Introduction to Optimal degeneration problems

Eiji INOUE (RIKEN iTHEMS, Japan)

8, September, 2023, Rutgers University

I want to explain three analogous frameworks on optimal degeneration

- 1 The framework of extremal metric
- 2 The framework of Kähler–Ricci soliton
- **3** The framework of μ -cscK metric

From K-stability viewpoint, all of these are covered in Lahdili's weighted cscK framework.

Today, we focus K-instability aspect, which cannot be discussed in weighted cscK framework (too general).

Canonical metric of space

Let X be a compact Kähler manifold and L be a Kähler class.

$$\mathcal{H}(X,L) := \{\omega \in L \mid \omega > 0\}$$

Let $s(\omega) = -g^{i \overline{j}} \partial_i \partial_{\overline{j}} \log \det g$ be the scalar curvature. We put

$$\hat{s}(\omega) = s(\omega) - rac{\int_X s(\omega) \omega^n}{\int_X \omega^n}.$$

A Kähler metric ω is called a cscK metric if

$$\hat{s}(\omega) = 0.$$

Uniqueness: any two cscK metrics ω, ω' in the same Kähler class L is isometric by some holomorphic map $f : X \to X$.

Conjecture (Yau–Tian–Donaldson conjecture)

Given (X, L), the existence of a cscK metric in $\mathcal{H}(X, L)$ is equivalent to K-stability of (X, L).

Degeneration of space

A pair $(\mathcal{X}, \mathcal{L})$ is called a test configuration if

- 1 \mathcal{X} is a scheme/complex analytic space flat over \mathbb{A}^1 endowed with a \mathbb{G}_m -action compatible with the scale action on \mathbb{A}^1 .
- **2** \mathbb{G}_m -equivariant isomorphism $X \times \mathbb{G}_m \cong \mathcal{X}^* = \mathcal{X} \setminus \mathcal{X}_0$ away from the fibre \mathcal{X}_0 over $0 \in \mathbb{A}^1$.
- 3 $\mathcal{L} \in H^2_{\mathbb{G}_m}(\mathcal{X}, \mathbb{R})$ is a \mathbb{G}_m -equivariant relatively ample cohomology class whose restriction to \mathcal{X}^* coincides with p_X^*L as \mathbb{G}_m -equivariant class via the above isomorphism.

Canonical compactification using \mathbb{G}_m -action: $(\bar{\mathcal{X}}, \bar{\mathcal{L}})$ We put

$$\mathrm{DF}(\mathcal{X},\mathcal{L}) := (K_{\bar{\mathcal{X}}/\mathbb{P}^1}.\bar{\mathcal{L}}^n) - \frac{n}{n+1}\frac{(K_X.L^{n-1})}{(L^n)}(\bar{\mathcal{L}}^{n+1}).$$

(X, L) is called K-semistable if $DF(\mathcal{X}, \mathcal{L}) \ge 0$ for every test configuration.

Question

It is known that if (X, L) admits a cscK metric, then it is K-semistable (more strongly K-polystable).

In view of GIT analogue, K-semistable varieties are believed to form an Artin moduli stack which admits a good moduli space of K-polystable varieties.

... Good!

Question: What we can say for K-unstable (X, L)?

normalized base change

We want to formulate the notion of "test configuration with the least Donaldson-Futaki invariant".

For a normalized base change \mathcal{X}_d of \mathcal{X} along $z^d : \mathbb{A}^1 \to \mathbb{A}^1$, we have

 $\mathrm{DF}(\mathcal{X}_d, \mathcal{L}_d) \leq d.\mathrm{DF}(\mathcal{X}, \mathcal{L})$

and

$$d^{-1}\mathrm{DF}(\mathcal{X}_d,\mathcal{L}_d)=(d')^{-1}\mathrm{DF}(\mathcal{X}_{d'},\mathcal{L}_{d'})=:M(\mathcal{X},\mathcal{L})$$

for sufficiently divisible $d, d' \in \mathbb{N}$.

When $M(\mathcal{X}, \mathcal{L}) < 0$, $M(\mathcal{X}_d, \mathcal{L}_d) = d.M(\mathcal{X}, \mathcal{L})$ gets arbitrary small by taking $d \to \infty$.

 \rightsquigarrow Want to define a "norm" $\|(\mathcal{X}, \mathcal{L})\|$ to normalize $M(\mathcal{X}, \mathcal{L})$.

normalized Donaldson-Futaki invariant

We consider the weak limit of measures on $\ensuremath{\mathbb{R}}$:

$$\mathrm{DH}_{(\mathcal{X},\mathcal{L})} := \lim_{m \to \infty} \frac{1}{m^n} \sum_{\lambda \in \mathbb{Z}} \dim H^0(\mathcal{X}_0, \mathcal{L}_0^{\otimes m})_{\lambda} . \delta_{\lambda/m}.$$

We put

$$E(\mathcal{X},\mathcal{L}) := \int_{\mathbb{R}} t \mathrm{DH}_{(\mathcal{X},\mathcal{L})}(t) / \int_{\mathbb{R}} \mathrm{DH}_{(\mathcal{X},\mathcal{L})}$$

and use

$$\|(\mathcal{X},\mathcal{L})\| := \left(\int_{\mathbb{R}} (t - E(\mathcal{X},\mathcal{L}))^2 \mathrm{DH}_{(\mathcal{X},\mathcal{L})}\right)^{1/2}$$

as the norm. It satisfies $\|(\mathcal{X},\mathcal{L})\|\geq 0$ and

$$\|(\mathcal{X}_d,\mathcal{L}_d)\|=d.\|(\mathcal{X},\mathcal{L})\|.$$

Optimal degeneration problem

Show the existence and the uniqueness of the minimizer of $M(\mathcal{X}, \mathcal{L})/\|(\mathcal{X}, \mathcal{L})\|$ modulo scaling.

Donaldson's inequality

The Calabi energy $Ca: \mathcal{H}(X, L) \to \mathbb{R}$

$$Ca(\omega) = \int_X \hat{s}(\omega)^2 \omega^n.$$

Theorem (Donaldson '05)

$$\left(\frac{2\pi M(\mathcal{X},\mathcal{L})}{\|(\mathcal{X},\mathcal{L})\|}\right)^2 \leq \inf_{\omega\in\mathcal{H}(X,L)} Ca(\omega)$$

for any $(\mathcal{X}, \mathcal{L})$ with $M(\mathcal{X}, \mathcal{L}) \leq 0$.

Minimizer of Ca is extremal metric:

$$\partial^{\#} s(\omega)$$

is holomorphic.

Extension

It is NOT known if there exists a tc with minimal $M(\mathcal{X}, \mathcal{L})/||(\mathcal{X}, \mathcal{L})||$. We can find a minimizer on a larger space $\mathcal{E}_{NA}^2 \supset \{ \text{ tc} \}$ (Xia '21).

There are two ways to extend

$$\hat{\mu}^{ ext{ext}}(\mathcal{X},\mathcal{L}) := egin{cases} \left\{ egin{pmatrix} rac{2\pi\,\mathcal{M}(\mathcal{X},\mathcal{L})}{\|(\mathcal{X},\mathcal{L})\|}
ight\}^2 & \mathcal{M}(\mathcal{X},\mathcal{L}) \leq 0 \ 0 & \mathcal{M}(\mathcal{X},\mathcal{L}) > 0 \end{cases}$$

to $\mathcal{E}_{\mathrm{NA}}^2$:

1 use geometric pluripotential theory $\hat{\mu}_{geo}^{ext}$ or

2 use non-archimedean pluripotential theory $\hat{\mu}_{NA}^{ext}$.

These are expected to coincide (= regularization of NA entropy).

Similarly, there exists an extension of $Ca : \mathcal{H}(X, \omega) \to \mathbb{R}$ to a larger space $\mathcal{E}^2 \supset \mathcal{H}(X, \omega)$.

Xia's result

The Calabi flow

$$\frac{d}{dt}\omega_t = \sqrt{-1}\partial\bar{\partial}s(\omega_t)$$

decreases the Calabi energy.

Long time existence of smooth solution is not known, but there exists $[0,\infty) \to \mathcal{E}^2$ which can be regarded as Calabi flow.

Using this and compactness on \mathcal{E}^2 , Xia proved the following.

Theorem (Xia '21)

There exists $\phi_{\rm ext}\in \mathcal{E}_{\rm NA}^2$ which maximizes $\hat{\mu}_{\rm geo}^{\rm ext}$ and we have

$$\max_{\phi \in \mathcal{E}_{\mathrm{NA}}^2} \hat{\mu}_{\mathrm{geo}}^{\mathrm{ext}}(\phi) = \inf_{\varphi \in \mathcal{E}^2} Ca(\varphi).$$

Li–Lian–Sheng: Toric ϕ_{ext} is bounded \rightsquigarrow filtration on $\bigoplus_m H^0(X, L^{\otimes m})$.

Framework of Kähler-Ricci soliton

$$\hat{\mu}^{\text{ext}}(\mathcal{X},\mathcal{L}) = \max_{\rho \ge 0} \mu^{\text{ext}}(\mathcal{X},\mathcal{L};\rho) := \max_{\rho \ge 0} (-4\pi M(\mathcal{X},\mathcal{L}).\rho - \|(\mathcal{X},\mathcal{L})\|^2.\rho^2)$$

For $(X, L) = (X, -2\pi K_X)$ is a Fano manifold, there is another framework on optimal degeneration: Framework of Kähler–Ricci soliton.

$$H(\mathcal{X},\mathcal{L};
ho) = -L(\mathcal{X},\mathcal{L}).
ho - \log \int_{\mathbb{R}} e^{
ho.t} \mathrm{DH}_{(\mathcal{X},\mathcal{L})}(t)$$

μ^{ext}	H: H-entropy
Ca: Calabi energy	<i>He</i> : He entropy
Extremal metric	Kähler–Ricci soliton
Calabi flow	Kähler–Ricci flow

Geometric property of optimal degeneration

A good thing in the framework of Kähler–Ricci soliton is that the optimal degeneration has a geometric realization (cf. Chen–Sun–Wang, Dervan–Székelyhidi, Han–Li, Blum–Liu–Xu–Zhuang):

 $\mathcal{X} \to \mathbb{A}^k \circlearrowleft (\mathbb{G}_m)^k$ with $\xi \in [0,\infty)^k$.

Theorem (Han–Li '20)

The central fibre \mathcal{X}_0 is a \mathbb{Q} -Fano variety which is modified K-semistable with respect to the vector field generated by ξ .

Existence of Kähler–Ricci soliton \Rightarrow modified K-semistable

Optimal degeneration is associated to the following filtration:

$$\mathcal{F}_m^{\lambda} = \{s \in H^0(X, mL) \mid \lim_{t \to \infty} t^{-1} \log \|s\|_{g(t)} \leq \lambda\},$$

where g(t) is a Kähler–Ricci flow.

Framework of μ -cscK metric

There is a family of similar framework parametrized by $\lambda \in \mathbb{R}$:

μ^{λ} : μ -entropy	
$\mu_{ m Pe}^{\lambda}$: Perelman μ -entropy	
μ^{λ} -cscK metric	
" μ^{λ} -flow"	

For Fano manifold $(X, L) = (X, -2\pi\lambda K_X)$, μ^{λ} -cscK metric is equivalent to Kähler–Ricci soliton. (Here $\lambda^{-1} = 2\pi (-K_X . L^{n-1})/(L^n) > 0$)

For general (X, L), a rescaling limit of the framework of μ^{λ} -cscK metric as $\lambda \to -\infty$ is the framework of extremal metric.

Perelman entropy

For $f\in C^\infty(X)$ normalized as $\int_X e^f\omega^n=\int_X\omega^n$, we consider

$$W^{\lambda}(\omega, f) := -\frac{1}{\int_{X} \omega^{n}} \left(\int_{X} (s(\omega) + \Box f) e^{f} \omega^{n} - \lambda \int_{X} f e^{f} \omega^{n} \right).$$

If we put $\nu_{\omega} = \omega^n / \int_X \omega^n$, $\nu_{\omega,f} := e^f \omega^n / \int_X \omega^n$ and $\rho(\nu) := \sqrt{-1} \bar{\partial} \partial \log \nu$ for $\nu \in \Omega^{n,n}(X)$ then

$$W^{\lambda}(\omega, f) = -\left(\int_{X} \operatorname{tr}_{\omega}(\rho(\nu_{\omega, f}))\nu_{\omega, f} - \lambda \int_{X} \frac{\nu_{\omega, f}}{\nu_{\omega}} \log \frac{\nu_{\omega, f}}{\nu_{\omega}}\nu_{\omega}\right)$$

(cf. free energy
$$\sum_{x \in \Omega} E(x)p(x) + T \sum_{x \in \Omega} p(x) \log p(x)$$
)

We put

$$\mu_{\mathrm{Pe}}^{\lambda}(\omega, f) := \sup_{f: \int_{X} e^{f} \omega^{n} = \int_{X} \omega^{n}} W^{\lambda}(\omega, f).$$

μ -cscK metric

Theorem (arXiv:2101.11197)

The critical points of W^{λ} : $\mathcal{H}(X, L) \times C^{\infty}(X)/\mathbb{R} \to \mathbb{R}$ are precisely those pairs (ω, f) satisfying the following couple of equations:

$$ar{\partial}\partial^{\#}f = 0$$

 $s(\omega) + \Delta f - rac{1}{2}|
abla f|^2 = \lambda f + ext{const.}$

We call ω a μ^{λ} -cscK metric if there exists some f satisfying this equation.

Proposition

For $\lambda \leq 0$, the functional $\mu_{\text{Pe}}^{\lambda} : \mathcal{H}(X, \omega) \to \mathbb{R}$ is smooth and its critical points are all minimizers and are μ^{λ} -cscK metrics.

Conjecture

For $\lambda \leq 0$, μ^{λ} -cscK metrics are unique modulo $\operatorname{Aut}(X)$.

μ -entropy

Theorem (arXiv:2101.11197)

There exists an algebro-geometric quantity

$$\hat{\mu}^{\lambda}(\mathcal{X},\mathcal{L}) = \sup_{
ho \geq \mathsf{0}} \mu^{\lambda}(\mathcal{X},\mathcal{L};
ho)$$

which satisfies Donaldson type inequality

$$\sup_{(\mathcal{X},\mathcal{L})}\hat{\mu}^{\lambda}(\mathcal{X},\mathcal{L})\leq \inf_{\omega}\mu_{\mathrm{Pe}}^{\lambda}(\omega).$$

Conjecture

For $\lambda \leq 0$,

$$\sup_{(\mathcal{X},\mathcal{L})} \hat{\mu}^{\lambda}(\mathcal{X},\mathcal{L}) = \inf_{\omega} \mu_{\mathrm{Pe}}^{\lambda}(\omega).$$

This is true when there exists a μ^{λ} -cscK metric, i.e. minimizer of RHS.

Toric description

Let (X, L) be a toric variety and $(\mathcal{X}, \mathcal{L})$ be a toric tc associated to a convex function q on the moment polytope $P \subset \mathfrak{t}^{\vee}$. Put $u_{\rho,q} := e^{\rho \cdot q} / \int_{P} e^{\rho \cdot q} d\mu$, then

$$\mu^{\lambda}(\mathcal{X},\mathcal{L};\rho) = -(2\pi \int_{\partial P} u_{\rho,q} d\sigma - \lambda \int_{P} u_{\rho,q} \log u_{\rho,q} d\mu) =: \mu^{\lambda}(\rho,q)$$

Theorem (arXiv:2303.09090)

For every $\lambda \in \mathbb{R}$, there exists a lsc convex function $q: P \to (-\infty, \infty]$ which maximizes μ^{λ} . When $\lambda \leq 0$, the maximizer is unique up to the addition of constant. Moreover, q is L^p for every $p \in [1, \infty)$.

Conjecture

The maximizer is piecewise affine.

Where we are now

Set out nice framework \downarrow Construct optimal degeneration \downarrow Analyze asymptotic behavior of geometric flow \downarrow Analyze the regularity of optimal degeneration