$\mu\text{-}\mathsf{cscK}$ metric and $\mu\text{K}\text{-}\mathsf{stability}$ of polarized manifolds

Eiji Inoue (瑛二, 井上)

12, June, 2020 for Géométrie et Topologie seminar via Zoom

Contents:

- **1** Introduction to μ -cscK metrics special features
- **2** How to formulate μ K-stability? equivariant calculus

 μ -cscK metric and μ K-stability (Eiji Inoue)

Introduction to μ -cscK metric – special features

1. Introduction to μ -cscK – special features

μ -scalar curvature: definition

 $X \circlearrowleft T \cong (U(1))^{\times k}$: holomorphic action on a complex (Kähler) manifold

μ -scalar curvature

For $\lambda \in \mathbb{R}$ and $\xi \in \mathfrak{t}$ and a *T*-equivariant Kähler metric $\omega + \mu$, we put

$$s_{\xi}^{\lambda}(\omega) := (s(\omega) - \Delta\mu_{\xi}) - (\Delta\mu_{\xi} + 2|\nabla\mu_{\xi}|^{2}) + 2\lambda\mu_{\xi}$$
$$= (s(\omega) + \overline{\Box}\theta_{\xi}) + (\overline{\Box}\theta_{\xi} - (J\xi)\theta_{\xi}) - \lambda\theta_{\xi}.$$

Definition

A Kähler metric ω is a μ_{ξ}^{λ} -cscK metric if $s_{\xi}^{\lambda}(\omega)$ is constant.

- Independent of the choice of the moment map μ for ω .
- μ_0^{λ} -cscK metric \iff cscK metric.

When
$$\omega \in 2\pi\lambda^{-1}c_1(X)$$
,
 μ_{ξ}^{λ} -cscK metric \iff Kähler-Ricci soliton: $\operatorname{Ric}(\omega) - L_{J\xi}\omega = \lambda\omega$.

μ -scalar curvature: "naturality" of the concept

Recall

Donaldson-Fujiki moment map picture

 (M, ω) : C^{∞} -symplectic manifold. Scalar curvature gives a moment map on $\mathcal{J}(M, \omega)$. Namely, the map $\mathcal{S} : \mathcal{J}(M, \omega) \to \operatorname{Lie}(\operatorname{Ham}(M, \omega))^{\vee}$ given by

$$\langle \mathcal{S}(J), f
angle = \int_{\mathcal{M}} (s(g_J) - \bar{s}) f \omega^n$$

is a moment map for the symplectic structure Ω on $\mathcal{J}(M,\omega)$:

$$\Omega_J(A,B) = \int_M (JA,B)_{g_J} \omega^n.$$

 μ -cscK metric and μ K-stability (Eiji Inoue)

Introduction to μ -cscK metric – special features

μ -scalar curvature: "naturality" of the concept

Put

$$ar{s}_{\xi}^{\lambda} := \int_{\mathcal{M}} s_{\xi}^{\lambda}(g_J) \, e^{ heta_{\xi}} \omega^n \Big/ \int_{\mathcal{M}} e^{ heta_{\xi}} \omega^n.$$

Proposition (Moment map picture for μ -cscK, I. '18, Lahdili '18)

 $(M, \omega) \circ T$: C^{∞} -symplectic manifold. μ -scalar curvature gives a moment map on $\mathcal{J}_{\mathcal{T}}(M, \omega)$. Namely, the map $\mathcal{S}_{\varepsilon}^{\lambda} : \mathcal{J}_{\mathcal{T}}(M, \omega) \to \operatorname{Lie}(\operatorname{Ham}_{\mathcal{T}}(M, \omega))^{\vee}$ given by

$$\langle \mathcal{S}^{\lambda}_{\xi}(J), f
angle = \int_{\mathcal{M}} (s^{\lambda}_{\xi}(g_J) - ar{s}^{\lambda}_{\xi}) f \ e^{ heta_{\xi}} \omega^n$$

is a moment map for the symplectic structure Ω_{ξ} on $\mathcal{J}_{\mathcal{T}}(M, \omega)$:

$$\Omega_{\xi,J}(A,B) = \int_M (JA,B)_{g_J} e^{\theta_{\xi}} \omega^n.$$

Characterization of vector fields: μ^{λ} -entropy

$$\begin{split} \mu^{\lambda}(-2\xi) &:= -\log \frac{\operatorname{Vol}^{\lambda}(-2\xi)}{(n!e^{n})^{\lambda}} \\ &= -\frac{\int_{X} (s + \overline{\Box}\theta_{\xi}) e^{\theta_{\xi}} \omega^{n}}{\int_{X} e^{\theta_{\xi}} \omega^{n}} + \lambda \frac{\int_{X} (n + \theta_{\xi}) e^{\theta_{\xi}} \omega^{n}}{\int_{X} e^{\theta_{\xi}} \omega^{n}} - \lambda \log \int_{X} e^{\theta_{\xi}} \frac{\omega^{n}}{n!} \end{split}$$

$$\mu^{\lambda} = -\frac{\int_{X} (\operatorname{Ric} + \overline{\Box} \mu) e^{\omega + \mu}}{\int_{X} e^{\omega + \mu}} + \lambda \frac{\int_{X} (\omega + \mu) e^{\omega + \mu}}{\int_{X} e^{\omega + \mu}} - \lambda \log \int_{X} e^{\omega + \mu}$$

The functional μ^{λ} depends only on $[\omega]$.

Proposition: μ^{λ} -entropy/ μ_{ξ}^{λ} -Futaki invariant (l. '19)

 $\exists \ \mu_{\xi}^{\lambda}$ -cscK metric in $[\omega] \Rightarrow \xi$ is a critical point of $\mu_{[\omega]}^{\lambda}$.

Properties of μ^{λ} -entropy

Proposition (I. '19)

- (Existence) Critical points of μ^λ always exist regardless of the existence of μ^λ_ξ-cscK metrics in [ω].
- (Uniqueness/phase transition) For each $X \circlearrowleft T$,

$$\lambda_{\text{freeze}} := \sup \left\{ \lambda \in \mathbb{R} \ \Big| \ \begin{array}{c} \boldsymbol{\mu}^{\lambda'} \text{ admits a unique} \\ \text{critical point for every } \lambda' \leq \lambda \end{array} \right\}$$

is always **finite** (never $\pm \infty$).

Properties of μ^{λ} -entropy

Proposition (I. '19)

- (Existence) Critical points of μ^λ always exist regardless of the existence of μ^λ_ξ-cscK metrics in [ω].
- (Uniqueness/phase transition) For each $X \circlearrowleft T$,

$$\lambda_{\text{freeze}} := \sup \left\{ \lambda \in \mathbb{R} \ \Big| \ \begin{array}{c} \boldsymbol{\mu}^{\lambda'} \text{ admits a unique} \\ \text{critical point for every } \lambda' \leq \lambda \end{array} \right\}$$

is always **finite** (never $\pm \infty$).

• (Extremal limit) Let ξ^{λ} be the unique critical point of μ^{λ} for $\lambda < \lambda_{\rm freeze}$. Then $\lambda \xi^{\lambda}$ converges to the extremal vector field $\xi_{\rm ext}$ as λ tends to $-\infty$.

The extremal vector field ξ_{ext} is the unique critical point of

$$\int_X (\hat{s}(\omega) - \hat{\theta}_{\xi})^2 \omega^n - \int_X \hat{s}^2 \omega^n. \quad (\hat{f} := f - \int_X f \omega^n / \int_X \omega^n)$$

Behavior of μ^{λ} -entropy: typical example

We can explicitly compute μ^{λ} of $\mathbb{C}P^1 \circlearrowleft U(1)$. For $\xi = x.\eta \in \mathrm{u}(1)$,

$$\mu_{-K_{\mathbb{C}P^1}}^{\lambda}(\xi) = 2\pi (1 - \frac{x}{\tanh x}) + \lambda (-1 + \frac{x}{\tanh x}) - \lambda \log \frac{2\sinh x}{x}.$$

•
$$\lambda_{\text{freeze}}(\mathbb{C}P^1, -K_{\mathbb{C}P^1}) = 4\pi.$$

Behavior of μ^{λ} -entropy: typical example

We can explicitly compute μ^{λ} of $\mathbb{C}P^1 \circlearrowleft U(1)$. For $\xi = x.\eta \in \mathrm{u}(1)$,

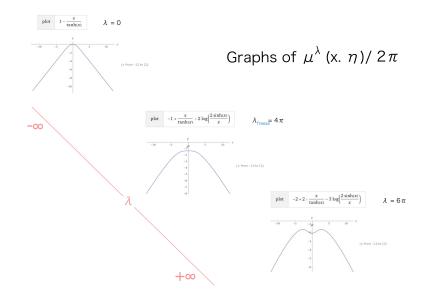
$$\mu^{\lambda}_{-\mathcal{K}_{\mathbb{C}P^1}}(\xi) = 2\pi (1 - \frac{x}{\tanh x}) + \lambda (-1 + \frac{x}{\tanh x}) - \lambda \log \frac{2\sinh x}{x}.$$

$$\lambda_{\text{freeze}}(\mathbb{C}P^1, -K_{\mathbb{C}P^1}) = 4\pi.$$

- There actually exists a μ_{ξ}^{λ} -cscK metric for exactly two $\xi \neq 0$ (and $\xi = 0$) when $\lambda > 4\pi$.
- As $\lambda \to \infty$, the family of (non-cscK) μ^{λ} -cscK metrics converges on $\mathbb{C} \subset \mathbb{C}P^1$, which looks like parabolic antenna.
- As $\lambda \to \infty$, the family of (non-cscK) μ^{λ} -cscK metrics ω_{λ} admits a family of diffeomorphisms $f_{\lambda} : D^2 \to \mathbb{C} \subset \mathbb{C}P^1$ from a disk of radius $\sqrt{2}$ such that $f_{\lambda}^* \omega_{\lambda}$ converges to the flat metric. (while f_{λ} does not converge to a diffeomorphism onto \mathbb{C} .)

 μ -cscK metric and μ K-stability (Eiji Inoue)

Introduction to μ -cscK metric – special features



Closedness of framework

- (Scaling) ω : μ_{ξ}^{λ} -cscK metric $\Rightarrow c^{-1}\omega$: $\mu_{c\xi}^{c\lambda}$ -cscK metric.
- (Product) (X, ω_X) , (Y, ω_Y) : μ^{λ} -cscK metrics with the same λ and with respect to vector fields ξ_X , ξ_Y , respectively \Rightarrow $(X \times Y, \omega_X \oplus \omega_Y)$: μ^{λ} -cscK metric with respect to $\xi_X \oplus \xi_Y$.

Closedness of framework

- (Scaling) ω : μ_{ξ}^{λ} -cscK metric $\Rightarrow c^{-1}\omega$: $\mu_{c\xi}^{c\lambda}$ -cscK metric.
- (Product) (X, ω_X) , (Y, ω_Y) : μ^{λ} -cscK metrics with the same λ and with respect to vector fields ξ_X , ξ_Y , respectively \Rightarrow $(X \times Y, \omega_X \oplus \omega_Y)$: μ^{λ} -cscK metric with respect to $\xi_X \oplus \xi_Y$.
- (Perturbation of λ) $\exists \mu^{\lambda}$ -cscK metric in $[\omega]$ with $\lambda < \lambda_1$ for the first eigenvalue λ_1 of $\Delta \nabla \mu_{\xi} \Rightarrow \exists \mu^{\tilde{\lambda}}$ -cscK metric in the same $[\omega]$ for $\tilde{\lambda} \in (\lambda \epsilon, \lambda + \epsilon)$.
- (Perturbation of Kähler class) We can also perturb Kähler classes under the above condition.

Closedness of framework

- (Scaling) ω : μ_{ξ}^{λ} -cscK metric $\Rightarrow c^{-1}\omega$: $\mu_{c\xi}^{c\lambda}$ -cscK metric.
- (Product) (X, ω_X) , (Y, ω_Y) : μ^{λ} -cscK metrics with the same λ and with respect to vector fields ξ_X , ξ_Y , respectively \Rightarrow $(X \times Y, \omega_X \oplus \omega_Y)$: μ^{λ} -cscK metric with respect to $\xi_X \oplus \xi_Y$.
- (Perturbation of λ) $\exists \mu^{\lambda}$ -cscK metric in $[\omega]$ with $\lambda < \lambda_1$ for the first eigenvalue λ_1 of $\Delta \nabla \mu_{\xi} \Rightarrow \exists \mu^{\tilde{\lambda}}$ -cscK metric in the same $[\omega]$ for $\tilde{\lambda} \in (\lambda \epsilon, \lambda + \epsilon)$.
- (Perturbation of Kähler class) We can also perturb Kähler classes under the above condition.
- (Propagation) \exists extremal metric in $[\omega] \Rightarrow \mu^{\lambda}$ -cscK metric in the same $[\omega]$ for $\lambda \ll \lambda_{\text{freeze}}$ and also for $\lambda \gg \lambda_{\text{freeze}}$.
- (Uniqueness) Convexity of weighted Mabuchi functional shows that μ^{λ} -cscK metrics are unique for $\lambda < \lambda_{\text{freeze}}$. (Lahdili)

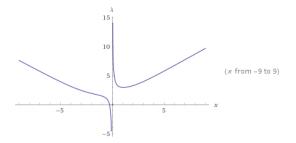
cscK \times KRS (eg. toric Fano) ... ruled manifold over cscK manifold?

 μ -cscK metric and μ K-stability (Eiji Inoue)

Introduction to μ -cscK metric – special features

New!: Calabi ansatz on $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2} = \mathbb{P}_{\mathbb{C}P^1}(\mathcal{O}(1) \oplus \mathcal{O})$

- The anti-canonical class $-K_X$ of $X = \mathbb{C}P^2 \# \overline{\mathbb{C}P^2} = \mathbb{P}_{\mathbb{C}P^1}(\mathcal{O}(1) \oplus \mathcal{O})$ admits both KRs and extremal metric (no cscK metrics).
- Calabi ansatz: $\exists \ \mu^{\lambda}$ -cscK metrics for every $\lambda \in \mathbb{R}$ (with a negative $x_{\lambda} = \xi^{\lambda}/\eta = (6/11) \cdot \xi^{\lambda}/\xi_{ext}$).



We can see 2.9 \times 2 π < $\lambda_{\rm freeze}$ < 3 \times 2 π .

2. How to formulate μ K-stability? – equivariant calculus

Review on Donaldson-Futaki invariant

Recall, for a normal test configuration $(\mathcal{X}/\mathbb{C}, \mathcal{L})$ of (X, L), the Donaldson–Futaki invariant is given by

$$DF(\mathcal{X},\mathcal{L}) := (K_{\bar{\mathcal{X}}/\mathbb{C}P^1}.\mathcal{L}^{\cdot n}) - \frac{n}{n+1} \frac{(K_X.\mathcal{L}^{\cdot (n-1)})}{(\mathcal{L}^{\cdot n})} (\bar{\mathcal{L}}^{\cdot (n+1)}).$$

The K-(semi)stability of (X, L) is the positivity (non-negativity) of Donaldson–Futaki invariants. (cf. Hilbert-Mumford criterion)

Review on Donaldson-Futaki invariant

Recall, for a normal test configuration $(\mathcal{X}/\mathbb{C}, \mathcal{L})$ of (X, L), the Donaldson–Futaki invariant is given by

$$DF(\mathcal{X},\mathcal{L}) := (K_{\bar{\mathcal{X}}/\mathbb{C}P^1}.\mathcal{L}^{\cdot n}) - \frac{n}{n+1} \frac{(K_X.\mathcal{L}^{\cdot (n-1)})}{(\mathcal{L}^{\cdot n})} (\bar{\mathcal{L}}^{\cdot (n+1)}).$$

The K-(semi)stability of (X, L) is the positivity (non-negativity) of Donaldson–Futaki invariants. (cf. Hilbert-Mumford criterion)

- In moduli context, test configurations appear by pulling back the universal family \mathcal{U} on Hilb along \mathbb{C}^{\times} -equivariant morphisms $\mathbb{C} \to \text{Hilb}$, which is not necessarily normal.
- We can define DF also for non-normal $(\mathcal{X}, \mathcal{L})$ by using homology Todd class $\tau(\mathcal{O}_{\bar{\mathcal{X}}}) = [\bar{\mathcal{X}}] - \frac{1}{2}\kappa_{\bar{\mathcal{X}}} + \cdots \in A_{\mathbb{Q}}(\bar{\mathcal{X}})$ instead of $K_{\bar{\mathcal{X}}}$. (cf. Fulton, Edidin-Graham)
- The intersection formula is useful to see the behavior of $DF(\mathcal{X}, \mathcal{L})$ along the normalization and resolutions of \mathcal{X} .

 $-\mu$ K-stability

K-stability in cscK (KE) case

Theorem (Berman-Darvas-Lu, et al.)

If the Kähler class $c_1(L)$ admits a cscK metric, then (X, L) is K-(poly)stable.

Theorem (Chen-Donaldson-Sun, Tian, (Aubin, Yau, Odaka))

The Kähler class $\lambda c_1(X)$ admits a cscK metric (KE metric) \iff $(X, -\lambda K_X)$ is K-(poly)stable.

K-stability and moduli problem

Theorem (Paul-Tian)

For a *G*-equivariant family $(\mathcal{X}, \mathcal{L}) \to B$ of polarized schemes, there exists a *G*-equivariant line bundle $CM(\mathcal{X}, \mathcal{L})$ on *B* such that for every \mathbb{C}^{\times} -equivariant morphism $f : \mathbb{C} \to B$, the weight $-c_1^{\mathbb{C}^{\times}}(f^*CM(\mathcal{X}, \mathcal{L})) \in H^2_{\mathbb{C}^{\times}}(\mathbb{C}, \mathbb{Z}) \cong \mathbb{Z}.\eta^{\vee}$ is equal to $DF(f^*\mathcal{X}, f^*\mathcal{L})$.

Theorem (Odaka, Li-Wang-Xu)

 $\mathbb Q\text{-smoothable}$ Fano varieties with Kähler–Einstein metrics form a proper algebraic moduli space.

K-stability and moduli problem

Theorem (Paul-Tian)

For a *G*-equivariant family $(\mathcal{X}, \mathcal{L}) \to B$ of polarized schemes, there exists a *G*-equivariant line bundle $CM(\mathcal{X}, \mathcal{L})$ on *B* such that for every \mathbb{C}^{\times} -equivariant morphism $f : \mathbb{C} \to B$, the weight $-c_1^{\mathbb{C}^{\times}}(f^*CM(\mathcal{X}, \mathcal{L})) \in H^2_{\mathbb{C}^{\times}}(\mathbb{C}, \mathbb{Z}) \cong \mathbb{Z}.\eta^{\vee}$ is equal to $DF(f^*\mathcal{X}, f^*\mathcal{L})$.

Theorem (Odaka, Li-Wang-Xu)

 $\mathbb Q\text{-smoothable}$ Fano varieties with Kähler–Einstein metrics form a proper algebraic moduli space.

Theorem (I. '19)

Fano manifolds with Kähler-Ricci solitons (= $\mu^{2\pi}$ -cscK metric in $c_1(X)$) form a complex analytic moduli space.

Can we compactify the moduli space (or make it algebraic)?

μ Futaki invariant

(X, L): *T*-equivariant polarized manifold (scheme) For $\xi \in \mathfrak{t}$, we define the μ_{ξ}^{0} -Futaki invariant of a *T*-equivariant test configuration $(\mathcal{X}, \mathcal{L})$ by the following equivariant intersection formula:

$$\operatorname{Fut}_{\xi}^{0}(\mathcal{X},\mathcal{L}) := 4\pi \frac{\operatorname{Ev}_{\xi} \left((\kappa_{\bar{\mathcal{X}}/\mathbb{C}P^{1}}^{\mathcal{T}} \cdot e^{\bar{\mathcal{L}}_{\tau}}) \cdot (e^{\mathcal{L}_{\tau}}) - (\kappa_{X}^{\mathcal{T}} \cdot e^{\mathcal{L}_{\tau}})(e^{\bar{\mathcal{L}}_{\tau}}) \right)}{(\operatorname{Ev}_{\xi}(e^{\mathcal{L}_{\tau}}))^{2}} \in \mathbb{R}.$$

When \mathcal{X} is smooth, this is equivalent to:

$$-2\frac{\int_{\bar{\mathcal{X}}}(\operatorname{Ric}_{\tilde{\Omega}}^{\operatorname{rel}}+\bar{\Box}_{\tilde{\Omega}}\tilde{\Theta}_{\xi})e^{\Omega+\Theta_{\xi}}\int_{\mathcal{X}}e^{\Omega+\Theta_{\xi}}-\int_{\mathcal{X}}(\operatorname{Ric}_{\omega}+\bar{\Box}\theta_{\xi})e^{\omega+\theta_{\xi}}\int_{\bar{\mathcal{X}}}e^{\Omega+\Theta_{\xi}}}{(\int_{\mathcal{X}}e^{\omega+\theta_{\xi}})^{2}},$$

where $\operatorname{Ric}_{\tilde{\Omega}}^{\operatorname{rel}} = \operatorname{Ric}(\tilde{\Omega}) - \pi^* \operatorname{Ric}(\omega_{\mathbb{C}P^1})$ for some metrics $\tilde{\Omega}, \omega_{\mathbb{C}P^1}$ on $\bar{\mathcal{X}}, \mathbb{C}P^1$. We can similarly define

 $\operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X},\mathcal{L}) := \operatorname{Fut}_{\xi}^{0}(\mathcal{X},\mathcal{L}) + \lambda(\operatorname{equiv. intersection on } \overline{\mathcal{L}}).$

μ K-semistability

A T-polarized manifold is μ_{ξ}^{λ} K-semistable if $\operatorname{Fut}_{\xi}^{\lambda}$ is non-negative for any test configuration.

Proposition (I. '20)

- For smooth X, the μ_{ξ}^{λ} K-semistability of (X, L) with respect to general test configurations is equivalent to the μ_{ξ}^{λ} K-semistability with respect to smooth test configurations (test configurations with smooth total space \mathcal{X}).
- 2 For smooth test configuration, $\operatorname{Fut}_{\xi}^{\lambda}$ is equivalent to one of Lahdili's weighted Futaki invariants.

Cororally (Essentially, Lahdili's result on weighted cscK '19)

If a smooth T-polarized manifold (X, L) admits a μ_{ξ}^{λ} -cscK metric in $c_1(L)$, then (X, L) is μ_{ξ}^{λ} K-semistable (with respect to general test configurations).

Generalization of CM line bundle

Theorem (I. '20)

For $\lambda \in \mathbb{R}$ and $\xi \in \mathfrak{t}$, there exists a characteristic class $\mathcal{D}_{\xi} \mu^{\lambda}$ assigning $\mathcal{D}_{\xi} \mu^{\lambda}(\mathcal{X}/B, \mathcal{L}) \in H^{2}_{G}(B, \mathbb{R})$ for each $\mathcal{T} \times G$ -equivariant family of polarized schemes $(\mathcal{X}/B, \mathcal{L})$ over smooth *G*-variety *B* which enjoys the following:

1 Naturality: $f^* \mathcal{D}_{\xi} \mu^{\lambda}(\mathcal{X}/B, \mathcal{L}) = \mathcal{D}_{\xi} \mu^{\lambda}(\mathcal{X}'/B', \mathcal{L}')$ for

- 2 μ -Futaki invariant: $\mathcal{D}_{\xi} \mu^{\lambda}(\mathcal{X}/\mathbb{C}, \mathcal{L}) = \operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X}, \mathcal{L}).\eta^{\vee}$ for any T-equivariant test configuration $(\mathcal{X}, \mathcal{L})$
- **3** CM line bundle: $\mathcal{D}_0 \mu_G^{\lambda}(\mathcal{X}/B, \mathcal{L}) = -\frac{4\pi}{(\mathcal{L}^{\cdot n})} c_1^G(CM(\mathcal{X}/B, \mathcal{L}))$

Application

Combining with Chen–Sun's deep analysis on Kähler–Ricci flow and the analytic openness of μ K-semistable locus established in the previous work, we can show that μ K-semistable locus for a polarized family is Zariski open on the base. Then we get the following result on algebraicity.

Cororally

The moduli space of Fano manifolds with Kähler–Ricci solitons is an algebraic space.

I also have a plan for compactifying the moduli space. (in progress)

Idea of construction – the case $\lambda = 0$ (to economize space)

Recall the following expression of μ^{λ} -entropy:

$$\mu^0 = -\frac{\int_X (\operatorname{Ric} + \bar{\Box} \mu) e^{\omega + \mu}}{\int_X e^{\omega + \mu}}$$

Both $\int_X (\operatorname{Ric} + \overline{\Box} \mu) e^{\omega + \mu}$ and $\int_X e^{\omega + \mu}$ are the integration of equivariant forms. In other words, we can regard these as the pushforward of the equivariant cohomology classes

$$\mathcal{K}_X^T \frown e^{\mathcal{L}_T}, e^{\mathcal{L}_T} \in \hat{H}_T(X, \mathbb{R}) := \prod_{k=0}^\infty H_T^{2k}(X, \mathbb{R})$$

along $p: X \to \mathrm{pt}$, which are elements of $\hat{H}_T(\mathrm{pt}, \mathbb{R}) \cong \prod_{k=0}^{\infty} S^k \mathfrak{t}^{\vee}$ and are the Taylor expansion (at $0 \in \mathfrak{t}$) of the functionals $\int_X (\mathrm{Ric} + \overline{\Box}\mu) e^{\omega + \mu}$, $\int_X e^{\omega + \mu}$ on \mathfrak{t} . For a *G*-equivariant polarized family $(\mathcal{X}/B, \mathcal{L})$, we put

$$\boldsymbol{\mu}^{\boldsymbol{0}}_{\mathcal{X}/B,\mathcal{L}} := 2\pi \frac{\pi_*(\kappa_{\mathcal{X}/B}.e^{\mathcal{L}})}{\pi_*(e^{\mathcal{L}})} \in \hat{H}_{\boldsymbol{G}}(B,\mathbb{R}).$$

Idea of construction – Sketch of equivariant calculus

1 (Differential at ξ along G) For $\xi \in \mathfrak{t}$, we introduce a differential operation

$$\mathcal{D}_{\xi}: H^{\omega}_{T \times G}(B, \mathbb{R}) \to H^{2}_{G}(B, \mathbb{R})$$

for some subring $H^{\omega}_{T\times G}(B,\mathbb{R})$ of $\hat{H}_{T\times G}(B,\mathbb{R})$ where T acts on B trivially. When $G = \{1\}$ and B = pt, $H^{\omega}_{T\times G}(B,\mathbb{R})$ is identified with the ring of real analytic functions on t.

- 2 (Convergence result) For *T* × *G*-equivariant polarized family (*X*/*B*, *L*), we can show that *μ*^λ_{*X*/*B*,*L*} is in *H*^ω_{*T*×*G*}(*B*, ℝ), using Cartan model of equivariant deRham current homology. The element *D*_ξ*μ*^λ_{*X*/*B*,*L*} ∈ *H*²_{*G*}(*B*, ℝ) is what we want!
- 3 (Equivariant Grothendieck-Riemann-Roch) Naturality and the identification with CM line bundle comes from the equivariant Grothendieck-Riemann-Roch theorem by Edidin-Graham.
- Localization formula) Using the equivariant localization formula, we can see D_ξμ^λ_{X/C,L} = Fut^λ_ξ(X, L).η[∨].

Idea of construction – Sketch of equivariant calculus

1 (Differential at ξ along G) For $\xi \in \mathfrak{t}$, we introduce a differential operation

$$\mathcal{D}_{\xi}: H^{\omega}_{T \times G}(B, \mathbb{R}) \to H^{2}_{G}(B, \mathbb{R})$$

for some subring $H^{\omega}_{T\times G}(B,\mathbb{R})$ of $\hat{H}_{T\times G}(B,\mathbb{R})$ where T acts on B trivially. When $G = \{1\}$ and B = pt, $H^{\omega}_{T\times G}(B,\mathbb{R})$ is identified with the ring of real analytic functions on t.

- 2 (Convergence result) For *T* × *G*-equivariant polarized family (*X*/*B*, *L*), we can show that *μ*^λ_{*X*/*B*,*L*} is in *H*^ω_{*T*×*G*}(*B*, ℝ), using Cartan model of equivariant deRham current homology. The element *D*_ξ*μ*^λ_{*X*/*B*,*L*} ∈ *H*²_{*G*}(*B*, ℝ) is what we want!
- (Equivariant Grothendieck-Riemann-Roch) Naturality and the identification with CM line bundle comes from the equivariant Grothendieck-Riemann-Roch theorem by Edidin-Graham.

(Localization formula) Using the equivariant localization formula, we can see $\mathcal{D}_{\xi} \boldsymbol{\mu}_{\mathcal{X}/\mathbb{C},\mathcal{L}}^{\lambda} = \operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X},\mathcal{L}).\eta^{\vee}$. Thank you for listening!

Latest news: Han-Li's result when $L = -K_X$

- Berman–Witt-Nyström proved that $(X, -K_X)$ is $\mu^{2\pi}$ K-polystable with respect to special degenerations if X admits a KRs (= $\mu^{2\pi}$ -cscK metric).
- Recently, J. Han and C. Li introduced *G*-uniform g-Ding stability ${}^{\prime}D_{g}^{NA}(\phi) \geq \gamma \cdot J_{g}^{NA}(\phi)'$ and proved the equivalence of *G*-uniform g-Ding stability of $(X, -K_X)$ for 'maximal' *G* is equivalent to the existence of KR g-soliton.
- They also show that the (*G*-uniform) *g*-Ding stability of $(X, -K_X)$ is equivalent to that with respect to special degenerations, using MMP with scaling. The proof works also for \boldsymbol{M}_g^{NA} . (I guess it works also for Fut $_{\xi}^{\lambda}$.)
- g-Mabuchi stability for $g = e^{\langle \xi, \rangle}$ must be equivalent to μ_{ξ}^{λ} K-stability. (λ is determined from ξ .)
- Thus, \exists KRs on $X \iff (X, -K_X)$ is $\mu^{2\pi}$ K-polystable.