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1. From Calabi energy, He entropy ...
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cscK metric

(X,w): a compact Kahler manifold with a background metric w.

H(w) :=={¢p € C®(X) | w+ dd°¢ > 0}.
The Mabuchi functional M : H(w) — R is defined as the anti-derivation
of 0M : TH(w) — R given by
M(6.9) = = [ s(er)iu

The critical points of M is cscK metric: s(wy) = 5([w]).
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Donaldson—Futaki invariant / Mabuchi invariant

For a normal test configuration (X, L), we consider

(K - L") (£7)
() n+1°

MNA(X, L) = (KB - L) —
Compare

Mw@:AmM%%DW%—W

(D) [ (s =)

For a test configuration (X, L), we can assign a “finite energy” geodesic
ray Oy r)(t) € CHPH(w). “6M" makes sense for C*!-geodesic ray.

Theorem (Tian '97, Boucksom—Hisamoto—Jonsson '19, C. Li '22)

t"j;o IM(P(x (1), d’(x,ﬁ)(f)) = MNA (X, ).



Optimal degeneration of algebraic variety and Perelman entropy (Eiji Inoue)

YTD conjecture and K-moduli

K-polystability (reduced uniform K-stability) DF > 0 is conjectured
to be equivalent to the existence of cscK metrics. (YTD conjecture)

K-semistability DF > 0 is conjectured to be a Zariski open
condition, and the moduli stack of K-semistable polarized variety
admits a good moduli space of K-polystable polarized variety.

For L = —AKx (cscK = KE), we have good tools on “regularity”:
v": Ric > 0 / Ding functional (..., Chen—Donaldson-Sun, Tian, ... /
Berman—Boucksom—Jonsson)
v': MMP / boundedness / finite generation (..., Blum-Liu—Xu, ...)

For general L,

Reduced to NA entropy regularization conjecture (...,
Darvas—Rubinstein, Berman—Darvas—Lu, Chen—Cheng, Chi Li/
Boucksom—Jonsson, Chi Li).

Little known (Chen—Sun and Dervan—Naumann)
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Today's main interest

Q. What can we expect for K-unstable (X, L)?

A naive expectation is:

I ——
There exists a unique test configuration which is optimal in some sense.

How can we formulate ‘optimal’?
What kind of geometric property can we expect?
We hope to
introduce a "well-behaved” quantity for test configuration which
would be maximized by optimal degeneration.

show the central fibre of optimal degeneration is K-stable in a
generalized sense: we introduce K-stability for polarized dynamics
(Xo, Lo) © G = "well-behaved”.

This question is related to algebraic proof of properness of K-moduli space:

construction of @-stratification of moduli stack (—).
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Quick overview of two model frameworks

We have two model frameworks related to extremal metric (Calabi flow)
and Kahler-Ricci soliton (K&hler-Ricci flow).

For ¢ € H(w), we consider

C(o) = %/X§(w¢)2wg Calabi functional,
n(¢) =/ /A7¢ei’¢w(’; He functional,
X

where hy is Ric(ws) — wg = /—198h, with [, ei’¢wg = [w"]. We
consider 1 for [w] = ¢1(X) (Fano).

Critical points = Extremal metric 00*s(wy) = 0
/ Kihler—Ricci soliton 99*hy = 0
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Key observation

We introduce

N\ 2 | n_l . 12 wh — ——
WCal(¢7 ¢)—AS(W¢)¢W¢ 2 (/X PWy [ n] /¢w¢ )
. fX(eh¢—1)<i>wg T o
Whie(9, ¢) = —W - (|°g'/Xe Wq>+/)<¢w¢>'
We can observe
C(¢p)= sup Weal(d, qS) ( compeleting square <;5= S(we))
peC=(X)

() = sup Wi(o,¢) ( Legendre duality on rel. entropy ¢ = —hg)
$eC>(X)
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Limit along geodesic ray

Recall a test configuration ¢ = (X, £), we can assign a geodesic ray
¢(X7£)(t) S Cl’l'H(w).

Theorem (Hisamoto '16)

P(x,2)(t) MA(P(x,)(t)) = DH,.
Thus for (¢(t), ¢(t)) = (d)(;(,L)(t), d)(X’L)(t)) we have

t'_'[‘;o Wear((t), ¢(t)) = =M A (p) — % </m o*DH,, — ﬁ(/RUDH%f) )

Jim Whie(6(2), (1)) = —DN(¢) - (log'/ﬂé e “DH,, + /R aDHw).
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Algebro-geometric quantity

For ¢ = (X, L), we consider

Cral) = —MNA() — % (A o*DH,, — ﬁ(/ﬂgaDHw)z) ,
nxa(p) = —D¥A(p) — <|Og /R e “DH,, +/RC’DHw),

respectively, where we consider nya for L = —Kx (Fano). These are
essentially introduced by Donaldson ('05) and Dervan—-Székelyhidi ('20),
respectively.

By convexity of M and D, we obtain
C(d)) > WCal(¢(O)7¢(O)) \l tlltgo WCal(¢(t)7 ¢(t)) = CNA(SO)
7(6) > Wake(9(0), 4(0)) v im Wase(9(2), 3(1)) = nxa ()

~ sup Cna(p) < inf C(¢): Donaldson inequality
pEHNA(L) peEH(w)
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Well-behavedness

Theorem (Dervan, Han—C. Li)

Cxa (resp. mna) is maximized by the trivial test configuration if
and only if (X, L) is K-semistable.

If Cna (resp. mna) is maximized by a “product test configuration”
induced by “(X,L) O G", then “(X,L) O Gp," is relatively
K-semistable (resp. modified K-semistable). (<= is known for mna)

If a “normal test configuration” (X, L) maximizes Cna (resp.
nNA), then the central fibre “(Xp, Lo) O G," is relatively
K-semistable (resp. modified K-semistable).

Relative K-stability is related to the existence of extremal metric.
Modified K-stability is equivalent to the existence of Kahler—Ricci soliton.
These stability notions are defined for polarized dynamics

“(X,L) O Gp"= (X, L; &), not only for pol. variety (X, L) = (X, L;0).
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Existence

For each test configuration (X, L), we can assign a (maximal, finite
energy) geodesic ray ® = {®;}c[0,00) € RY(w) of Kahler potentials. We
can extend Cna to the space of (maximal finite energy) geodesic rays
Ri(w) = Ea(L) by putting

Cray(®) = —M'(d) — % (/R o*DH,, — (/RJDHW)2> .

Theorem (Xia + C. Li (cf. Székelyhidi, A-M. Li~Lian-Sheng))

There exists a maximal finite energy geodesic ray ® € R2 which
maximizes Cray.

On the other hand, for L = —Kx (Q-Fano) and mna,

Theorem (Chen-Sun—-Wang, Dervan—Székelyhidi, Blum—Liu—Xu—Zhuang)

There exists a finitely generated filtration F which maximizes nya. Its
central fibre is modified K-semistable Q-Fano variety.
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Optimal degeneration | canonical metric

Theorem (Donaldson, Xia / Dervan—Székelyhidi)

sup CNA(‘P):¢inf C(¢)

pEEXA(L) €&2(w)
sup  mna(p) =  inf n(¢)
pEME A (L) PpEH(w)

Furthermore, optimal destabilizers are assymptotic to Calabi flow and
Kahler—Ricci flow, respectively.
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Beautiful results!

Sakasa-Fuji
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2. To Perelman p-entropy
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Perelman W-entropy (in Ricci flow)

Perelman’s original convention: for a manifold M with dimg M = m,
o f e—f

for 7 > 0, a metric g and f € C(M) with [, ﬁvolg =1. He
proved monotonicity along the following evolving equation

&= _2R‘ic(gt)v fi = —Agtft + |Vft - R(gt) 2 Tt = —1.
T

On Fano manifold ¢;(X) > 0, we consider normalized Kdhler-Ricci flow
Wy = w — Ric(wy). For this, W(wy, f;; 7¢) is monotonic along

U‘Jt = Wt — Ric(wt), ft == ..., Tt = 1/2
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Perelman W-entropy in Kahler geometry

In Kahler geometry, we use the following convention
Wiar(6.6) = = [ () + 51V0R)e g+ [ (0= ety
for (¢,8) € TH(w) and A € R, where [, e~%ws = 1. Note

WRo(6,0) = ~NEA)" - (Wl i 5) + ).

Today, we focus on A = 0 (for simplicity): Wpe:(¢, ¢) := WS,,(¢,¢).
Theorem (arXiv:2101.11197)

For a smooth test configuration (X', ) and its geodesic ray
®(t) = O(x,z)(t), we can define “WP, (P, ®)(t)" and we have

Woer(®,0)(1) \ pna(X, L) as t — oc.
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Non-archimedean p-entropy | Perelman p-entropy

For a ntc (X, L), we define

— n— log,Gm
pna(X, L) = (n_11)!(Kx.L 1) _ (Kx%l . eLGm) ) n(KX.L‘"—l)
’ (L) = (eFem) (L)

Compare

Woes(6.6) = =l [ (Ric(i) — Dd)es .

Pper(we) = sup W™ (wg, f).

Critical points = p-cscK metric

Corollary (arXiv:2101.11197)

sup pna (X, £) < inf ppe,(wg)-
(¥,£) wo
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Conjecture

Conjecture (For A < 0)

A . A
max pnale) = inf  pp(w
e ) na(®) o por(ws)
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Non-archimedean p-entropy is well-behaved

Theorem (Well-behavedness, arXiv:2202.12168)

If a normal test configuration (X', £) maximizes pna, then its central
fibre “(Xo, Lo) © G, is puK-semistable.

(1K-stability is related to the existence of ;i-cscK metric: a generalization
of cscK metric to polarized dynamics “(X, L) O G,," which unifies the
framework of extremal metric and Kahler—Ricci soliton.
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3. New formula on Non-archimedean u-entropy
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Main applications I: New formula for pxa

Theorem A (To appear)

There exists a map Dist : Hya (L) — Exa(L) such that

DNA(Dist(X, £
nNa (X, £) = log (ENAEDiSEEX, L;; 1)
MNA(Dist(X, £))
ENA(Dist(X, L))

puNa(X, L) =

with
ENA(Dist(X, £)) = — / e="DHx.£)(0) < 0.
R

By this formula, we can extend

MNA(Dist(¢))

. cexp,l L _ : TNA MYl N\
s ENRT (L) = [700,00) 02 ERE Dise o))
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Main applications Il: Existence of optimal destabilizing ray

Let R! denote the space of finite energy geodesic rays and R1 denote
the space of (Z-)maximal finite energy geodesic rays (cf.
Berman—Boucksom—Jonsson, Darvas—Xia). We consider

M’ (Dist(¢)ray)

. cexp,l _ . :
Pray © EFP(L) = [—00,00) 1 ¢ — Dist(¢)ray — E/(Dist()ray)

By C. Li's inequality MNA < M’ we have
Hray < MNA-

Theorem B (To appear)

exp,

Assume X is smooth. There exists ¢ € Egr (L) which maximizes fi,,y.

If NA entropy regularization conjecture is true, the above theorem can be
read as “there exists ¢ € 5% (L) which maximizes pna” .
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Main applications Ill: Miscellaneous

Conjecture (For A < 0)

max fray(p) = sup  pnale) = inf ppe(w
. ay () == () L er(ws)

Theorem (For A < 0, to appear)

If MaX e g (1) Hray () < infyey(w) per(wg), p-cscK metrics are
unique modulo Aut(X, L).

Theorem (to appear)

The following are equivalent:
(X, L) is K-semistable over Hxa (L) (resp. Ex(L))
Trivial configuration maximizes pna over Hya (L) (resp. Exa(L)).
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4. Distortion and Moment measure
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Distortion of Non-archimedean L-psh function

Recall for a tc (X, £), we have a continuous function ¢y ) : X= — R.
For ve € X4V < X associated to E C Y — X, we have
_ordg(L — p*L)
) (Ve) = ordg(Xp)

A function ¢ : X= — [—00,00) is called [-psh function if there exists a
net of tc's (&}, £;) such that @(x, ;) is a decreasing net converging to
pointwisely. Let PSHya (L) denote the set of L-psh functions.
I ——
For an increasing concave x : R — R, we introduce y-distortion of ¢:

Disty () := inf(t> ¢ + x*(2)),

inf
t>0
where

(t>@)(v) i=to(ttv), x*(t) = jlégk(x(a) — to).
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Let's get a feeling of Distortion

Proposition (To appear)
For ¢ € PSHya (L), we have Dist, (¢) € PSHya(L).

Suppose (X, L) is a toric variety. Let P C Mg =t be the moment
polytope.

{T-invariant ¢} +— {f : Ng = R}
= £(€) 1= p(ve) + sup (i, €)
o

For the Legendre transform g, (1) := infeen, ({11, &) + £,(€)), we have

8Dist, (¢) = X(8p)

thanks to the duality:

igf)(ta +xA(t))-
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Profile of Distortion

For a continuous L-psh function ¢ € CPSHya (L), we can assign a
filtration F, by putting

]-';‘,m = {s € H(X,L®™) | viergj(cp(v) +v(s/s,)/m) > \/m}.

For a normal test configuration (X, L), we have F, = f"(xyﬁ).

|
We can easily observe

my ! m
Pyt = Fil I,

X(‘P)rm

(cf. Reboulet-Witt Nystrém)

—0

e.g. For x(o) = —e77,

A _JFomeEm X <o
Disty (¢),m *— 0 A>0
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Distortion and Duistermaat—Heckman measure

Proposition (arXiv:2202.12168, see also M. Xia)
For each o € R, the map

P(x,L) '—>/[ )DH(X,E)

is monotonic. For general ¢ € PSHxa (L), we can define a unique Radon
measure DH,, satisfying [, DH, <1 and

/ DH,, = inf{/ DHex,c) | ¢ < w0y }-
fo,0) fo,0)

7,00

Proposition (To appear)
For ¢ € PSHya (L), we have DHpjgt () = X«DH.
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Distortion and Ding invariant

Let us recall

DAY, £) = i (Ax(¥) + pie.o(v) = [ oDH

nl (£ n+1)
= lct(X,Xof(z;JrKX/Al))(Xo) (/_ m) (n+ 1)

For Lya(¢) :=inf,cx3(Ax(v) + ¢(v)), we compute
La(Disty () = inf_inf(Ax(v) + te(tv) +x*(1))

= inf inf_(tAx(w) + to(w) + x*(1))

= :gf(-)(twlenf (Ax(W) + QO(W)) + XA(t))

= X(Lna(e)),

using the duality
inf(to + x4(£)) = x(o)-
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Let's observe puxa

Recall
pNa(X, L) = n(Kx.L"Y) G (Kx L) - (K;g/lﬁm i eLGm).
’ (L) (L) — (efem)
Using

Kb — p"Kx = ) orde(Xo)Ax(vie) E°",
ECXy
we can write

(KgEim - eem) = (Ky8sm — p*Kx) - eon) + (p" K - en)
= Z OI‘dE(Xo)Ax(VE)(EG’” . eEG'")
ECAXy

d

ds A
= Z OI'dE(Xo)Ax(VE) (Lnn)

ECX, ’

(ep* (sKx+L)+(Lg,,—P" L))
s=0

R
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Moment measure

For a normal test configuration (X, £), we introduce the moment
measure Dy z) on X= xR by

n! X3
D(X,[,) = m E;( OI‘dE(Xo)(SVE ® DH(E7£|E)OGM'
0

Theorem (arXiv:2202.12168 + to appear)

We can define a measure D, on X= x R for ¢ € PSHya (L) with
Jz DH,, = 1 so that
D,, — D, weakly

for any ¢; \ p.
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Distortion and Moment measure

For an increasing concave function x, consider the map
AX: XTXR = X2 xR (v,0) = (x(0).v, x(0))-

Theorem (To appear)

For ¢ € Ena(L), we have

Dpist, (p) = A Dy-

Using Ax(t.v) = tAx(v), we compute

/X:Ax(v)/RX(U)Dw(V,G) = /)<3X]RAX(X(0)'V)D“’(V’G)

_ / (AX)*AxD, — / AxAXD,
X3 xR X3 xR

_ / AxDpise () = / AxMA (Dist, (7).
X3 xR X3 xR
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The name “Distortion” is inspired by effect pedal for electric guitar

Thank you!



