid \begin{array}{l} v(fg) = v(f) + v(g) \\ v(f+g) \ge \min\{v(f), v(g)\} \\ v|_{\mathbb{C}^*} \equiv 0, v(0) = \infty \end{array} \right\}$$

and for a Zariski open set $U^{\operatorname{sch}} \subset X^{\operatorname{sch}}$ we put

$$U^{\mathrm{NA}} := igcup_{\mathfrak{p} \in U^{\mathrm{sch}}} X(\mathfrak{p}).$$

For $f \in \mathcal{O}_{X^{\mathrm{sch}}}(U^{\mathrm{sch}})$, we define

$$|f|: U^{\mathrm{NA}} \to [0,\infty)$$

by $|f|(v) := \exp(-v_{\mathfrak{p}}(f|_{V(\mathfrak{p})})).$

Berkovich space

We then endow X^{NA} with the coarsest topology for which the maps $\mathfrak{home}: X^{NA} \to X^{\mathrm{sch}}: v_{\mathfrak{p}} \mapsto \mathfrak{p}$ and $|f|: U^{NA} \to [0,\infty)$ are continuous. This is the Berkovich space.

The Berkovich space X^{NA} is a compact Hausdorff space (not first countable).

Non-archimedean norm and diagonal basis

Consider a non-archimedean norm $\|\cdot\|$ on a fin. dim vector space V over the trivially valued \mathbb{C} : $\|\cdot\|: V \to [0,\infty)$ which satisfy

$$||u + v|| \le ||u|| \oplus ||v|| := \max\{||u||, ||v||\},$$

•
$$\|c.v\| = |c|_{\mathrm{triv}} \|v\|$$
, where

$$|c|_{ ext{triv}} := egin{cases} 0 & c = 0 \ 1 & c
eq 0 \end{cases}$$
 (trivially valued)

It is known there exists a basis $v_1, \ldots v_n$ of V satisfying

$$\|\sum_{i=1}^{n} c_{i} v_{i}\| = \bigoplus_{i=1}^{n} |c_{i}| \|v_{i}\| = \max\{\|v_{i}\| \mid c_{i} \neq 0\},\$$

which we call a diagonal basis w.r.t. $\|\cdot\|$.

Non-archimedean *L*-psh

Let (X,L) be a polarized variety. For a non-archimedean norm $\|\cdot\|$ on $H^0(X,L^{\otimes k}),$ we put

$$\phi_{\|\cdot\|} := k^{-1} \log \bigoplus_i |s_i| / \|s_i\| = k^{-1} \max_i (\log |s_i| - \log \|s_i\|),$$

using the diagonal basis (s_i) of $H^0(X, L^{\otimes k})$. We introduce the following space of functions

$$\begin{split} & \mathrm{FS}_{\mathrm{NA}}(X,L) := \left\{ \phi_{\|\cdot\|} : X^{\mathrm{NA}} \to \mathbb{R} \ \Big| \ \exists k \|\cdot\| \text{ is a NA norm on } H^0(X,L^{\otimes k}) \right\} \\ & \text{and define } \mathrm{PSH}_{\mathrm{NA}}(X,L) : \end{split}$$

Definition

We define $PSH_{NA}(X, L)$ as the set of all usc functions $\phi : X^{NA} \rightarrow [-\infty, \infty)$ which can be written as the pointwise limit $\phi = \lim_{i} \phi_i$ of some decreasing net ϕ_i in $FS_{NA}(X, L)$.

Next, to define non-archimedean Monge–Ampere measure, we relate $\phi \in FS_{NA}(X, L)$ with a geometric object.

Polyhedral configuration

We put
$$B_p := \mathbb{C}^p$$
, $B_p^\circ := (\mathbb{C} \setminus \{0\})^p$ and $T_p := (\mathbb{G}_m)^p$
A polyhedral configuration of (X, L) is a triple $(\mathcal{X}/B_p, \mathcal{L}; \xi)$

- $\mathcal{X}/B_p = (\varpi : \mathcal{X} \to B_p)$ is a *T*-equivariant projective flat family of projective schemes endowed with the *T*-equivariant isomorphism $\Theta : B_p^{\circ} \times X \to \varpi^{-1}(B_p^{\circ})$ over B_p° .
- *L* is a *T*-equivariant *∞*-semiample *Q*-line bundle on *X* endowed with
 a *T*-equivariant isomorphism *θ* : *p*^{*}_X*L* → Θ^{*}*L*, where
 *p*_X → *B*^o_p × *X* → *X* is the projection.

 ξ ∈ [0, ∞)^p.

For a polyhedral configuration, we define a norm $\|\cdot\|_k$ on $H^0(X, L^{\otimes k})$ by

$$\|s\|_{k} := \inf\{e^{-\langle \mu, \xi \rangle} \mid z^{-\mu}\bar{s} \text{ extends to a section of } \mathcal{L}^{\otimes k}\},\$$

where $\mu\in\mathbb{Z}^p.$ We have $\phi_{\|\cdot\|_k}=\phi_{\|\cdot\|_k}$ for sufficiently large k,k'. The assignment

$$\mathrm{PC}(X,L) \to \mathrm{FS}_{\mathrm{NA}}(X,L) : (\mathcal{X}/B_p,\mathcal{L};\xi) \mapsto \phi_{(\mathcal{X}/B_p,\mathcal{L};\xi)} := \phi_{\|\cdot\|_k}$$

is onto.

Non-archimedean energy pairing (Deligne pairing)

A test configuration $(\mathcal{X}/\mathbb{A}^1, \mathcal{L})$ is nothing but the polyhedral configuration for p = 1 and $\xi = 1 \in [0, \infty)$. Namely, it consists of

- X/A¹ = (∞ : X → A¹) is a *T*-equivariant projective flat family of projective schemes endowed with the *T*-equivariant isomorphism Θ : (A¹ \ {0}) × X → ∞⁻¹(A¹ \ {0}) over A¹ \ {0}.
- \mathcal{L} is a \mathbb{G}_m -equivariant ϖ -semiample \mathbb{Q} -line bundle on \mathcal{X} endowed with a \mathbb{G}_m -equivariant isomorphism $\theta : p_X^*L \to \Theta^*\mathcal{L}$.

For $\phi_{\ell} \in FS_{NA}(X, L_{\ell})$ defined by test configurations ($\Leftrightarrow \log ||s_i|| \in \mathbb{Q}$), the non-archimedean energy pairing can be written by the usual intersection product

$$\langle \phi_0,\ldots,\phi_n\rangle = (\bar{\mathcal{L}}_0,\cdots,\bar{\mathcal{L}}_n)$$

on the compactification $\overline{\mathcal{X}}/\mathbb{P}^1$ of a tc \mathcal{X} dominating every \mathcal{X}_{ℓ} .

g.p.p. structure $(\mathcal{PSH}, E, E^{\vee}, MA)$ on X^{NA} , I

We have $\phi \leq \psi$ iff $\mathcal{L}_{\psi} - \mathcal{L} \geq 0$, so that the energy pairing is monotonic. Using the monotonicity, we can define the energy pairing for general $\phi_{\ell} \in \mathrm{PSH}(X, L_{\ell})$.

We put

$$E_{\mathrm{NA}}(\phi) := \frac{n!}{(L^{\cdot n})} \frac{1}{(n+1)!} \langle \phi^{\cdot n+1} \rangle_{L^{\cdot n+1}}$$

and

$$\mathcal{E}^1_{\mathrm{NA}}(X,L) := \{ \phi \in \mathrm{PSH}(X,L) \mid E_{\mathrm{NA}}(\phi) > -\infty \}.$$

The energy pairing $\langle \phi_0, \ldots, \phi_n \rangle$ is finite if $\phi_\ell \in \mathcal{E}^1(X, L)$.

g.p.p. structure $(\mathcal{PSH}, E, E^{\vee}, MA)$ on X^{NA} , II

We put $\mathcal{D} := \{\phi_0 - \phi'_0 \mid \phi_0 - \phi'_0 \in FS_{NA}(X, L)\}$, then \mathcal{D} is dense in $\mathcal{C}^0(X^{NA})$. The operator $\mathcal{T}_{\phi} : \mathcal{D} \to \mathbb{R}$ given by

$$T_{\phi}(f) := \langle \phi_0.\phi^{\cdot n} \rangle - \langle \phi'_0.\phi^{\cdot n} \rangle$$

extends to a positive bounded linear map $T_{\phi} : C^0(X^{NA}) \to \mathbb{R}$. Thus we get a measure μ_{ϕ} satisfying

$$T_{\phi}(f) = \int_X f d\mu_{\phi}.$$

We denote it by $MA_{NA}(\phi)$.

We can similarly define E_{NA}^{\vee} by Legendre duality and $\mathcal{M}_{NA}^{1}(X, L)$. Then

$$(\mathrm{PSH}_{\mathrm{NA}}(X, L), \mathcal{E}_{\mathrm{NA}}, \mathcal{E}_{\mathrm{NA}}^{\vee}, \mathrm{MA}_{\mathrm{NA}})$$

gives the g.p.p. structure on X^{NA} .

Non-archimedean Calabi-Yau theorem

Theorem (Boucksom-Jonsoon)

When X is smooth, the g.p.p structure $(PSH_{NA}(X, L), E_{NA}, E_{NA}^{\vee}, MA_{NA})$ on X^{NA} satisfies the Calabi–Yau theorem.

K-stability

K-stability

Suppose X is klt. There is a (greatest) lsc functional $A_X: X^{NA} \to (-\infty, \infty]$ called log discrepancy: for $x = c.ord_E \in X^{NA}$ given by $E \subset Y \to X$, we put

$$A_X(x) := c(\operatorname{ord}_E(K_Y/K_X) + 1).$$

The non-archimedean Mabuchi invariant \mathcal{M}_{NA} for a tc $\phi \in FS_{NA}^{\mathbb{Q}}(X, L)$ is defined by

$$\int_{X^{\mathrm{NA}}} A_X \mathrm{MA}_{\mathrm{NA}}(\phi) + \frac{1}{(L^{\cdot n})} (p_X^* \mathcal{K}_X . \bar{\mathcal{L}}^{\cdot n}) - \frac{n(\mathcal{K}_X . L^{\cdot n-1})}{(L^{\cdot n})} E_{\mathrm{NA}}(\phi).$$

Take an ample line bundle ρ_+, ρ_- on X so that $\rho_+ - \rho_- = -p_X^* K_X$, then we can write

$$(p_X^* \mathcal{K}_X.\bar{\mathcal{L}}^{\cdot n}) = -(\langle 0, \phi^{\cdot n} \rangle_{\rho_+} - \langle 0, \phi^{\cdot n} \rangle_{\rho_-}).$$

Therefore, we get the lsc extension

$$\mathcal{M}_{\mathrm{NA}}: \mathcal{E}^{1}_{\mathrm{NA}}(X, L) \to (-\infty, \infty].$$

Chi-Li's result, I

Some psh geodesic rays are induced by non-archimedean psh metrics. Such geodesic ray is called maximal.

Theorem (Chi Li)

If a psh geodesic ray $\Phi : [0, \infty) \to \mathcal{E}^1(X, \omega)$ satisfies $\lim_{t\to\infty} t^{-1}\mathcal{M}(\Phi(t)) < \infty$, it is maximal.

Chi Li's result, II

Theorem (Chi Li)

When $\Phi : [0, \infty) \to \mathcal{E}^1(X, \omega)$ is a geodesic ray generated by a test configuration ϕ , then we have

$$\lim_{t\to\infty}t^{-1}\mathcal{M}(\Phi(t))=\mathcal{M}_{\mathrm{NA}}(\phi).$$

Conjecture

For any $\phi \in \mathcal{E}_{NA}^1(X, L)$, there exists a convergent sequence $\phi_i \to \phi$ in $\mathcal{E}_{NA}^1(X, L)$ with ϕ_i given by test configurations such that $\lim_{i\to\infty} \mathcal{M}(\phi_i) = \mathcal{M}(\phi)$.

If the conjecture is true, then the above formula is known to hold for all maximal geodesic rays. It then follows that $\mathcal{M}_{\mathrm{NA}}(\phi) > 0$ for every non-trivial $\phi \in \mathcal{E}^1_{\mathrm{NA}}(X, L)$ (the uniform K-stability w.r.t. test configurations) implies the existence of (unique) cscK metric.

A comment on my recent work, I

The NA Monge-Ampere measure can express intersection numbers.

My recent work constructs a functional $E_{\exp} : PSH_{NA}(X, L) \to [-\infty, \infty)$ and a measure $\int e^{-t} \mathcal{D}_{\phi}$ on X^{NA} for $\phi \in PSH_{NA}(X, L)$ with $E_{\exp}(\phi) > -\infty$, which can express higher equivariant intersections.

Using this, we can introduce a usc functional $\mu_{\rm NA}: \mathcal{E}_{\rm NA}^{\rm exp}(X,L) \to [-\infty,\infty)$ called non-archimedean μ -entropy, which is a 'dual' of Perelman's μ -entropy.

The existence of maximizer of this functional is my current interest, which gives a destabilizing geodesic ray. The question is important in moduli theory of polarized varieties.

A comment on my recent work, II

On toric variety, we can consider torus invariant subspace $\mathcal{E}_{NA}^{exp}(X,L)^T$ and we can identify it with the space of lsc convex functions on a polytope P with the integrability condition $\int_P e^q d\mu < \infty$. For such q, μ_{NA} can be written as

$$\mu_{\mathrm{NA}}(q) = -2\pi rac{\int_{\partial P} e^q d\sigma}{\int_P e^q d\mu}.$$

Theorem

There exists a maximizer q of $\mu_{\rm NA}.$ When P is 2-dimensional, it is bounded continuous.

Thank you!