Complex analytic Moduli space of Fano manifolds admitting Kähler-Ricci solitons

Eiji Inoue (瑛二, 井上)

14, July, 2018 at Hayama

- Motivation

Moduli problem

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff (global) moduli space of bihol. classes of complex manifolds (X, c) of fixed symplectic type (M, ω) ?

Here $c \in H^2(X, \mathbb{R})$ is a cohomology class, called polarization.

- Motivation

Moduli problem

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff (global) moduli space of bihol. classes of complex manifolds (X, c) of fixed symplectic type (M, ω) ?

Here $c \in H^2(X, \mathbb{R})$ is a cohomology class, called polarization.

• X with a polarization c is of fixed symplectic type (M, ω) if

 $\exists f: X \xrightarrow{\text{diffeo.}} M \text{ s.t. } f^* \omega \text{ is a Kähler form in } c,$

- Motivation

Moduli problem

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff (global) moduli space of bihol. classes of complex manifolds (X, c) of fixed symplectic type (M, ω) ?

Here $c \in H^2(X, \mathbb{R})$ is a cohomology class, called polarization.

• X with a polarization c is of fixed symplectic type (M, ω) if

 $\exists f: X \xrightarrow{\text{diffeo.}} M \text{ s.t. } f^* \omega \text{ is a Kähler form in } c,$

• (X, c) and (X', c') are biholomorphic if

$$\exists \phi: X \xrightarrow{bihol.} X' \text{ s.t. } c = \phi^* c'.$$

- Motivation

Complex structure on the moduli space

e.g. The moduli space of all K3 surfaces is a 20-dimensional complex manifold but for Hausdorffness. The moduli space of polarized K3 surafces is a 19-dimensional Hausdorff complex space.

As local semi-moduli (constructed by Kuranishi after Kodaira-Spencer) of deformation of complex manifolds are complex spaces, it is natural to expect: the global moduli space should also admit a natural structure of complex analytic space.

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

- $c_1(M, \omega) < 0$ general type: \exists Hausdorff moduli.
- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M, \omega) > 0$ Fano:

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

■ $c_1(M, \omega) < 0$ general type: \exists Hausdorff moduli.

- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M, \omega) > 0$ Fano: Naively, no such moduli.

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

- $c_1(M, \omega) < 0$ general type: \exists Hausdorff moduli.
- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M,\omega) > 0$ Fano: Naively, no such moduli.

Pathology: Many Fano manifolds X and families $\pi : \mathcal{X} \to \Delta$ with

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

- $c_1(M, \omega) < 0$ general type: \exists Hausdorff moduli.
- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M,\omega) > 0$ Fano: Naively, no such moduli.

Pathology: Many Fano manifolds X and families $\pi : \mathcal{X} \to \Delta$ with

• Trivial away from the origin: $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$,

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

- $c_1(M, \omega) < 0$ general type: \exists Hausdorff moduli.
- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M,\omega) > 0$ Fano: Naively, no such moduli.

Pathology: Many Fano manifolds X and families $\pi : \mathcal{X} \to \Delta$ with

- Trivial away from the origin: $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$,
- The central fibre $\mathcal{X}_0 = \pi^{-1}(0)$ is a different Fano $\mathcal{X}_0 \ncong X$.

- Motivation

Problematic Fano

Main interest: $\pm \omega \in 2\pi c_1(M, \omega)$ $(c = \pm c_1(X))$ or $c_1(M, \omega) = 0$.

- $c_1(M,\omega) < 0$ general type: \exists Hausdorff moduli.
- $c_1(M, \omega) = 0$ Calabi-Yau: \exists Hausdorff moduli (under polarization).
- $c_1(M,\omega) > 0$ Fano: Naively, no such moduli.

Pathology: Many Fano manifolds X and families $\pi : \mathcal{X} \to \Delta$ with

- Trivial away from the origin: $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$,
- The central fibre $\mathcal{X}_0 = \pi^{-1}(0)$ is a different Fano $\mathcal{X}_0 \ncong X$.

 $[\mathcal{X}_0]$ cannot be separated from [X]!

- Motivation

Canonical metric \rightarrow Hausdorff

 $(::)_{\circ}oO$ (Metrics in general have good chemistry with Hausdorffness....)

Idea: What about assuming the existence of some 'canonical metrics' on Fano manifolds in order to ensure separatedness?

- Motivation

Canonical metric \rightarrow Hausdorff

 $(::)_{\circ}oO$ (Metrics in general have good chemistry with Hausdorffness....)

Idea: What about assuming the existence of some 'canonical metrics' on Fano manifolds in order to ensure separatedness?

The following is a success story.

Theorem (Odaka '15, Li-Wang-Xu '15)

Kähler-Einstein Fano manifolds admit a natural Hausdorff, complex analytic moduli space.

Remark: YTD-correspondence (proved by Chen-Donaldson-Sun, Tian) on KE metrics and K-stability is used in the construction of the moduli.

Introduction

The goal of this talk

Today's goal: enlargement

The goal of this talk:

Theorem (I. '17)

Let $\mathcal{KR}(M,\omega)$ be the set of Fano manifolds with Kähler-Ricci solitons of fixed symplectic type (M,ω) . We can make this set $\mathcal{KR}(M,\omega)$ into a Hausdorff complex analytic space in a canonical way.

Kähler-Ricci soliton is a special metric on a Fano manifold, which generalizes Kähler-Einstein metric in view of Kähler-Ricci flow.

KR soliton, moment map and K-optimal vector

1. Kähler-Ricci soliton, moment map and K-optimal vector

KR soliton, moment map and K-optimal vector

Kähler-Ricci soliton

Kähler-Ricci soliton

Definition (Kähler-Ricci soliton)

A Kähler-Ricci soliton on a Fano manifold X is a pair (g, ξ') of a Kähler metric g and a holomorphic vector field ξ' satisfying the following equation:

 $\operatorname{Ric}(g) - L_{\xi'}g = g.$

Remember $\xi := \operatorname{Im}(\xi')$ generates a closed torus $T_{\xi}^{\mathbb{R}} = \overline{\exp \mathbb{R}\xi} \subset \operatorname{Aut}(X)$.

KR soliton, moment map and K-optimal vector

Kähler-Ricci soliton

Kähler-Ricci soliton

Definition (Kähler-Ricci soliton)

A Kähler-Ricci soliton on a Fano manifold X is a pair (g, ξ') of a Kähler metric g and a holomorphic vector field ξ' satisfying the following equation:

 $\operatorname{Ric}(g) - L_{\xi'}g = g.$

Remember $\xi := \operatorname{Im}(\xi')$ generates a closed torus $T_{\xi}^{\mathbb{R}} = \overline{\exp \mathbb{R}\xi} \subset \operatorname{Aut}(X)$.

Theorem (Uniqueness, Tian-Zhu '02)

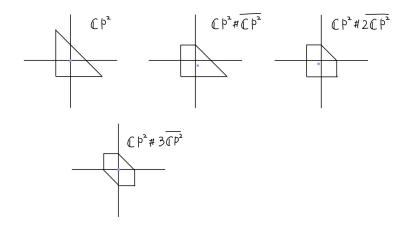
If (g_1, ξ'_1) and (g_2, ξ'_2) are two Kähler-Ricci solitons on a Fano manifold X, then there exists an element $\phi \in \operatorname{Aut}^0(X)$ such that

$$\phi^* \xi_1' = \xi_2', \quad \phi^* g_1 = g_2.$$

KR soliton, moment map and K-optimal vector

Kähler-Ricci soliton

Example: All toric Fano manifolds admit Kähler-Ricci solitons.



KR soliton, moment map and K-optimal vector

Moment map picture

Infinite dimensional symplectic manifold $\mathcal{J}_{\mathcal{T}}$

Fix our notation.

- (M, ω) : a simply connected C^{∞} -symplectic manifold.
- (T,ξ) : a closed torus acting on (M,ω) and an element of $\operatorname{Lie}(T)$.
- θ_{ξ} : $d\theta_{\xi} = 2i_{\xi}\omega$ with the normalization $\int_{M} \theta_{\xi} e^{\theta_{\xi}}\omega^{n} = 0$.
- \mathcal{J}_T : the space of *T*-inv. almost complex structures on (M, ω) .
- Ham_T: the group of *T*-equiv. symplectic diffeomorphisms of (M, ω) .

 $\mathcal{J}_{\mathcal{T}}$ admits a $\operatorname{Ham}_{\mathcal{T}}\text{-invariant}$ smooth symplectic form Ω_{ξ} defined by

$$\Omega_{\xi,J}(A,B) := \int_M \operatorname{Tr}(JAB) \ e^{ heta_{\xi}} \omega^n$$

for $A, B \in T_J \mathcal{J}_T$.

KR soliton, moment map and K-optimal vector

Moment map picture

Moment map $s_{\xi} : \mathcal{J}_{\mathcal{T}} \to \mathfrak{ham}_{\mathcal{T}}^*$

We identify the Lie algebra $\mathfrak{ham}_{\mathcal{T}} := \operatorname{Lie}(\operatorname{Ham}_{\mathcal{T}})$ with

$$C^{\infty}_{T,\xi}(M) = \{f \in C^{\infty}_{T}(M) \mid \int_{M} f e^{\theta_{\xi}} \omega^{n} = 0\}.$$

Proposition (I. '17)

The map $S_{\xi}:\mathcal{J}_{\mathcal{T}} o\mathfrak{ham}_{\mathcal{T}}^{*}$ defined by

$$J \mapsto \langle s_{\xi}(J), \bullet \rangle_{\xi} = \int_{M} \left(s(g_J) + \overline{\Box}_{g_J} \theta_{\xi} - \overline{s} + \overline{\Box}_{g_J} \theta_{\xi} - \xi'_J \theta_{\xi} - \theta_{\xi} \right) \bullet \ e^{\theta_{\xi}} \omega^n.$$

is a moment map of $(\mathcal{J}_{\mathcal{T}}, \Omega_{\xi}) \curvearrowleft \operatorname{Ham}_{\mathcal{T}}$.

If $c_1(M, \omega) > 0$, an integrable complex structure J satisfies $s_{\xi}(J) = 0$ iff g_J is a Kähler-Ricci solitons on the Fano manifold (M, J).

KR soliton, moment map and K-optimal vector

└─ Moment map picture

We have the following immediate cororally.

For $f \in \mathfrak{t} \subset \mathfrak{ham}_{\mathcal{T}} = C^{\infty}_{\mathcal{T},\xi}(M)$, an easy caluculation shows that the modified Futaki invariant is equal to

$$\langle s_{\xi},f\rangle_{\xi}=\int_{M}s_{\xi}f\ e^{ heta_{\xi}}\omega^{n},$$

which shows the *T*-equivariant deformation invariance of the modified Futaki invariant restricted to $\mathfrak{t} \subset H^0(M, T_JM)$.

Because

$$\frac{d}{dt}\langle s_{\xi}(J_t), f \rangle_{\xi} = -\Omega_{\xi}(L_{X_f}J_t, \dot{J}_t) = 0.$$

Remark

If the set $s_{\xi}^{-1}(0)$ is not empty, then $\langle s_{\xi}, \bullet \rangle_{\xi}$ should vanish.

KR soliton, moment map and K-optimal vector

K-optimal vector

K-optimal vector

The following is a restatement of Tian-Zhu's result.

Proposition (Tian-Zhu '02)

For any $(M, \omega) \curvearrowleft T$, there exists a **unique** vector $\xi \in \text{Lie}(T)$ with $\langle s_{\xi}, \bullet \rangle \equiv 0$.

Definition

- We call this unique vector ξ the K-optimal vector of $(M, \omega) \curvearrowleft T$.
- We call the action $(M, \omega) \curvearrowleft T$ is K-optimal if the K-optimal vector generates T.

KR soliton, moment map and K-optimal vector

K-optimal vector

The boundedness of Fano manifolds (Kollár-Miyaoka-Mori)

⇒ Only finitely many non-equivalent K-optimal actions $(M, \omega) \curvearrowleft T_i$ with $s_{\xi_i}(J_i) = 0$ for some integrable $J_i \in \mathcal{J}_{T_i}$ and the K-optimal ξ_i .

KR soliton, moment map and K-optimal vector

K-optimal vector

The boundedness of Fano manifolds (Kollár-Miyaoka-Mori) \implies Only finitely many non-equivalent K-optimal actions $(M, \omega) \curvearrowleft T_i$ with $s_{\xi_i}(J_i) = 0$ for some integrable $J_i \in \mathcal{J}_{T_i}$ and the K-optimal ξ_i .

The uniqueness of KR-soliton \implies The topological space

$$\mathcal{K}(M,\omega) := \coprod_i \ (s_{\xi_i}|_{\mathcal{J}_{T_i}^{\mathrm{int}}})^{-1}(0) \ / \ \mathrm{Ham}_{\mathcal{T}_i}$$

can be naturally identified with the set of biholomorphism classes of Fano manifolds admitting KR-solitons of symplectic type (M, ω) . The space $K(M, \omega)$ is Hausdorff as the action $\mathcal{J}_T \curvearrowleft \operatorname{Ham}_T$ is proper.

KR soliton, moment map and K-optimal vector

K-optimal vector

The boundedness of Fano manifolds (Kollár-Miyaoka-Mori) \implies Only finitely many non-equivalent K-optimal actions $(M, \omega) \curvearrowleft T_i$ with $s_{\xi_i}(J_i) = 0$ for some integrable $J_i \in \mathcal{J}_{T_i}$ and the K-optimal ξ_i .

The uniqueness of KR-soliton \implies The topological space

$$\mathcal{K}(M,\omega) := \coprod_i \ (s_{\xi_i}|_{\mathcal{J}_{T_i}^{\mathrm{int}}})^{-1}(0) \ / \ \mathrm{Ham}_{\mathcal{T}_i}$$

can be naturally identified with the set of biholomorphism classes of Fano manifolds admitting KR-solitons of symplectic type (M, ω) . The space $K(M, \omega)$ is Hausdorff as the action $\mathcal{J}_T \curvearrowleft \operatorname{Ham}_T$ is proper.

Remark: The space $K(M, \omega)$ is naturally identified with the space

 $\{J \in \mathcal{J}^{int}(M, \omega) \mid (M, J) \text{ admits a Kähler-Ricci soliton }\}/bihol.$

as sets, but not as topological spaces. Actually, the latter topological space is not Hausdorff in general. The equivariant formulation is essential.

2. Structure of the moduli space

Structure of the moduli space

Holomorphic gluing

Charts

We must construct a structure of complex space on the space $K(M, \omega)$.

Holomorphic gluing

Charts

We must construct a structure of complex space on the space $K(M, \omega)$.

■ A homeomorphism $\phi : U \to V \subset K(M, \omega)$ where V is an open neighbourhood of a point $X = (M, J) \in K(M, \omega)$ and U is a small open neighbourhood of $[0] \in H^1_{T_i}(X, TX) // \operatorname{Aut}_{T_i}(X)$.

Holomorphic gluing

Charts

We must construct a structure of complex space on the space $K(M, \omega)$.

- A homeomorphism $\phi : U \to V \subset K(M, \omega)$ where V is an open neighbourhood of a point $X = (M, J) \in K(M, \omega)$ and U is a small open neighbourhood of $[0] \in H^1_{T_i}(X, TX) // \operatorname{Aut}_{T_i}(X)$.
- **2** The holomorphy of coordinate changes $\phi_{U_2}^{-1} \circ \phi_{U_1}$.

Holomorphic gluing

Charts

We must construct a structure of complex space on the space $K(M, \omega)$.

- **1** A homeomorphism $\phi : U \to V \subset K(M, \omega)$ where V is an open neighbourhood of a point $X = (M, J) \in K(M, \omega)$ and U is a small open neighbourhood of $[0] \in H^1_{T_i}(X, TX) / |\operatorname{Aut}_{T_i}(X)$.
- **2** The holomorphy of coordinate changes $\phi_{U_2}^{-1} \circ \phi_{U_1}$.

The map s_{ξ} is not holomorphic, $0 \in \mathfrak{ham}_{\mathcal{T}}^*$ is not the regular value of s_{ξ} , the Fréchet Lie group $\operatorname{Ham}_{\mathcal{T}}$ is not complex Lie group, etc.

:(

Structure of the moduli space

Holomorphic gluing

How to deal with holomorphy?

Idea: make use of the holomorphy of the semi-universal family $\mathcal{X} \to \tilde{U}$ on a small ball $\tilde{U} \subset H^1_{T_i}(X, TX)$.

Structure of the moduli space

Holomorphic gluing

How to deal with holomorphy?

Idea: make use of the holomorphy of the semi-universal family $\mathcal{X} \to \tilde{U}$ on a small ball $\tilde{U} \subset H^1_{T_i}(X, TX)$.

• Not descends to a family $\bar{\mathcal{X}} \to U = \tilde{U} \mathrm{Aut} /\!\!/ \mathrm{Aut}.$

Structure of the moduli space

Holomorphic gluing

How to deal with holomorphy?

Idea: make use of the holomorphy of the semi-universal family $\mathcal{X} \to \tilde{U}$ on a small ball $\tilde{U} \subset H^1_{T_i}(X, TX)$.

Not descends to a family $\bar{\mathcal{X}} \to U = \tilde{U} \mathrm{Aut} /\!\!/ \mathrm{Aut}.$

Descends to a 'family' on the quotient stack $[\tilde{U}Aut/Aut]$.

Structure of the moduli space

Holomorphic gluing

How to deal with holomorphy?

Idea: make use of the holomorphy of the semi-universal family $\mathcal{X} \to \tilde{U}$ on a small ball $\tilde{U} \subset H^1_{T_i}(X, TX)$.

- Not descends to a family $\bar{\mathcal{X}} \to U = \tilde{U} \mathrm{Aut} /\!\!/ \mathrm{Aut}.$
- Descends to a 'family' on the quotient stack $[\tilde{U}Aut/Aut]$.
- After introducing a suitable moduli stack $\mathcal{K}(M, \omega)$, we have a natural morphism $[\tilde{U}Aut/Aut] \rightarrow \mathcal{K}(M, \omega)$ between stacks.

Structure of the moduli space

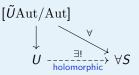
Holomorphic gluing

How to deal with holomorphy?

Idea: make use of the holomorphy of the semi-universal family $\mathcal{X} \to \tilde{U}$ on a small ball $\tilde{U} \subset H^1_{T_i}(X, TX)$.

- Not descends to a family $\bar{\mathcal{X}} \to U = \tilde{U} \mathrm{Aut} /\!\!/ \mathrm{Aut}.$
- Descends to a 'family' on the quotient stack $[\tilde{U}Aut/Aut]$.
- After introducing a suitable moduli stack $\mathcal{K}(M, \omega)$, we have a natural morphism $[\tilde{U}Aut/Aut] \rightarrow \mathcal{K}(M, \omega)$ between stacks.

Generality on GIT quotient: a natural morphism $[\tilde{U}Aut/Aut] \rightarrow U$ enjoying the following universal property:



Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

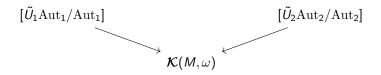
1 Show the morphism $[\tilde{U}Aut/Aut] \rightarrow \mathcal{K}(M,\omega)$ is an open imersion.

Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.

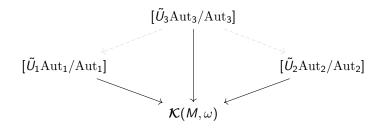


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[\tilde{U}Aut/Aut] \rightarrow \mathcal{K}(M,\omega)$ is an open imersion.

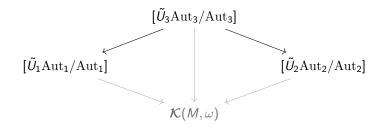


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.

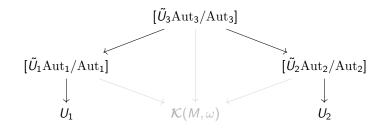


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.

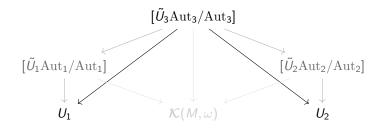


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde U {
m Aut}] o \mathcal{K}(\mathcal{M},\omega)$ is an open imersion.

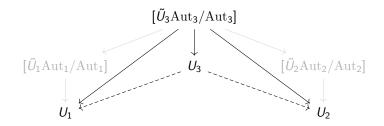


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde U {
m Aut}/{
m Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.



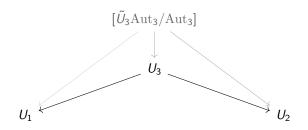
Structure of the moduli space

Holomorphic gluing

2

The story of holomorphic gluing

Show the morphism $[\tilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.

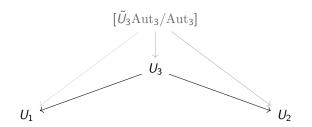


Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.



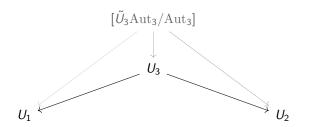
3 These morphisms are compatible with maps $\phi_i : U_i \to K(M, \omega)$ $(i = 1, 2, 3). \implies U_3 \to U_i$ are biholomorphic onto its open image.

Structure of the moduli space

Holomorphic gluing

The story of holomorphic gluing

1 Show the morphism $[ilde{U}\mathrm{Aut}/\mathrm{Aut}] o \mathcal{K}(M,\omega)$ is an open imersion.



3 These morphisms are compatible with maps $\phi_i : U_i \to K(M, \omega)$ $(i = 1, 2, 3). \implies U_3 \to U_i$ are biholomorphic onto its open image.

4 The coordinate change $\phi_2^{-1} \circ \phi_1$ between U_1 and U_2 is holomorphic.

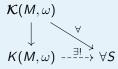
Structure of the moduli space

Universality

The universality of the moduli space

Theorem (I. '17)

The complex space $\mathcal{K}(M, \omega)$ is uniquely characterized by the universality of a natural morphism $\mathcal{K}(M, \omega) \to \mathcal{K}(M, \omega)$.



Structure of the moduli space

Gormov-Hausdorff topology

Gromov-Hausdorff topology

Proposition (I. '17)

The space

 $\mathcal{KR}_{GH}(M,\omega) = \{\text{Fano mfds of type } (M,\omega) \text{ with } \exists \text{ KR solitons}\}/\text{bihol.}$

endowed with the Gromov-Hausdorff topology is naturally homeomorphic to $K(M, \omega)$.

Structure of the moduli space

Gormov-Hausdorff topology

Thank You !