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µ-scalar curvature: definition

X ⟲ T ∼= (U(1))×k : holomorphic action on a complex (Kähler) manifold

µ-scalar curvature

For λ ∈ R and ξ ∈ t and a T -equivariant Kähler metric ω + µ, we put

sλξ (ω) := (s(ω)−∆µξ)− (∆µξ + 2|∇µξ|2) + 2λµξ

= (s(ω) + □̄θξ) + (□̄θξ − (Jξ)θξ)− λθξ.

Definition

A Kähler metric ω is a µλ
ξ -cscK metric if sλξ (ω) is constant.

Independent of the choice of the moment map µ for ω.

µλ
0 -cscK metric ⇐⇒ cscK metric.

When ω ∈ 2πλ−1c1(X ),
µλ
ξ -cscK metric ⇐⇒ Kähler-Ricci soliton: Ric(ω)− LJξω = λω.



µ-cscK metric and µK-stability (Eiji Inoue)

Introduction to µ-cscK metric – special features

µ-scalar curvature: “naturality” of the concept

Recall

Donaldson-Fujiki moment map picture

(M, ω): C∞-symplectic manifold. Scalar curvature gives a moment map
on J (M, ω). Namely, the map S : J (M, ω) → Lie(Ham(M, ω))∨ given
by

⟨S(J), f ⟩ =
∫
M

(s(gJ)− s̄)f ωn

is a moment map for the symplectic structure Ω on J (M, ω):

ΩJ(A,B) =

∫
M

(JA,B)gJω
n.
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µ-scalar curvature: “naturality” of the concept

Put

s̄λξ :=

∫
M

sλξ (gJ) e
θξωn

/∫
M

eθξωn.

Proposition (Moment map picture for µ-cscK, I. ’18, Lahdili ’18)

(M, ω) ⟲ T : C∞-symplectic manifold. µ-scalar curvature gives a
moment map on JT (M, ω). Namely, the map
Sλ
ξ : JT (M, ω) → Lie(HamT (M, ω))∨ given by

⟨Sλ
ξ (J), f ⟩ =

∫
M

(sλξ (gJ)− s̄λξ )f eθξωn

is a moment map for the symplectic structure Ωξ on JT (M, ω):

Ωξ,J(A,B) =

∫
M

(JA,B)gJ eθξωn.
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Characterization of vector fields: µλ-entropy

µλ(−2ξ) := − log
Volλ(−2ξ)

(n!en)λ

= −
∫
X
(s + □̄θξ)e

θξωn∫
X
eθξωn

+ λ

∫
X
(n + θξ)e

θξωn∫
X
eθξωn

− λ log

∫
X

eθξ
ωn

n!

µλ = −
∫
X
(Ric+ □̄µ)eω+µ∫

X
eω+µ

+ λ

∫
X
(ω + µ)eω+µ∫

X
eω+µ

− λ log

∫
X

eω+µ

The functional µλ depends only on [ω].

Proposition: µλ-entropy/µλ
ξ -Futaki invariant (I. ’19)

∃ µλ
ξ -cscK metric in [ω] ⇒ ξ is a critical point of µλ

[ω].
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Properties of µλ-entropy

Proposition (I. ’19)

(Existence) Critical points of µλ always exist regardless of the
existence of µλ

ξ -cscK metrics in [ω].

(Uniqueness/phase transition) For each X ⟲ T ,

λfreeze := sup
{
λ ∈ R

∣∣∣ µλ′
admits a unique

critical point for every λ′ ≤ λ

}
is always finite (never ±∞).

(Extremal limit) Let ξλ be the unique critical point of µλ for
λ < λfreeze. Then λξλ converges to the extremal vector field ξext as
λ tends to −∞.

The extremal vector field ξext is the unique critical point of∫
X

(ŝ(ω)− θ̂ξ)
2ωn −

∫
X

ŝ2ωn. (f̂ := f −
∫
X

f ωn/

∫
X

ωn)
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Behavior of µλ-entropy: typical example

We can explicitly compute µλ of CP1 ⟲ U(1). For ξ = x .η ∈ u(1),

µλ
−KCP1

(ξ) = 2π(1− x

tanh x
) + λ(−1 +

x

tanh x
)− λ log

2 sinh x

x
.

λfreeze(CP1,−KCP1) = 4π.

There actually exists a µλ
ξ -cscK metric for exactly two ξ ̸= 0 (and

ξ = 0) when λ > 4π.

As λ → ∞, the family of (non-cscK) µλ-cscK metrics converges on
C ⊂ CP1, which looks like parabolic antenna.

As λ → ∞, the family of (non-cscK) µλ-cscK metrics ωλ admits a
family of diffeomorphisms fλ : D2 → C ⊂ CP1 from a disk of radius√
2 such that f ∗λ ωλ converges to the flat metric. (while fλ does not

converge to a diffeomorphism onto C. )

??
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Closedness of framework

(Scaling) ω: µλ
ξ -cscK metric ⇒ c−1ω: µcλ

cξ -cscK metric.

(Product) (X , ωX ), (Y , ωY ): µ
λ-cscK metrics with the same λ and

with respect to vector fields ξX , ξY , respectively ⇒
(X × Y , ωX ⊕ ωY ): µ

λ-cscK metric with respect to ξX ⊕ ξY .

(Perturbation of λ) ∃ µλ-cscK metric in [ω] with λ < λ1 for the first

eigenvalue λ1 of ∆−∇µξ ⇒ ∃ µλ̃-cscK metric in the same [ω] for

λ̃ ∈ (λ− ϵ, λ+ ϵ).

(Perturbation of Kähler class) We can also perturb Kähler classes
under the above condition.

(Propagation) ∃ extremal metric in [ω] ⇒ µλ-cscK metric in the
same [ω] for λ ≪ λfreeze and also for λ ≫ λfreeze.

(Uniqueness) Convexity of weighted Mabuchi functional shows that
µλ-cscK metrics are unique for λ < λfreeze. (Lahdili)

cscK × KRS (eg. toric Fano) ... ruled manifold over cscK manifold?
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New!: Calabi ansatz on CP2#CP2 = PCP1(O(1)⊕O)

The anti-canonical class −KX of X = CP2#CP2 = PCP1(O(1)⊕O)
admits both KRs and extremal metric (no cscK metrics).

Calabi ansatz: ∃ µλ-cscK metrics for every λ ∈ R (with a negative
xλ = ξλ/η = (6/11) · ξλ/ξext).

We can see 2.9× 2π < λfreeze < 3× 2π.
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µK-stability

2. How to formulate µK-stability? – equivariant calculus
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µK-stability

Review on Donaldson-Futaki invariant

Recall, for a normal test configuration (X/C,L) of (X , L), the
Donaldson–Futaki invariant is given by

DF (X ,L) := (KX̄/CP1 .L·n)− n

n + 1

(KX .L
·(n−1))

(L·n)
(L̄·(n+1)).

The K-(semi)stability of (X , L) is the positivity (non-negativity) of
Donaldson–Futaki invariants. (cf. Hilbert-Mumford criterion)

In moduli context, test configurations appear by pulling back the
universal family U on Hilb along C×-equivariant morphisms
C → Hilb, which is not necessarily normal.

We can define DF also for non-normal (X ,L) by using homology
Todd class τ(OX̄ ) = [X̄ ]− 1

2κX̄ + · · · ∈ AQ(X̄ ) instead of KX̄ . (cf.
Fulton, Edidin-Graham)

The intersection formula is useful to see the behavior of DF (X ,L)
along the normalization and resolutions of X .
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K-stability in cscK (KE) case

Theorem (Berman-Darvas-Lu, et al.)

If the Kähler class c1(L) admits a cscK metric, then (X , L) is
K-(poly)stable.

Theorem (Chen-Donaldson-Sun, Tian, (Aubin, Yau, Odaka))

The Kähler class λc1(X ) admits a cscK metric (KE metric) ⇐⇒
(X ,−λKX ) is K-(poly)stable.
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µK-stability

K-stability and moduli problem

Theorem (Paul-Tian)

For a G -equivariant family (X ,L) → B of polarized schemes, there exists
a G -equivariant line bundle CM(X ,L) on B such that for every
C×-equivariant morphism f : C → B, the weight
−cC

×

1 (f ∗CM(X ,L)) ∈ H2
C×(C,Z) ∼= Z.η∨ is equal to DF (f ∗X , f ∗L).

Theorem (Odaka, Li-Wang-Xu)

Q-smoothable Fano varieties with Kähler–Einstein metrics form a proper
algebraic moduli space.

Theorem (I. ’19)

Fano manifolds with Kähler-Ricci solitons (= µ2π-cscK metric in c1(X ))
form a complex analytic moduli space.

Can we compactify the moduli space (or make it algebraic)?
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µFutaki invariant

(X , L): T -equivariant polarized manifold (scheme)
For ξ ∈ t, we define the µ0

ξ-Futaki invariant of a T -equivariant test
configuration (X ,L) by the following equivariant intersection formula:

Fut0ξ(X ,L) := 4π
Evξ

(
(κT

X̄/CP1 .e
L̄T ) · (eLT )− (κT

X .e
LT )(eL̄T )

)
(Evξ(eLT ))2

∈ R.

When X is smooth, this is equivalent to:

−2

∫
X̄ (Ricrel

Ω̃
+ □̄Ω̃Θ̃ξ)e

Ω+Θξ
∫
X
eΩ+Θξ −

∫
X
(Ricω + □̄θξ)e

ω+θξ
∫
X̄ eΩ+Θξ

(
∫
X
eω+θξ)2

,

where Ricrel
Ω̃

= Ric(Ω̃)− π∗Ric(ωCP1) for some metrics Ω̃, ωCP1 on

X̄ ,CP1.
We can similarly define

Futλξ (X ,L) := Fut0ξ(X ,L) + λ(equiv. intersection on L̄).
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µK-semistability

A T -polarized manifold is µλ
ξK-semistable if Futλξ is non-negative for any

test configuration.

Proposition (I. ’20)

1 For smooth X , the µλ
ξK-semistability of (X , L) with respect to

general test configurations is equivalent to the µλ
ξK-semistability

with respect to smooth test configurations (test configurations with
smooth total space X ).

2 For smooth test configuration, Futλξ is equivalent to one of Lahdili’s
weighted Futaki invariants.

Cororally (Essentially, Lahdili’s result on weighted cscK ’19)

If a smooth T -polarized manifold (X , L) admits a µλ
ξ -cscK metric in

c1(L), then (X , L) is µλ
ξK-semistable (with respect to general test

configurations).
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Generalization of CM line bundle

Theorem (I. ’20)

For λ ∈ R and ξ ∈ t, there exists a characteristic class Dξµ
λ assigning

Dξµ
λ(X/B,L) ∈ H2

G (B,R) for each T × G -equivariant family of
polarized schemes (X/B,L) over smooth G -variety B which enjoys the
following:

1 Naturality: f ∗Dξµ
λ(X/B,L) = Dξµ

λ(X ′/B ′,L′) for

X ′ X

B ′ Bf

2 µ-Futaki invariant: Dξµ
λ(X/C,L) = Futλξ (X ,L).η∨ for any

T -equivariant test configuration (X ,L)
3 CM line bundle: D0µ

λ
G (X/B,L) = − 4π

(L·n)c
G
1 (CM(X/B,L))
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Application

Combining with Chen–Sun’s deep analysis on Kähler–Ricci flow and the
analytic openness of µK-semistable locus established in the previous work,
we can show that µK-semistable locus for a polarized family is Zariski
open on the base. Then we get the following result on algebraicity.

Cororally

The moduli space of Fano manifolds with Kähler–Ricci solitons is an
algebraic space.

I also have a plan for compactifying the moduli space. (in progress)
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Idea of construction – the case λ = 0 (to economize space)

Recall the following expression of µλ-entropy:

µ0 = −
∫
X
(Ric+ □̄µ)eω+µ∫

X
eω+µ

.

Both
∫
X
(Ric+ □̄µ)eω+µ and

∫
X
eω+µ are the integration of equivariant

forms. In other words, we can regard these as the pushforward of the
equivariant cohomology classes

KT
X ⌢ eLT , eLT ∈ ĤT (X ,R) :=

∞∏
k=0

H2k
T (X ,R)

along p : X → pt, which are elements of ĤT (pt,R) ∼=
∏∞

k=0 S
k t∨ and are

the Taylor expansion (at 0 ∈ t) of the functionals
∫
X
(Ric+ □̄µ)eω+µ,∫

X
eω+µ on t. For a G -equivariant polarized family (X/B,L), we put

µ0
X/B,L := 2π

π∗(κX/B .e
L)

π∗(eL)
∈ ĤG (B,R).
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Idea of construction – Sketch of equivariant calculus

1 (Differential at ξ along G ) For ξ ∈ t, we introduce a differential
operation

Dξ : Hω
T×G (B,R) → H2

G (B,R)

for some subring Hω
T×G (B,R) of ĤT×G (B,R) where T acts on B

trivially. When G = {1} and B = pt, Hω
T×G (B,R) is identified with

the ring of real analytic functions on t.

2 (Convergence result) For T × G -equivariant polarized family
(X/B,L), we can show that µλ

X/B,L is in Hω
T×G (B,R), using

Cartan model of equivariant deRham current homology. The
element Dξµ

λ
X/B,L ∈ H2

G (B,R) is what we want!

3 (Equivariant Grothendieck-Riemann-Roch) Naturality and the
identification with CM line bundle comes from the equivariant
Grothendieck-Riemann-Roch theorem by Edidin-Graham.

4 (Localization formula) Using the equivariant localization formula, we
can see Dξµ

λ
X/C,L = Futλξ (X ,L).η∨.

Thank you for listening!
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Latest news: Han-Li’s result when L = −KX

Berman–Witt-Nyström proved that (X ,−KX ) is µ
2πK-polystable

with respect to special degenerations if X admits a KRs (=
µ2π-cscK metric).

Recently, J. Han and C. Li introduced G -uniform g-Ding stability
‘DNA

g (ϕ) ≥ γ · JNA
g (ϕ)’ and proved the equivalence of G -uniform

g-Ding stability of (X ,−KX ) for ‘maximal’ G is equivalent to the
existence of KR g-soliton.

They also show that the (G -uniform) g -Ding stability of (X ,−KX )
is equivalent to that with respect to special degenerations, using
MMP with scaling. The proof works also for MNA

g . (I guess it works

also for Futλξ . )

g -Mabuchi stability for g = e⟨ξ,−⟩ must be equivalent to
µλ
ξK-stability. (λ is determined from ξ. )

Thus, ∃ KRs on X ⇐⇒ (X ,−KX ) is µ
2πK-polystable.
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