Complex analytic Moduli space of Fano manifolds admitting Kähler-Ricci solitons

Eiji Inoue (瑛二, 井上)

14, June, 2018 at ShanghaiTech University

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff moduli space of bihol. classes of Kähler manifolds (X, L) of fixed symplectic type (M, ω) .

We expect there should be a structure of complex analytic space on the moduli space, as the notion of complex spaces are designed to describe their own deformation theory.

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff moduli space of bihol. classes of Kähler manifolds (X, L) of fixed symplectic type (M, ω) .

We expect there should be a structure of complex analytic space on the moduli space, as the notion of complex spaces are designed to describe their own deformation theory.

We are mainly concerned with the cases $\pm \omega \in c_1(M,\omega)$ or $c_1(M,\omega) = 0$.

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff moduli space of bihol. classes of Kähler manifolds (X, L) of fixed symplectic type (M, ω) .

We expect there should be a structure of complex analytic space on the moduli space, as the notion of complex spaces are designed to describe their own deformation theory.

We are mainly concerned with the cases $\pm \omega \in c_1(M,\omega)$ or $c_1(M,\omega) = 0$.

- $c_1(M,\omega) < 0$ general type: Yes, we can.
- $c_1(M, \omega) = 0$ Calabi-Yau: Yes, we can.
- $c_1(M, \omega) > 0$ Fano:

 (M,ω) : a C^{∞} -symplectic manifold.

Question: Can we construct a Hausdorff moduli space of bihol. classes of Kähler manifolds (X, L) of fixed symplectic type (M, ω) .

We expect there should be a structure of complex analytic space on the moduli space, as the notion of complex spaces are designed to describe their own deformation theory.

We are mainly concerned with the cases $\pm \omega \in c_1(M,\omega)$ or $c_1(M,\omega) = 0$.

- $c_1(M,\omega) < 0$ general type: Yes, we can.
- $c_1(M, \omega) = 0$ Calabi-Yau: Yes, we can.
- $c_1(M,\omega) > 0$ Fano: Naively, it doesn't exist.

Pathology: Naive moduli doesn't exist.

We can find many examples of Fano manifolds X and families of Fano manifolds $\pi: \mathcal{X} \to \Delta$ with the following property.

- Trivial away from the origin: $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$
- The central fibre $\mathcal{X}_0 = \pi^{-1}(0)$ is a different Fano $\mathcal{X}_0 \ncong X$.

The biholomorphism class of \mathcal{X}_0 cannot be separated from that of X!:(

Pathology: Naive moduli doesn't exist.

We can find many examples of Fano manifolds X and families of Fano manifolds $\pi: \mathcal{X} \to \Delta$ with the following property.

- Trivial away from the origin: $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$
- The central fibre $\mathcal{X}_0 = \pi^{-1}(0)$ is a different Fano $\mathcal{X}_0 \ncong X$.

The biholomorphism class of \mathcal{X}_0 cannot be separated from that of X!:(

Metrics in general have good chemistry with Hausdorffness.

What about assuming the existence of some 'canonical metrics' on Fano manifolds in order to ensure separatedness?

Today's goal: rough statement without definitions

The goal of this talk:

Complex analytic moduli space, I. '17

Let $\mathcal{KR}_{GH}(n)$ be the set of n-dimensional Fano manifolds with Kähler-Ricci solitons. Then we can make this set $\mathcal{KR}_{GH}(n)$ into a Hausdorff complex analytic space in a **canonical way** in some sense.

Kähler-Ricci soliton is a special metric on a Fano manifold (with respect to the anti-canonical polarization $-K_X$), which generalizes Kähler-Einstein metric in view of Kähler-Ricci flow.

- Differential geometric side
 - Kähler-Ricci soliton
 - Moment map picture

- 2 Algebro-geometric side
 - K-stability
 - Complex analytic moduli

ihler-Ricci soliton oment map picture

1. Differential geometric side - 'real world'

Kähler-Ricci soliton Moment map picture

Kähler-Ricci soliton

Definition (Kähler-Ricci soliton)

A **Kähler-Ricci soliton** on a Fano manifold X is a pair (g, ξ') of a Kähler metric g and a holomorphic vector field ξ' satisfying the following equation:

$$\operatorname{Ric}(g) - L_{\xi'}g = g.$$

Example: All toric Fano manifolds admit Kähler-Ricci solitons.

Remember $\xi := \operatorname{Im}(\xi')$ generates a closed torus $T_{\xi}^{\mathbb{R}} = \overline{\exp \mathbb{R} \xi} \subset \operatorname{Aut}(X)$.

Theorem (Uniqueness, Tian-Zhu '02)

If (g_1, ξ_1') and (g_2, ξ_2') are two Kähler-Ricci solitons on a Fano manifold X, then there exists an element $\phi \in \operatorname{Aut}^0(X)$ such that

$$\phi^* \xi_1' = \xi_2', \quad \phi^* g_1 = g_2.$$

Theorem (Uniqueness, Tian-Zhu '02)

If (g_1, ξ_1') and (g_2, ξ_2') are two Kähler-Ricci solitons on a Fano manifold X, then there exists an element $\phi \in \operatorname{Aut}^0(X)$ such that

$$\phi^* \xi_1' = \xi_2', \quad \phi^* g_1 = g_2.$$

Theorem (Reductivity, Tian-Zhu '02)

If (g, ξ') is a Kähler-Ricci soliton on a Fano manifold X, then $\operatorname{Aut}(X, \xi')$ is a maximal reductive subgroup of $\operatorname{Aut}(X)$ and $\operatorname{Isom}(X, g)$ is its maximal compact subgroup.

Reductivity \to \text{We can apply GIT (locally).}

We should consider the pair (X, ξ') rather than mere X. (in order to construct their moduli space.)

modified Futaki invariant

- (X, ξ') is a Fano manifold X with a holomorphic vector field ξ' .
- ω is a Kähler form in $2\pi c_1(X)$.
- $\theta_{\xi'}$ is a potential of ξ' : $L_{\xi'}\omega = \sqrt{-1}\partial\bar{\partial}\theta_{\xi'}$ with $\int_X e^{\theta_{\xi'}}\omega^n = \int_X \omega^n$.
- h is a Ricci potential: $\sqrt{-1}\partial\bar{\partial}h = \mathrm{Ric}(\omega) \omega$.

Define $\operatorname{Fut}_{\mathcal{E}'}:\eta(X)\to\mathbb{C}$ by

$$\operatorname{Fut}_{\xi'}(v') := -\int_{\mathbf{x}} v'(h - \theta_{\xi'}) e^{\theta_{\xi'}} \omega^n.$$

- Independent of the choice of ω .
- If there exists a KR soliton (g, ξ') , $\operatorname{Fut}_{\xi'}$ should vanish.

K-optimal vector

If there exists a KR soliton (g, ξ') , $\operatorname{Fut}_{\xi'}$ should vanish.

- $X
 ightharpoonup T^{\mathbb{C}} \cong (\mathbb{C}^*)^k$: torus action on a Fano manifold X.
- N: the 1-psg lattice of $T^{\mathbb{C}}$.
- $N_{\mathbb{R}} := N \otimes \mathbb{R} \subset \eta(X)$ by $\xi \mapsto \xi' := J\xi + \sqrt{-1}\xi$.

Proposition (Tian-Zhu '02)

For any $X \curvearrowleft T^{\mathbb{C}}$, where X does not necessarily admit any KR solitons, there exists a **unique** vector $\xi \in N_{\mathbb{R}}$ with $\operatorname{Fut}_{\xi'}|_{N_{\mathbb{R}}}$.

We call this unique vector the K-optimal vector of $X
subseteq \mathcal{T}^{\mathbb{C}}$.

Kähler-Ricci soliton Moment map picture

Moment map picture

Fix our notation.

- (M, ω) : a simply connected C^{∞} -symplectic manifold.
- (T, ξ) : a closed torus acting on (M, ω) and an element of $\operatorname{Lie}(T)$.
- θ_{ξ} : $-d\theta_{\xi} = -2i_{\xi}\omega$ with the normalization $\int_{M} \theta_{\xi} \ e^{\theta_{\xi}}\omega^{n} = 0$.
- \mathcal{J}_T : the space of T-inv. almost complex srtuctures on (M, ω) .
- Ham_T: the group of T-equiv. symplectic diffeomorphisms of (M, ω) .

 $\mathcal{J}_{\mathcal{T}}$ admits a $\operatorname{Ham}_{\mathcal{T}}$ -invariant smooth symplectic form Ω_{ξ} defined by

$$\Omega_{\xi,J}(A,B) := \int_M \mathrm{Tr}(JAB) \mathrm{e}^{ heta_{\xi}} \omega^n$$

for $A, B \in T_J \mathcal{J}_T$.

Proposition (I. '17)

The map

$$s_{\xi}: \mathcal{J}_{T} \to C^{\infty}(M): J \mapsto (s(g_{J}) + \bar{\square}\theta_{\xi} - n) + (\bar{\square}\theta_{\xi} - \xi'\theta_{\xi} - \theta_{\xi})$$

defines a **moment map** of $(\mathcal{J}_T, \Omega_\xi) \curvearrowleft \operatorname{Ham}_T$. If $c_1(M, \omega) > 0$, then integrable complex structures J with $s_\xi(J) = 0$ precisely correspond to Kähler-Ricci solitons g_J on Fano manifolds (M, J).

We have the following immediate cororally.

For $f \in \mathfrak{t} \subset \operatorname{Lie}(\operatorname{Ham}_{\mathcal{T}}) = C^{\infty}_{\mathcal{T}}(M)/\mathbb{R}$, the modified Futaki invariant $\operatorname{Fut}_{\mathcal{E}'}(X'_f)$ equals to

$$\langle s_{\xi}, f \rangle_{\xi} = \int_{X} s_{\xi} f \ \mathrm{e}^{\theta_{\xi}} \omega^{n},$$

which shows the T-equivariant deformation invariance of the modified Futaki invariant restricted to $\operatorname{Lie}(T) = N_{\mathbb{R}}$.

Summary of this section

In summary,

Input: a Fano
$$T^{\mathbb{C}}$$
-manifold X $\qquad \qquad \downarrow$ Intermediate: a C^{∞} -symplectic $T^{\mathbb{R}}$ -manifold (M,ω) with $\omega \in 2\pi c_1(M,\omega)$ $\qquad \downarrow$ Output: the K-optimal vector $\xi \in N_{\mathbb{R}}$ satisfying $\mathrm{Fut}_{\mathcal{E}'}|_{N_{\mathbb{R}}} \equiv 0$.

The K-optimal vector $\xi \in N_{\mathbb{R}}$ is T-equivaraint deformation invariant!

From the uniqueness of KR-soliton, the topological space

$$(s_{\xi}|_{\mathcal{J}_{T_{\xi}}^{\mathrm{int}}})^{-1}(0) / \operatorname{Ham}_{T_{\xi}}$$

can be naturally identified with the set consisting of biholomorphism classes, not T_{ξ} -equivariant biholomorphism classes, of Fano manifolds admitting KR-solitons of symplectic type (M, ω, ξ) .

From the uniqueness of KR-soliton, the topological space

$$(s_{\xi}|_{\mathcal{J}_{T_{\xi}}^{\mathrm{int}}})^{-1}(0) / \operatorname{Ham}_{T_{\xi}}$$

can be naturally identified with the set consisting of biholomorphism classes, not T_{ξ} -equivariant biholomorphism classes, of Fano manifolds admitting KR-solitons of symplectic type (M, ω, ξ) .

We should construct a structure of complex analytic space on this space.

But it seems difficult to deal with holomorphy in this real (non-complex) geometric viewpoint....

From the uniqueness of KR-soliton, the topological space

$$(s_{\xi}|_{\mathcal{J}_{\mathcal{T}_{\xi}}^{\mathrm{int}}})^{-1}(0) \ / \ \mathrm{Ham}_{\mathcal{T}_{\xi}}$$

can be naturally identified with the set consisting of biholomorphism classes, not T_{ξ} -equivariant biholomorphism classes, of Fano manifolds admitting KR-solitons of symplectic type (M, ω, ξ) .

We should construct a structure of complex analytic space on this space.

But it seems difficult to deal with holomorphy in this real (non-complex) geometric viewpoint....

Use K-stability!

2. Algebro-geometric side - 'virtual world'

K-stability

From now on, the K-optimal vector ξ will be implicitly involved in our formulations, which is encoded in the torus action $X \curvearrowleft T^{\mathbb{C}} = T$.

A special degeneration for a \mathbb{Q} -Fano T-variety $(X, -K_X) \curvearrowleft T$ is a $T \times \mathbb{C}^*$ -equivariant family of \mathbb{Q} -Fano varieties $\pi : \mathcal{X} \to \mathbb{C}$ (T acts on \mathbb{C} trivially) endowed with a T-equivariant isomorphism $X \times \mathbb{C}^* \cong \pi^{-1}(\mathbb{C}^*)$ over $\mathbb{C}^* \subset \mathbb{C}$.

We assume $-K_{\mathcal{X}}$ is \mathbb{Q} -Cartier.

The **Donaldson-Futaki invariant** $DF_T(\pi)$ of a special degeneration $\pi: \mathcal{X} \to \mathbb{C}$ for $X \curvearrowleft T$ with respect to the K-optimal vector $\xi \in N_{\mathbb{R}}$ is given by

$$DF_{\mathcal{T}}(\pi) := \operatorname{Fut}_{\xi'}(\frac{d}{dt}\lambda(t))$$

where $\lambda: \mathbb{C}^* \to \operatorname{Aut}_{\mathcal{T}}(\mathcal{X}_0)$ is the 1-psg on the central fibre \mathcal{X}_0 generated by the \mathbb{C}^* -action on $\pi: \mathcal{X} \to \mathbb{C}$.

There is also an algebraic expression of DF_T .

A \mathbb{Q} -Fano T-variety X is said to be

- **K-semistable** if for any special degeneration $\pi: \mathcal{X} \to \mathbb{C}$ for $X \curvearrowleft T$, $DF_T(\pi) \ge 0$.
- **K-polystable** if it is **K-semistable** and $DF_T(\pi) = 0$ implies there is a T-equivariant isomorphism $\mathcal{X} \cong X \times \mathbb{C}$.
- K-stable if it is K-polystable and $\operatorname{Aut}_T^0(X) = T$.

Note here we use DF_T modified by the K-optimal vector ξ , which is different from the usual Donaldson-Futaki invariant when $\xi \neq 0$.

Theorem (Datar-Sékelyhidi '15, Chen-Sun-Wang '15 + BW '14)

A Fano T-manifold X admits a Kähler-Ricci soliton (g, ξ') with $\xi' \in \operatorname{Lie}(T) \subset \eta(X)$ if and only if $X \curvearrowleft T$ is K-polystable.

(\Rightarrow A Fano manifold X admits a KR soliton iff there exists some torus action $X \curvearrowleft \mathcal{T}$ so that it is K-polystable.)

Complex analytic moduli

Equivariant formulation is essential

The existence of 'canonical metrics' is still not sufficient :(

There exists an isotrivial degeneration $\pi: \mathcal{X} \to \Delta$ of some KE-Fano manifold X with the following property.

- Trivial away from the origin $\pi^{-1}(\Delta^*) \cong \Delta^* \times X$.
- The central fibre $\mathcal{X}_0 \ncong X$ admits Kähler-Ricci soliton with $\xi_0' \neq 0$.

This implies that, without our equivariant formulation, \mathcal{X}_0 will **not** be separated from X (in the "naive moduli space of Fano manifolds with Kähler-Ricci solitons", which algebraic geometers might naively imagine), though both of them admit 'canonical metrics'.

This is not T_{ξ_0} -equivariant family.

We can show that our equivariant formulation will exclude such examples.

Definition (Moduli stack $\mathcal{K}_T(M,\omega)$)

The moduli stack of K-semistable Fano T-manifolds, denoted by $\mathcal{K}_T(M,\omega)$, is a category with

- Object a T-equivariant family $\mathcal{X} \to S$ of K-semistable Fano T-manifolds over a complex space S where the underlying C^{∞} -symplectic structure of fibres are $(M,\omega) \curvearrowleft T^{\mathbb{R}}$,
- Morphism $(f, \phi): (S, \mathcal{X}) \to (S', \mathcal{X}')$ where ϕ is a fibrewise isomorphism over f.

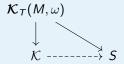
We have a forgetful functor $\mathcal{K}_{\mathcal{T}}(M,\omega) \to \mathbb{C}$ an : $(\mathcal{X} \to S) \mapsto S$, which makes $\mathcal{K}_{\mathcal{T}}(M,\omega)$ into a stack over \mathbb{C} an and actually Artin analytic.

- A morphism from $\mathbb{C}\mathbf{an}_S$ to $\mathcal{K}_T(M,\omega)$ correspond to a T-equivariant family $\mathcal{X} \to S$ of K-semistable Fano T-manifolds.
- A morphism from $\mathcal{K}_{\mathcal{T}}(M,\omega)$ to $\mathbb{C}\mathbf{an}_M$ gives a 'functorial' way to assign a morphism $S \to M$ to each family $\mathcal{X} \to S$ in $\mathcal{K}_{\mathcal{T}}$.

Definition of moduli space in terms of the moduli stack

Definition

A complex space $\mathcal K$ with a morphism $\mathcal K_T(M,\omega) \to \mathbb C \mathbf{an}_{\mathcal K}$ is called the **moduli space** of $\mathcal K_T(M,\omega)$ if for any morphism $\mathcal K_T(M,\omega) \to \mathbb C \mathbf{an}_S$ we have a unique holomorphic morphism $\mathcal K \to S$ completing the following commutative diagram.



The moduli space is unique (up to bihol.) if it exists.

Main theorem

Theorem (I. '17)

The moduli space $\mathcal{K}_T(M,\omega) \to \mathcal{K}$ exists for any $(M,\omega) \curvearrowleft T$ with $\omega \in c_1(M,\omega)$ (possibly empty).

A morphism from a 'point' $\mathbb{C}\mathbf{an}_{\mathrm{pt}}$ to $\mathcal{K}_{\mathcal{T}}(M,\omega)$ corresponds to a biholomorphism class of K-semistable Fano \mathcal{T} -manifold.

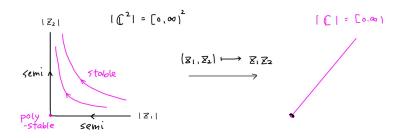
On the other hand, points of K corresponds to biholomorphism classes of K-polystable Fano T-manifolds (= Fano manifolds admitting KR-soliton).

Our moduli spaces look like GIT

Our moduli space $\mathcal{K}_{\mathcal{T}}(M,\omega) \to \mathcal{K}$ is (étale) locally isomorphic to the GIT quotient $[H^1_{\mathcal{T}}(X,\Theta)/\mathrm{Aut}_{\mathcal{T}}(X)] \to H^1_{\mathcal{T}}(X,\Theta) /\!\!/ \mathrm{Aut}_{\mathcal{T}}(X)$.

Actually, we construct the moduli space $\mathcal{K}_{\mathcal{T}}(M,\omega) \to \mathcal{K}$ by gluing them together where X runs all K-polystable Fano \mathcal{T} -manifolds.

Here is an incomplete picture of $[\mathbb{C}^2/\mathbb{C}^*] \to \mathbb{C}^2 /\!\!/ \mathbb{C}^* = \mathbb{C}$ where \mathbb{C}^* acts on \mathbb{C}^2 by $(z_1, z_2).t = (z_1.t, z_2.t^{-1}).$



Consistency

Proposition (I. '17)

The following are naturally identified as topological spaces.

- The moduli space \mathcal{K} of $\mathcal{K}_{\mathcal{T}}(M,\omega)$.
- The symplectic reduction $s_{\xi, {
 m int}}^{-1}(0)/{
 m Ham}_{\mathcal T}$ for the K-optimal vector ξ .
- The space $\mathcal{KR}_{GH,T}(M,\omega) = \{$ bihol. classes of Fano manifolds admitting KR solitons, T_{ξ} -equivariantly diffeo. to (M,ω,T) $\}$ endowed with the Gromov-Hausdorff topology.

To show this, we use the uniqueness of the moduli space $\mathcal K$ (funny! :)).

In the proof, we also show that the space $\mathcal{KR}_{GH}(n)$ consisting of n-dimensional Fano manifolds admitting KR solitons is a finite disjoint union of some $\mathcal{KR}_{GH,T_i}(M_i,\omega_i)$ with $\dim_{\mathbb{R}} M_i = 2n$.

Thank You!