Distortion and Moment measure of *L*-psh function over trivially valued field

Eiji INOUE (RIKEN iTHEMS, Japan)

16, April, 2024, Isaac Newton Institute

Menu

- Motivation and Prior researches
- **2** Non-archimedean μ -entropy
- 3 Application of Distortion and Moment measure
- 4 Distortion and Moment measure

1. Motivation and Prior researches

K-stability

Let $(X,L)/k = \mathbb{C}$ be a polarized manifold. For a normal tc $(\mathcal{X},\mathcal{L}) \circlearrowleft \mathbb{G}_m$,

$$\frac{(L^{\cdot n})}{n!}\mathrm{DF}(\mathcal{X},\mathcal{L}) = \frac{(\mathcal{K}_{\mathcal{X}/\mathbb{P}^{1}} \cdot \mathcal{L}^{\cdot n})}{n!} - \frac{n(\mathcal{K}_{X} \cdot L^{\cdot n-1})}{(L^{\cdot n})} \frac{(\mathcal{L}^{\cdot n+1})}{(n+1)!}$$

- K-polystability (reduced uniform K-stability) DF > 0 is conjectured to be equivalent to the existence of cscK metrics. (YTD conjecture)
- 2 K-semistability DF ≥ 0 is conjectured to be a Zariski open condition, and the moduli stack of K-semistable polarized variety admits a good moduli space of K-polystable polarized variety.

For $L = -\lambda K_X$ (cscK = KE), we have good tools on "regularity":

- I √: Ric > 0 / Ding functional (..., Chen–Donaldson–Sun, Tian, ... / Berman–Boucksom–Jonsson)
- 2 √: MMP / boundedness / finite generation (..., Blum–Liu–Xu, ...)

Quick review of recent developments on K-stability

For general L,

- Reduced to NA entropy regularization conjecture (..., Chen-Cheng, Berman-Darvas-Lu / Boucksom-Jonsson, Chi Li).
- 2 Little known (Chen–Sun and Dervan–Naumann)

$$egin{aligned} &\mathcal{K}_{\mathcal{X}/\mathbb{P}^1} \stackrel{\mathrm{replace}}{&\leadsto} \mathcal{K}^{\log}_{\mathcal{X}/\mathbb{P}^1} := \mathcal{K}_{\mathcal{X}/\mathbb{P}^1} - (\mathcal{X}_0 - \mathcal{X}_0^{\mathrm{red}}) \ &= p^* \mathcal{K}_X + \sum_{E \subset \mathcal{X}_0} \mathrm{ord}_E(\mathcal{X}_0) \mathcal{A}_X(v_E) E. \end{aligned}$$

Quick review of recent developments on K-stability

For general L,

- Reduced to NA entropy regularization conjecture (..., Chen-Cheng, Berman-Darvas-Lu / Boucksom-Jonsson, Chi Li).
- 2 Little known (Chen–Sun and Dervan–Naumann)

$$egin{aligned} &\mathcal{K}_{\mathcal{X}/\mathbb{P}^1} \stackrel{\mathrm{replace}}{&\leadsto} \mathcal{K}^{\log}_{\mathcal{X}/\mathbb{P}^1} := \mathcal{K}_{\mathcal{X}/\mathbb{P}^1} - (\mathcal{X}_0 - \mathcal{X}_0^{\mathrm{red}}) \ &= p^* \mathcal{K}_X + \sum_{E \subset \mathcal{X}_0} \mathrm{ord}_E(\mathcal{X}_0) \mathcal{A}_X(v_E) E. \end{aligned}$$

$$\begin{split} \frac{(\mathcal{L}^{\cdot n})}{n!} \mathcal{M}_{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) &= \frac{1}{n!} (\mathcal{K}_{\mathcal{X}/\mathbb{P}^{1}}^{\log} \cdot \mathcal{L}^{\cdot n}) - \cdots \\ &= \sum_{E \subset \mathcal{X}_{0}} \mathrm{ord}_{E}(\mathcal{X}_{0}) \mathcal{A}_{X}(v_{E}) \frac{1}{n!} (E \cdot \mathcal{L}^{\cdot n}) \\ &+ \frac{1}{n!} (p^{*} \mathcal{K}_{X} \cdot \mathcal{L}^{\cdot n}) - \cdots . \end{split}$$

Non-archimedean entropy

For a normal test configuration $(\mathcal{X}, \mathcal{L})$, we put

$$\operatorname{Ent}_{\operatorname{NA}}(\mathcal{X},\mathcal{L}) := \frac{n!}{(L^{\cdot n})} \sum_{E \subset \mathcal{X}_0} \operatorname{ord}_E(\mathcal{X}_0) A_X(v_E) \frac{1}{n!} (E \cdot \mathcal{L}^{\cdot n}).$$

Let us consider

 $X^{\beth} := \{ \text{ valuations on some irreducible subvariety } Y \subset X \} \circlearrowleft \mathbb{R}_+$ and the measure

$$\mathrm{MA}_{(\mathcal{X},\mathcal{L})} := \frac{n!}{(L^{\cdot n})} \sum_{E \subset \mathcal{X}_0} \mathrm{ord}_E(\mathcal{X}_0) \frac{1}{n!} (E \cdot \mathcal{L}^{\cdot n}) \delta_{\nu_E}^{\chi^{\square}}$$

on X^{\beth} . We observe

$$\operatorname{Ent}_{\operatorname{NA}}(\mathcal{X},\mathcal{L}) = \int_{X^{\neg}} A_X(v) \operatorname{MA}_{(\mathcal{X},\mathcal{L})}(v).$$

NA entropy regularization conjecture

For a test configuration $(\mathcal{X}, \mathcal{L})$, we can assign a function $\varphi_{(\mathcal{X}, \mathcal{L})} : \mathcal{X}^{\beth} \to \mathbb{R}$ by

 $\varphi(\mathbf{v}) = m^{-1} \max\{-\mathbf{v}(s/s_{\mathbf{v}}) - \log \|s\|_{(\mathcal{X},\mathcal{L})} \mid s \in R_m \setminus \{0\}\}.$

NA entropy regularization conjecture

For a test configuration $(\mathcal{X}, \mathcal{L})$, we can assign a function $\varphi_{(\mathcal{X}, \mathcal{L})} : \mathcal{X}^{\beth} \to \mathbb{R}$ by

$$\varphi(\mathbf{v}) = m^{-1} \max\{-\mathbf{v}(s/s_{\mathbf{v}}) - \log \|s\|_{(\mathcal{X},\mathcal{L})} \mid s \in R_m \setminus \{0\}\}.$$

Topology We endow the set X^{\neg} with the weakest topology which makes $\varphi_{(\mathcal{X},\mathcal{L})}$ continuous for every $(\mathcal{X},\mathcal{L})$. It turns out that the topology is independent of the choice of L and X^{\neg} becomes a compact Hausdorff space. The log discrepancy A_X extends to an lsc function on X^{\neg} .

 $\exists \mathrm{MA} : \mathcal{E}^1_{\mathrm{NA}}(L) \to \mathcal{M}(X^{\beth}) : \ \mathcal{E}^1_{\mathrm{NA}}(L) \text{ consisting of functions on } X^{\beth} \text{ which is nicely approximated by } \varphi_{(\mathcal{X}_i, \mathcal{L}_i)}.$

Conjecture (NA entropy regularization conjecture)

For $\varphi \in \mathcal{E}_{\mathrm{NA}}^{1}(L)$, there exists a sequence of test configurations $(\mathcal{X}_{i}, \mathcal{L}_{i})$ such that $\varphi_{(\mathcal{X}_{i}, \mathcal{L}_{i})} \xrightarrow{E^{1}} \varphi$ and $\int_{X^{\square}} A_{X} \mathrm{MA}_{(\mathcal{X}_{i}, \mathcal{L}_{i})} \rightarrow \int_{X^{\square}} A_{X} \mathrm{MA}_{\varphi}$.

The main question

Q. What can we expect for K-unstable (X, L)?

A naive expectation is:

There exists a unique test configuration which is **optimal** in some sense.

- **1** How can we formulate '**optimal**'?
- 2 What kind of geometric property can we expect?

We hope to

- introduce a "well-behaved" quantity for test configuration which would be maximized by **optimal** degeneration.
- 2 show the central fibre of optimal degeneration is K-stable in a generalized sense: we introduce K-stability for polarized dynamics (X₀, L₀) G_m = "well-behaved".

Quick overview of two model frameworks

We have two model frameworks related to extremal metric (Calabi flow) and Kähler–Ricci soliton (Kähler–Ricci flow).

For $\varphi = (\mathcal{X}, \mathcal{L})$, the quantities are:

$$oldsymbol{\mathcal{C}}_{\mathrm{NA}}(arphi) = -M^{\mathrm{NA}}(arphi) - rac{1}{2} \left(\int_{\mathbb{R}} \sigma^{2} \mathrm{DH}_{arphi} - \left(\int_{\mathbb{R}} \sigma \mathrm{DH}_{arphi}
ight)^{2}
ight),$$

 $oldsymbol{\eta}_{\mathrm{NA}}(arphi) = -D^{\mathrm{NA}}(arphi) - \left(\log \int_{\mathbb{R}} e^{-\sigma} \mathrm{DH}_{arphi} + \int_{\mathbb{R}} \sigma \mathrm{DH}_{arphi}
ight),$

respectively, where we consider η_{NA} for $L = -K_X$ (Fano). We note

$$\sup_{t>0} \boldsymbol{C}_{\mathrm{NA}}(t \triangleright \varphi) = \begin{cases} 0 & M^{\mathrm{NA}}(\varphi) \ge 0 \\ -\frac{M^{\mathrm{NA}}(\varphi)}{\int_{\mathbb{R}} \sigma^{2} \mathrm{DH}_{\varphi} - (\int_{\mathbb{R}} \sigma \mathrm{DH}_{\varphi})^{2}} & M^{\mathrm{NA}}(\varphi) < 0 \end{cases}$$

These are essentially introduced by Donaldson ('05) and Dervan–Székelyhidi ('20), respectively.

Well-behavedness

Theorem (Dervan, Han–C. Li)

- **1** C_{NA} (resp. η_{NA}) is maximized by the trivial test configuration if and only if (X, L) is K-semistable.
- 2 If C_{NA} (resp. η_{NA}) is maximized by a "product test configuration" induced by " $(X, L) \circlearrowleft \mathbb{G}_m$ ", then " $(X, L) \circlearrowright \mathbb{G}_m$ " is relatively K-semistable (resp. modified K-semistable). (\Leftarrow is known for η_{NA})
- **3** If a "normal test configuration" $(\mathcal{X}, \mathcal{L})$ maximizes C_{NA} (resp. η_{NA}), then the central fibre " $(\mathcal{X}_0, \mathcal{L}_0) \circlearrowleft \mathbb{G}_m$ " is relatively K-semistable (resp. modified K-semistable).

Relative K-stability is related to the existence of extremal metric. Modified K-stability is equivalent to the existence of Kähler–Ricci soliton. These stability notions are defined for polarized dynamics " $(X, L) \circ \mathbb{G}_m$ " = $(X, L; \xi)$, not only for pol. variety (X, L) = (X, L; 0).

Existence

For each test configuration $(\mathcal{X}, \mathcal{L})$, we can assign a (maximal, finite energy) geodesic ray $\Phi = \{\Phi_t\}_{t \in [0,\infty)} \in \mathcal{R}^1_{\mathcal{I}}(\omega)$ of Kähler potentials. We can extend $\boldsymbol{C}_{\mathrm{NA}}$ to the space of (maximal finite energy) geodesic rays $\mathcal{R}^1_{\mathcal{I}}(\omega) \cong \mathcal{E}^1_{\mathrm{NA}}(\mathcal{L})$ by putting

$$oldsymbol{\mathcal{C}}_{\mathrm{ray}}(\Phi) = -M'(\Phi) - rac{1}{2} \left(\int_{\mathbb{R}} \sigma^2 \mathrm{DH}_{arphi} - \left(\int_{\mathbb{R}} \sigma \mathrm{DH}_{arphi}
ight)^2
ight).$$

Theorem (Xia + C. Li (cf. Székelyhidi, A-M. Li–Lian–Sheng))

There exists a maximal finite energy geodesic ray $\Phi \in \mathcal{R}^2_{\mathcal{I}}$ which maximizes \boldsymbol{C}_{ray} .

On the other hand, for $L=-{\it K}_X$ (Q-Fano) and $\eta_{
m NA}$,

Theorem (Chen–Sun–Wang, Dervan–Székelyhidi, Blum–Liu–Xu–Zhuang)

There exists a finitely generated filtration \mathcal{F} which maximizes η_{NA} . Its central fibre is modified K-semistable Q-Fano variety.

Optimal degeneration | canonical metric

Let $\boldsymbol{C}, \boldsymbol{\eta}: \mathcal{H}(\omega) \to \mathbb{R}$ denote the Calabi functional the He functional, respectively.

Critical points = extremal metric / Kähler-Ricci soliton

Theorem (Donaldson, Xia / Dervan–Székelyhidi)

$$\sup_{\varphi \in \mathcal{E}_{\mathrm{NA}}^{2}(L)} \boldsymbol{C}_{\mathrm{NA}}(\varphi) = \inf_{\phi \in \mathcal{E}^{2}(\omega)} \boldsymbol{C}(\phi)$$
$$\sup_{\varphi \in \mathcal{H}_{\mathrm{NA}}^{\mathbb{R}}(L)} \boldsymbol{\eta}_{\mathrm{NA}}(\varphi) = \inf_{\phi \in \mathcal{H}(\omega)} \boldsymbol{\eta}(\phi).$$

Furthermore, optimal destabilizers are assymptotic to Calabi flow and Kähler–Ricci flow, respectively.

Beautiful results!

Sakasa-Fuji = upside-down Fuji = optimal degeneration

2. Non-archimedean μ -entropy

Duistermaat–Heckman measure

Let (Z, A) be a polarized scheme with \mathbb{G}_m -action. Using the weight decomposition $H^0(Z, A^{\otimes m}) = \bigoplus_{\lambda \in \mathbb{Z}} H^0(Z, A^{\otimes m})_{\lambda}$, we define the probability measure $\mathrm{DH}_{(Z,A) \cup \mathbb{G}_m}$ on \mathbb{R} by

$$\mathrm{DH}_{(Z,\mathcal{A}) \circlearrowleft \mathbb{G}_m} := \lim_{m o \infty} rac{1}{\dim H^0(Z, \mathcal{A}^{\otimes m})} \sum_{\lambda \in \mathbb{Z}} \dim H^0(Z, \mathcal{A}^{\otimes m})_\lambda \delta^{\mathbb{R}}_{\lambda/m}.$$

For a test configuration (\mathcal{X}, \mathcal{L}), using the following associated filtrations

$$\widehat{\mathcal{F}}^{\lambda}_{(\mathcal{X},\mathcal{L}),m} := \{ s \in H^0(X, L^{\otimes m}) \mid \exists d \in \mathbb{N} \text{ s.t. } p^*s \cdot \varpi^{-\lceil d\lambda \rceil} \in H^0(\mathcal{X}_d, \mathcal{L}_d^{\otimes m}) \}$$

we can compute

$$\mathrm{DH}_{(\mathcal{X},\mathcal{L})} := \mathrm{DH}_{(\mathcal{X}_0,\mathcal{L}_0) \cup \mathbb{G}_m} = \lim_{m \to \infty} \frac{1}{\dim H^0(X,L^{\otimes m})} \sum_{\lambda \in \mathbb{Z}} \dim \frac{\widehat{\mathcal{F}}^{\lambda}_{(\mathcal{X},\mathcal{L}),m}}{\widehat{\mathcal{F}}^{\lambda+}_{(\mathcal{X},\mathcal{L}),m}} \delta^{\mathbb{R}}_{\lambda/m}.$$

Equivariant cohomology

Let Z be a scheme with \mathbb{G}_m -action (e.g. tc \mathcal{X} / central fibre \mathcal{X}_0). We consider the \mathbb{G}_m -equivariant cohomology:

$$H^p_{\mathbb{G}_m}(Z) := H^p([Z/\mathbb{G}_m]) = H^p(Z \times_{\mathbb{G}_m} E\mathbb{G}_m).$$

Example

$$\mathcal{H}^{p}_{\mathbb{G}_{m}}(\mathrm{pt})=\mathcal{H}^{p}(\mathbb{P}^{\infty})=egin{cases}\mathbb{Z}&p\geq0 ext{ even}\0&p ext{ otherwise}\end{cases}$$

We have the cup product

$$\smile: H^p_{\mathbb{G}_m}(Z) \otimes H^q_{\mathbb{G}_m}(Z) \to H^{p+q}_{\mathbb{G}_m}(Z).$$

For a proper scheme Z of pure (complex) dimension n, we have the push-forward

$$\int_{Z}: H^{p}_{\mathbb{G}_{m}}(Z) \to H^{p-2n}_{\mathbb{G}_{m}}(\mathrm{pt}).$$

Self equivariant intersection

For
$$L_{\mathbb{G}_m} \in H^2_{\mathbb{G}_m}(Z,\mathbb{R})$$
 and $\ell \geq 0$, we have

$$\int_{Z} L_{\mathbb{G}_m}^{\smile \ell} \in H_{\mathbb{G}_m}^{2(\ell-n)}(\mathrm{pt}).$$

In general, this can be a non-zero number for each $\ell \ge n$.

Proposition (cf. Ginzburg–Guillemin–Karshon, BHJ)

For an ample A, putting $A_{\mathbb{G}_m}:=c_{1,\mathbb{G}_m}(A)$, we have

$$\frac{1}{\ell!}\int_{Z}A_{\mathbb{G}_m}^{\sim \ell} = \frac{(L^{\cdot n})}{n!}\frac{1}{(\ell-n)!}\int_{\mathbb{R}}(-\sigma)^{\ell-n}\mathrm{DH}_{(Z,\mathcal{A})}(\sigma).$$

For an entire holomorphic function $f(x) = \sum_{\ell=0}^{\infty} \frac{a_{\ell}}{\ell!} x^{\ell}$ and $L_{\mathbb{G}_m} \in H^2_{\mathbb{G}_m}(Z, \mathbb{R})$, we define *f*-self equivariant intersection of $L_{\mathbb{G}_m}$ by

$$(f(L_{\mathbb{G}_m})) := \sum_{\ell=0}^{\infty} rac{a_\ell}{\ell!} \int_Z L_{\mathbb{G}_m}^{\sim \ell} = rac{(L^{\cdot n})}{n!} \int_{\mathbb{R}} f^{(n)}(-\sigma) \mathrm{DH}_{(Z,A)}(\sigma) \in \mathbb{C}.$$

Equivariant localization

For a test configuration $(\mathcal{X}, \mathcal{L})$, putting $\mathcal{L}_{\mathbb{G}_m} := c_{1,\mathbb{G}_m}(\mathcal{L})$ and $\mathcal{L}_{\mathbb{G}_m}|_{\mathcal{X}_0} := c_{1,\mathbb{G}_m}(\mathcal{L}|_{\mathcal{X}_0})$, we have

$$\int_{\mathcal{X}} \overline{\mathcal{L}}_{\mathbb{G}_m}^{\ell} + \int_{\mathcal{X}_0} \mathcal{L}_{\mathbb{G}_m} |_{\mathcal{X}_0}^{\ell} = (L^{\cdot \ell}) = \begin{cases} (L^{\cdot n}) & \ell = n \\ 0 & \text{otherwise} \end{cases}$$

.

Example

$$\frac{1}{(n+1)!}(\mathcal{L}^{\cdot n+1}) = -\frac{1}{(n+1)!}(\mathcal{L}_{\mathbb{G}_m}|_{\mathcal{X}_0}^{\cdot n+1}) = \frac{(\mathcal{L}^{\cdot n})}{n!} \int_{\mathbb{R}} \sigma \mathrm{DH}_{(\mathcal{X},\mathcal{L})}$$
$$\frac{1}{(n+2)!}(\mathcal{L}_{\mathbb{G}_m}^{\cdot n+2}) = -\frac{1}{(n+2)!}(\mathcal{L}_{\mathbb{G}_m}|_{\mathcal{X}_0}^{\cdot n+2}) = -\frac{(\mathcal{L}^{\cdot n})}{n!}\frac{1}{2}\int_{\mathbb{R}} \sigma^2 \mathrm{DH}_{(\mathcal{X},\mathcal{L})}$$
$$(e^{\mathcal{L}_{\mathbb{G}_m}}) = \frac{1}{n!}(\mathcal{L}^{\cdot n}) - (e^{\mathcal{L}_{\mathbb{G}_m}|_{\mathcal{X}_0}}) = \frac{1}{n!}(\mathcal{L}^{\cdot n}) - \frac{(\mathcal{L}^{\cdot n})}{n!}\int_{\mathbb{R}} e^{-\sigma} \mathrm{DH}_{(\mathcal{X},\mathcal{L})}.$$

Twist

For
$$M_{\mathbb{G}_m}, L_{\mathbb{G}_m} \in H^2_{\mathbb{G}_m}(Z, \mathbb{Q})$$
, we have

$$\frac{1}{(\ell-1)!}\int_{Z}M_{\mathbb{G}_m} \smile L_{\mathbb{G}_m}^{\smile \ell-1} = \frac{d}{ds}\Big|_{s=0}\frac{1}{\ell!}\int_{Z}(L_{\mathbb{G}_m} + sM_{\mathbb{G}_m})^{\smile \ell} \in H_{\mathbb{G}_m}^{2(\ell-n)}(\mathrm{pt},\mathbb{Q}).$$

For an entire holomorphic function $f(x) = \sum_{\ell=0}^{\infty} \frac{a_{\ell}}{\ell!} x^{\ell}$, we have

$$(M_{\mathbb{G}_m} \cdot f'(\mathcal{L}_{\mathbb{G}_m})) = \frac{d}{ds}\Big|_{s=0}(f(\mathcal{L}_{\mathbb{G}_m} + sM_{\mathbb{G}_m})).$$

We can also define $(M_{\mathbb{G}_m} \cdot f'(\mathcal{L}_{\mathbb{G}_m}))$ for an \mathbb{G}_m -equivariant Borel–Moore homology class $M_{\mathbb{G}_m} \in H^{BM,\mathbb{G}_m}_{2n-2}(Z,\mathbb{Q})$. The right hand side of the above formula may not make sense for this general $M_{\mathbb{G}_m}$.

Non-archimedean μ -entropy

Now we introduce the non-archimedean μ -entropy: for a ntc $(\mathcal{X}, \mathcal{L})$,

$$\mu_{\mathrm{NA}}(\mathcal{X},\mathcal{L}) := \frac{n(K_X.L^{\cdot n-1})}{(L^{\cdot n})} - \frac{\frac{1}{(n-1)!}(K_X.L^{\cdot n-1}) - (K_{\mathcal{X}/\mathbb{P}^1}^{\log,\mathbb{G}_m} \cdot e^{\mathcal{L}_{\mathbb{G}_m}})}{\frac{1}{n!}(L^{\cdot n}) - (e^{\mathcal{L}_{\mathbb{G}_m}})}.$$

Theorem (Well-behavedness, arXiv:2202.12168)

If a normal test configuration $(\mathcal{X}, \mathcal{L})$ maximizes μ_{NA} , then its central fibre " $(\mathcal{X}_0, \mathcal{L}_0) \circlearrowleft \mathbb{G}_m$ " is μ K-semistable.

 μ K-stability is related to the existence of μ -cscK metric: a generalization of cscK metric to polarized dynamics " $(X, L) \circlearrowleft \mathbb{G}_m$ " which unifies the framework of extremal metric and Kähler–Ricci soliton.

Perelman entropy

$$W^{\lambda}(\omega_{\phi}, f) := -\frac{1}{2\pi} \frac{\int_{X} (s(\omega_{\phi}) + \frac{1}{2} |\nabla f|^{2}) e^{-f} \omega_{\phi}^{n}}{\int_{X} e^{-f} \omega_{\phi}^{n}} + \frac{\lambda}{2\pi} \cdots$$
$$\mu_{\operatorname{Per}}^{\lambda}(\omega_{\phi}) := \sup_{f} W^{\lambda}(\omega_{\phi}, f).$$
Critical points = μ -cscK metric

Theorem (arXiv:2101.11197)

$$\sup_{(\mathcal{X},\mathcal{L})} \boldsymbol{\mu}_{\mathrm{NA}}^{\lambda}(\mathcal{X},\mathcal{L}) \leq \inf_{\omega_{\phi}} \boldsymbol{\mu}_{\mathrm{Per}}^{\lambda}(\omega_{\phi}).$$

Sketch of Proof (psh-ity of Bergman kernel / Cartan model and equivariant localization) For the $C^{1,1}$ -geodesic ray ϕ_t associated to a smooth test configuration $(\mathcal{X}, \mathcal{L})$, we have

$$W(\omega_0, \dot{\phi}_0) \geq W(\omega_{\phi_t}, \dot{\phi}_t) \searrow \lim_{t o \infty} W(\omega_{\phi_t}, \dot{\phi}_t) = \mu_{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \quad \Box$$

Conjecture

Conjecture (For $\lambda \leq 0$)

$$\max_{\varphi\in \mathcal{E}_{\mathrm{NA}}^{\mathrm{exp},1}(L)}\mu_{\mathrm{NA}}^{\lambda}(\varphi) = \inf_{\omega_{\phi}\in \mathcal{H}(\omega)}\mu_{\mathrm{Per}}^{\lambda}(\omega_{\phi})$$

3. Application of distortion and moment measure

Main applications I: New formula for $\mu_{ m NA}$

Theorem A (To appear)

There exists a map $\mathrm{Dist}:\mathcal{H}_{\mathrm{NA}}(L)\to\mathcal{E}^1_{\mathrm{NA}}(L)$ such that

$$egin{aligned} &\eta_{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \log\left(rac{D^{\mathrm{NA}}(\mathrm{Dist}(\mathcal{X},\mathcal{L}))}{E^{\mathrm{NA}}(\mathrm{Dist}(\mathcal{X},\mathcal{L}))} + 1
ight) \ &\mu_{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = rac{M^{\mathrm{NA}}(\mathrm{Dist}(\mathcal{X},\mathcal{L}))}{E^{\mathrm{NA}}(\mathrm{Dist}(\mathcal{X},\mathcal{L}))} \end{aligned}$$

with

$$E^{\mathrm{NA}}(\mathrm{Dist}(\mathcal{X},\mathcal{L})) = -\int_{\mathbb{R}} e^{-\sigma} \mathrm{DH}_{(\mathcal{X},\mathcal{L})}(\sigma) < 0.$$

By this formula, we can extend

$$\mu_{\mathrm{NA}}: \mathcal{E}_{\mathrm{NA}}^{\mathrm{exp},1}(\mathcal{L}) \to [-\infty,\infty): \varphi \mapsto \frac{M^{\mathrm{NA}}(\mathrm{Dist}(\varphi))}{E^{\mathrm{NA}}(\mathrm{Dist}(\varphi))}$$

Main applications II: Existence of optimal destabilizing ray

Let \mathcal{R}^1 denote the space of finite energy geodesic rays and $\mathcal{R}^1_{\mathcal{I}}$ denote the space of (\mathcal{I} -)maximal finite energy geodesic rays (cf. Berman–Boucksom–Jonsson, Darvas–Xia). We consider

$$\boldsymbol{\mu}_{\mathrm{ray}}: \mathcal{E}^{\mathsf{exp},1}(\mathcal{L}) \to [-\infty,\infty): \varphi \mapsto \mathrm{Dist}(\varphi)_{\mathrm{ray}} \mapsto \frac{\mathcal{M}'(\mathrm{Dist}(\varphi)_{\mathrm{ray}})}{\mathcal{E}'(\mathrm{Dist}(\varphi)_{\mathrm{ray}})}$$

By C. Li's inequality $M^{\rm NA} \leq M'$, we have

$$\mu_{\mathrm{ray}} \leq \mu_{\mathrm{NA}}.$$

Theorem B (To appear)

Assume X is smooth. There exists $\varphi \in \mathcal{E}_{NA}^{exp,1}(L)$ which maximizes μ_{ray} .

If NA entropy regularization conjecture is true, the above theorem can be read as "there exists $\varphi \in \mathcal{E}_{NA}^{exp,1}(L)$ which maximizes μ_{NA} ".

Main applications III: Miscellaneous

Conjecture (For $\lambda \leq 0$)

$$\max_{\varphi \in \mathcal{E}_{\mathrm{NA}}^{\mathrm{exp},1}(L)} \mu_{\mathrm{ray}}(\varphi) = \sup_{\varphi \in \mathcal{E}_{\mathrm{NA}}^{\mathrm{exp},1}(L)} \mu_{\mathrm{NA}}(\varphi) = \inf_{\phi \in \mathcal{H}(\omega)} \mu_{\mathrm{Per}}(\omega_{\phi})$$

Theorem (For $\lambda \leq 0$, to appear)

If $\max_{\varphi \in \mathcal{E}_{NA}^{exp,1}(L)} \mu_{ray}(\varphi) \leq \inf_{\phi \in \mathcal{H}(\omega)} \mu_{Per}(\omega_{\phi})$, μ -cscK metrics are unique modulo $\operatorname{Aut}(X, L)$.

Theorem (to appear)

The following are equivalent:

- 1 (X, L) is K-semistable over $\mathcal{H}_{NA}(L)$ (resp. $\mathcal{E}^1_{NA}(L)$)
- **2** Trivial configuration maximizes μ_{NA} over $\mathcal{H}_{NA}(L)$ (resp. $\mathcal{E}_{NA}^{1}(L)$).

4. Distortion and Moment measure

Distortion of Non-archimedean L-psh function

Recall for a tc $(\mathcal{X}, \mathcal{L})$, we have a continuous function $\varphi_{(\mathcal{X}, \mathcal{L})} : \mathcal{X}^{\Box} \to \mathbb{R}$. For $v_E \in \mathcal{X}^{\operatorname{div}} \subset \mathcal{X}^{\Box}$ associated to $E \subset \mathcal{Y} \to \mathcal{X}$, we have $\varphi_{(\mathcal{X}, \mathcal{L})}(v_E) = \frac{\operatorname{ord}_E(\mathcal{L} - p^*\mathcal{L})}{\operatorname{ord}_E(\mathcal{X}_{\mathsf{D}})}.$

A function $\varphi: X^{\beth} \to [-\infty, \infty)$ is called *L*-psh function if there exists a net of tc's $(\mathcal{X}_i, \mathcal{L}_i)$ such that $\varphi_{(\mathcal{X}_i, \mathcal{L}_i)}$ is a decreasing net converging to φ pointwisely. Let $\mathrm{PSH}_{\mathrm{NA}}(L)$ denote the set of *L*-psh functions.

For an increasing concave $\chi : \mathbb{R} \to \mathbb{R}$, we introduce χ -distortion of φ :

$$\operatorname{Dist}_{\chi}(\varphi) := \inf_{t>0} (t \triangleright \varphi + \chi^{\blacktriangle}(t)),$$

where

$$(t \triangleright \varphi)(v) := t\varphi(t^{-1}v), \quad \chi^{\bigstar}(t) := \sup_{\sigma \in \mathbb{R}} (\chi(\sigma) - t\sigma).$$

Let's get a feeling of Distortion

Proposition (To appear)

For $\varphi \in \mathrm{PSH}_{\mathrm{NA}}(\mathcal{L})$, we have $\mathrm{Dist}_{\chi}(\varphi) \in \mathrm{PSH}_{\mathrm{NA}}(\mathcal{L})$.

Suppose (X, L) is a toric variety. Let $P \subset M_{\mathbb{R}} = \mathfrak{t}^{\vee}$ be the moment polytope.

$$\begin{array}{l} \{ T \text{-invariant } \varphi \} \longleftrightarrow \{ f : N_{\mathbb{R}} \to \mathbb{R} \} \\ \varphi \longmapsto f_{\varphi}(\xi) := \varphi(\mathsf{v}_{\xi}) + \sup_{\mu \in P} \langle \mu, \xi \rangle \end{array}$$

For the Legendre transform $g_{\varphi}(\mu) := \inf_{\xi \in N_{\mathbb{R}}} (\langle \mu, \xi \rangle + f_{\varphi}(\xi))$, we have

$$g_{\mathrm{Dist}_{\chi}(\varphi)} = \chi(g_{\varphi})$$

thanks to the duality:

$$\inf_{t>0}(t\sigma+\chi^{\blacktriangle}(t)).$$

Profile of Distortion

For a continuous *L*-psh function $\varphi \in CPSH_{NA}(L)$, we can assign a filtration \mathcal{F}_{φ} by putting

$$\mathcal{F}_{\varphi,m}^{\lambda} := \{ s \in H^0(X, L^{\otimes m}) \mid \inf_{v \in X^{\square}} (\varphi(v) + v(s/s_v)/m) \geq \lambda/m \}.$$

For a normal test configuration $(\mathcal{X}, \mathcal{L})$, we have $\mathcal{F}_{\varphi} = \widehat{\mathcal{F}}_{(\mathcal{X}, \mathcal{L})}$.

We can easily observe

$$\mathcal{F}_{\mathrm{Dist}_{\chi}(\varphi),m}^{\lambda} = \mathcal{F}_{\varphi,m}^{m\chi^{-1}(\lambda/m)}$$

(cf. Reboulet-Witt Nyström)

e.g. For
$$\chi(\sigma) = -e^{-\sigma}$$
, $\mathcal{F}_{\mathrm{Dist}_{\chi}(\varphi),m}^{\lambda} := \begin{cases} \mathcal{F}_{\varphi,m}^{-m\log(-\lambda/m)} & \lambda < 0\\ 0 & \lambda \ge 0 \end{cases}$

Distortion and Duistermaat-Heckman measure

Proposition (arXiv:2202.12168, see also M. Xia)

For each $\sigma \in \mathbb{R}$, the map

$$\varphi_{(\mathcal{X},\mathcal{L})} \mapsto \int_{[\sigma,\infty)} \mathrm{DH}_{(\mathcal{X},\mathcal{L})}$$

is monotonic. For general $\varphi \in PSH_{NA}(\mathcal{L})$, we can define a unique Radon measure DH_{φ} satisfying $\int_{\mathbb{R}} DH_{\varphi} \leq 1$ and

$$\int_{[\sigma,\infty)} \mathrm{DH}_{\varphi} = \inf \Big\{ \int_{[\sigma,\infty)} \mathrm{DH}_{(\mathcal{X},\mathcal{L})} \ \Big| \ \varphi \leq \varphi_{(\mathcal{X},\mathcal{L})} \Big\}.$$

Proposition (To appear)

For $\varphi \in PSH_{NA}(\mathcal{L})$, we have $DH_{Dist_{\chi}(\varphi)} = \chi_* DH_{\varphi}$.

Distortion and Ding invariant

Let us recall

$$D_{\mathrm{NA}}(\mathcal{X},\mathcal{L}) := \inf_{v \in \mathcal{X}^{\exists}} (A_{\mathcal{X}}(v) + \varphi_{(\mathcal{X},\mathcal{L})}(v)) - \int_{\mathbb{R}} \sigma \mathrm{DH}_{\varphi_{(\mathcal{X},\mathcal{L})}}$$
$$= \mathrm{lct}_{(\mathcal{X},\mathcal{X}_{0} - (\mathcal{L} + \kappa_{\mathcal{X}/\mathbb{A}^{1}}))}(\mathcal{X}_{0}) - \frac{n!}{(\mathcal{L}^{\cdot n})} \frac{(\mathcal{L}^{\cdot n+1})}{(n+1)!}.$$

For $L_{\mathrm{NA}}(arphi):= \inf_{v\in X} \exists (A_X(v) + arphi(v))$, we compute

$$L_{\mathrm{NA}}(\mathrm{Dist}_{\chi}(\varphi)) = \inf_{\substack{v \in X^{\beth} \ t > 0}} \inf_{\substack{v \in X^{\beth} \ t > 0}} (A_X(v) + t\varphi(t^{-1}v) + \chi^{\blacktriangle}(t))$$

= $\inf_{\substack{t > 0 \ w \in X^{\beth}}} (tA_X(w) + t\varphi(w) + \chi^{\bigstar}(t))$
= $\inf_{\substack{t > 0}} (t \inf_{\substack{w \in X^{\beth}}} (A_X(w) + \varphi(w)) + \chi^{\bigstar}(t))$
= $\chi(L_{\mathrm{NA}}(\varphi)),$

using the duality

$$\inf(t\sigma + \chi^{\blacktriangle}(t)) = \chi(\sigma).$$

Let's observe $\mu_{ m NA}$

Recall

$$\mu_{\mathrm{NA}}(\mathcal{X},\mathcal{L}) := \frac{n(K_X.L^{\cdot n-1})}{(L^{\cdot n})} - \frac{\frac{1}{(n-1)!}(K_X.L^{\cdot n-1}) - (K_{\mathcal{X}/\mathbb{P}^1}^{\log,\mathbb{G}_m} \cdot e^{\mathcal{L}_{\mathbb{G}_m}})}{\frac{1}{n!}(L^{\cdot n}) - (e^{\mathcal{L}_{\mathbb{G}_m}})}.$$

Using

$$\mathcal{K}_{\mathcal{X}/\mathbb{P}^1}^{\log,\mathbb{G}_m} - \rho^*\mathcal{K}_X = \sum_{E\subset\mathcal{X}_0} \operatorname{ord}_E(\mathcal{X}_0)\mathcal{A}_X(v_E)E^{\mathbb{G}_m},$$

we can write

$$\begin{split} (\mathcal{K}_{\mathcal{X}/\mathbb{P}^{1}}^{\log,\mathbb{G}_{m}} \cdot e^{\mathcal{L}_{\mathbb{G}_{m}}}) &= ((\mathcal{K}_{\mathcal{X}/\mathbb{P}^{1}}^{\log,\mathbb{G}_{m}} - p^{*}\mathcal{K}_{X}) \cdot e^{\mathcal{L}_{\mathbb{G}_{m}}}) + (p^{*}\mathcal{K}_{X} \cdot e^{\mathcal{L}_{\mathbb{G}_{m}}}) \\ &= \sum_{E \subset \mathcal{X}_{0}} \operatorname{ord}_{E}(\mathcal{X}_{0}) A_{X}(v_{E}) (E^{\mathbb{G}_{m}} \cdot e^{\mathcal{L}_{\mathbb{G}_{m}}}) \\ &\quad + \frac{d}{ds} \Big|_{s=0} (e^{p^{*}(s\mathcal{K}_{X}+L) + (\mathcal{L}_{\mathbb{G}_{m}} - p^{*}L)}) \\ &= \sum_{E \subset \mathcal{X}_{0}} \operatorname{ord}_{E}(\mathcal{X}_{0}) A_{X}(v_{E}) \frac{(L^{\cdot n})}{n!} \int_{\mathbb{R}} e^{-\sigma} \mathrm{DH}_{(E,\mathcal{L}|_{E})} + \cdots \end{split}$$

Moment measure

For a normal test configuration $(\mathcal{X}, \mathcal{L})$, we introduce the moment measure $\mathcal{D}_{(\mathcal{X}, \mathcal{L})}$ on $\mathcal{X}^{\square} \times \mathbb{R}$ by

$$\mathcal{D}_{(\mathcal{X},\mathcal{L})} := \frac{n!}{(\mathcal{L}^{\cdot n})} \sum_{E \subset \mathcal{X}_0} \operatorname{ord}_E(\mathcal{X}_0) \delta_{v_E}^{\mathcal{X}^{\neg}} \otimes \operatorname{DH}_{(E,\mathcal{L}|_E) \cup \mathbb{G}_m}.$$

Theorem (arXiv:2202.12168 + to appear)

We can define a measure \mathcal{D}_{φ} on $X^{\beth} \times \mathbb{R}$ for $\varphi \in \mathrm{PSH}_{\mathrm{NA}}(\mathcal{L})$ with $\int_{\mathbb{R}} \mathrm{DH}_{\varphi} = 1$ so that $\mathcal{D}_{\varphi_i} \to \mathcal{D}_{\varphi}$ weakly

for any $\varphi_i \searrow \varphi$.

Distortion and Moment measure

For an increasing concave function $\chi_{\rm r}$ consider the map

$$\Delta^{\chi}: X^{\beth} \times \mathbb{R} \to X^{\beth} \times \mathbb{R}: (v, \sigma) \mapsto (\dot{\chi}(\sigma).v, \chi(\sigma)).$$

Theorem (To appear)

For $\varphi \in \mathcal{E}_{\mathrm{NA}}(L)$, we have

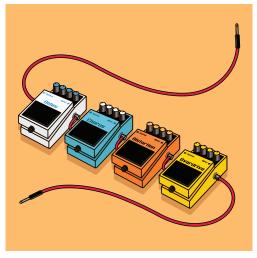
$$\mathcal{D}_{\mathrm{Dist}_{\chi}(\varphi)} = \Delta^{\chi}_{*} \mathcal{D}_{\varphi}.$$

Using $A_X(t.v) = tA_X(v)$, we compute

$$\begin{split} \int_{X^{\Box}} A_X(v) \int_{\mathbb{R}} \dot{\chi}(\sigma) \mathcal{D}_{\varphi}(v,\sigma) &= \int_{X^{\Box} \times \mathbb{R}} A_X(\dot{\chi}(\sigma).v) \mathcal{D}_{\varphi}(v,\sigma) \\ &= \int_{X^{\Box} \times \mathbb{R}} (\Delta^{\chi})^* A_X \mathcal{D}_{\varphi} = \int_{X^{\Box} \times \mathbb{R}} A_X \Delta^{\chi}_* \mathcal{D}_{\varphi} \\ &= \int_{X^{\Box} \times \mathbb{R}} A_X \mathcal{D}_{\text{Dist}_{\chi}(\varphi)} = \int_{X^{\Box} \times \mathbb{R}} A_X \text{MA}(\text{Dist}_{\chi}(\varphi)). \end{split}$$

Questions

- 1 Is optimal destabilizer for $\mu_{
 m NA}$ unique? (Toric $\lambda < 0$ \checkmark)
- **2** Is the optimal destabilizer φ for φ bounded and continuous?
- If it is, is the filtration F_φ can be written as F_φ = U^k_{i=1} F_{v_i}[σ_i], using finitely many quasi-monomial valuations v_i and σ_i ∈ ℝ? (cf. Székelyhidi's work on ruled surface)
- 4 Is \mathcal{F}_{arphi} finitely generated? (I speculate this would be not true.)
- **5** Can we extend the theory of scheme to get a geometric realization of "the central fibre of \mathcal{F}_{φ} "? ("almost ring" in Mingchen's talk?)
- Let φ₁, φ₂ be the optimal destabilizer for (X₁, L₁), (X₂, L₂) respectively. Is φ₁ × φ₂ the optimal destabilizer for (X₁ × X₂, L₁ ⊠ L₂)? (Toric λ ≤ 0 √) This would imply that the framework of μ-entropy possesses a thermodynamical structure. (cf. arXiv:2303.09090)
- 7 In relation with Carlo's talk, is it possible to understand Perelman entropy / NA μ -entropy as "limit of Einstein–Hilbert functional" / NA EH by $\lim_{N\to\infty} X^{\times N}$? This is inspired by statistical mechanical interpretation of Perelman entropy. (We are discussing this now.)



The name "Distortion" is inspired by effect pedal for electric guitar $Thank \ you!$