A sketch of the future of $\mu\text{-cscK}$ metrics and $\mu\text{K-stability}$

Eiji INOUE (RIKEN iTHEMS, Japan)

9, October, 2022, The 28th Symposium on Complex Geometry

Contents

- Motivation
- **2** Theory on "stability": μ_{ξ}^{λ} -cscK metric and μ_{ξ}^{λ} K-stability
- **3** Theory on "instability": (toric) NA μ -entropy and Perelman entropy

1. Motivation

A sketch of the future of μ -cscK metrics and μ K-stability (Eiji Inoue)

Dream

Want to construct a moduli theory of polarized varieties, generalizing that of Fano varieties, which encloses "unstable" objects.

What is the moduli theory of Fano varieties?, unstable case

What can we say about "unstable (= general)" Fano manifolds?

Let X be a \mathbb{Q} -Fano variety. In some way, we want to assign another "semistable" \mathbb{Q} -Fano variety X_0 for which we have a nice moduli theory.

What is the moduli theory of Fano varieties?, unstable case

What can we say about "unstable (= general)" Fano manifolds?

Let X be a \mathbb{Q} -Fano variety. In some way, we want to assign another "semistable" \mathbb{Q} -Fano variety X_0 for which we have a nice moduli theory.

In this talk, a "degeneration" $(X, L) \stackrel{\mathcal{F}}{\rightsquigarrow} (X_0, L_0)$ of (X, L) means a f.g. filtration $\mathcal{F} = \{\mathcal{F}^{\lambda}\}_{\lambda \in \mathbb{R}}$ on the graded ring $R(X, L) = \bigoplus_m H^0(X, L^{\otimes m})$, which is an "irrational version" of test configuration (see [BHJ] and [CSW]). A prime divisor $E \subset Y \to X$ (over X) gives a (not necessarily f.g.) filtration \mathcal{F}_E .

For a "special degeneration" $X \stackrel{\mathcal{F}_E}{\leadsto} X_0$ of a \mathbb{Q} -Fano variety $(X, -K_X)$, we can define the *H*-entropy $\check{H}_{NA}(\mathcal{F}) \in \mathbb{R}$ following [DS] and [HL]:

$$\check{\mathcal{H}}_{\mathrm{NA}}(\mathcal{F}) := -2\pi((1+\mathrm{ord}_{\mathcal{E}}(\mathcal{K}_Y/\mathcal{K}_X)) + \log\int_{\mathbb{R}} e^{-t}\mathrm{DH}_{v_{\mathcal{E}}}).$$

What is the moduli theory of Fano varieties?, unstable case

Theorem (CSW, DS, HL, BLXZ)

Let X be a Q-Fano variety. Then there exists a unique "special degeneration" $X \stackrel{\mathcal{F}_E}{\leadsto} X_0$ which maximizes \check{H}_{NA} . Moreover,

- the central fibre X_0 is a Q-Fano variety with a vector field $\xi_{\mathcal{F}}$.
- X_0 admits a unique $\xi_{\mathcal{F}}$ -equivariant test configuration whose central fibre is a \mathbb{Q} -Fano variety Z with Kähler–Ricci soliton w.r.t $\xi_{\mathcal{F}}$.
- When X is smooth, Z is the Gromov-Hausdorff limit of the normalized Kähler-Ricci flow.

What is the moduli theory of Fano varieties?, unstable case

Theorem (CSW, DS, HL, BLXZ)

Let X be a Q-Fano variety. Then there exists a unique "special degeneration" $X \stackrel{\mathcal{F}_E}{\leadsto} X_0$ which maximizes $\check{H}_{\rm NA}$. Moreover,

- the central fibre X_0 is a Q-Fano variety with a vector field $\xi_{\mathcal{F}}$.
- X_0 admits a unique $\xi_{\mathcal{F}}$ -equivariant test configuration whose central fibre is a \mathbb{Q} -Fano variety Z with Kähler–Ricci soliton w.r.t $\xi_{\mathcal{F}}$.
- When X is smooth, Z is the Gromov-Hausdorff limit of the normalized Kähler-Ricci flow.

Remark: later we introduce another invariant $\check{\mu}^{\lambda}_{\mathrm{NA}}$

• $\check{H}_{\rm NA}$... Ding type invariant ... makes sense for $L = -K_X$

• $\check{\mu}_{NA}^{\lambda}$... DF/Mabuchi type invariant ... makes sense in general The same result is true also for $\check{\mu}_{NA}^{2\pi}$ instead of \check{H}_{NA} .

What is the moduli theory of Fano varieties?, stable case

Kähler-Ricci soliton:

$$\operatorname{Ric}(\omega) - \mathscr{L}_{J\xi}\omega = 2\pi\omega.$$

Theorem (i + thesis)

There exists an algebraic moduli space of Fano manifolds with Kähler–Ricci solitons.

What is the moduli theory of Fano varieties?, stable case

Kähler-Ricci soliton:

$$\operatorname{Ric}(\omega) - \mathscr{L}_{J\xi}\omega = 2\pi\omega.$$

Theorem (i + thesis)

There exists an algebraic moduli space of Fano manifolds with Kähler–Ricci solitons.

Conjecture (Compact moduli space of KRs Q-Fano varieties)

There exists a projective moduli space of \mathbb{Q} -Fano varieties with Kähler–Ricci solitons.

What is "stable", then?

"Stability" in this line is

- modified Futaki invariant [BW] ... is defined for special test configuration
- $e^{\langle -,\xi\rangle}$ -Ding invariant [HL] ... is a Ding type invariant defined for general test configuration
- $\mu_{\xi}^{2\pi}$ -Futaki invariant [iii] ... is a DF/Mabuchi type invariant defined for general test configuration

These are a posteriori equivalent.

Dream, again

Want to construct a moduli theory of polarized varieties, generalizing that of Fano varieties.

Want to extend the theory of Kähler–Ricci soliton / modified K-stability to general polarized variety.

How?

K-stability is introduced based on moment map picture of cscK metric. Observe the moment map picture of Kähler–Ricci soliton.

Dream, again

Want to construct a moduli theory of polarized varieties, generalizing that of Fano varieties.

Want to extend the theory of Kähler–Ricci soliton / modified K-stability to general polarized variety.

How?

K-stability is introduced based on moment map picture of cscK metric. Observe the moment map picture of Kähler–Ricci soliton.

There appears a new degree of freedom $\lambda \in \mathbb{R}$, which enriches the theory.

Tasks

Let's establish:

- Differential geometric theory on "stability": μ_{ξ}^{λ} -cscK metric
- Differential geometric theory on "instability": Perelman entropy
- Algebro-geometric theory on "stability": $\mu_{\varepsilon}^{\lambda}$ K-stability
- Algebro-geometric theory on "instability": μ^{λ} K-optimal degeneration

Tasks

Let's establish:

- Differential geometric theory on "stability": μ_{ξ}^{λ} -cscK metric
- Differential geometric theory on "instability": Perelman entropy
- Algebro-geometric theory on "stability": μ_{ξ}^{λ} K-stability
- Algebro-geometric theory on "instability": μ^{λ} K-optimal degeneration

We find two "phases" of the theory:

- Good behavior when $\lambda \leq 0$
- Phase transition when $\lambda \gg 0$

2. Theory on "stability": μ_{ξ}^{λ} -cscK metric and μ_{ξ}^{λ} K-stability

$$\mu_{\xi}^{\lambda}$$
-cscK metric

The moment map picture on Kähler–Ricci soliton observed in [i] yields the following notion.

Definition

For $\lambda \in \mathbb{R}$, a Kähler metric $\omega \in L$ is called a μ^{λ} -cscK metric w.r.t ξ_f if there exists $f \in C^{\infty}(X)$ such that $\mathscr{L}_{\xi_f}J = 0$ for the Hamiltonian vector field ξ_f (i.e. $i_{\xi_f}\omega + df = 0$) and

$$s^{\lambda}_{f}(\omega) := (s(\omega) + \Box f) + (\Box f + |\partial^{\sharp}f|^{2}) - \lambda f$$

is constant.

Y. Nakagawa (2011) independently introduced the equation for

$$\lambda = -2\pi (K_X \cdot L^{\cdot n-1})/(L^{\cdot n})$$

(in view of K-energy on KRs) and studied Calabi ansatz example.

L Theory on "stability": $\mu_{\varepsilon}^{\lambda}$ -cscK metric and $\mu_{\varepsilon}^{\lambda}$ K-stability

Basic property

- A Kähler–Ricci soliton $\operatorname{Ric}(\omega) \mathscr{L}_{J\xi_f}\omega = 2\pi\beta\omega$ is a $\mu_f^{2\pi\beta}$ -cscK metric, whose Kähler class L must satisfy $\beta L = -K_X$.
- Conversely, a $\mu^{2\pi\beta}$ -cscK metric in the Kähler class L satisfying $\beta L = -K_X$ is a Kähler–Ricci soliton.
- A cscK metric s(ω) = const. in any Kähler class L is a μ^λ-cscK metric with f = 0 and every λ ∈ ℝ.

Trivial construction:

- $\omega \in L$ is a μ^{λ} -cscK metric iff $c\omega \in cL$ is a $\mu^{\lambda/c}$ -cscK metric (c > 0).
- If (X, ω_X) and (Y, ω_Y) are μ^{λ} -cscK manifolds, then $(X \times Y, \omega_X \times \omega_Y)$ is a μ^{λ} -cscK manifold.

Perturbation: the invertibility of $\Delta - \nabla f - \lambda : C^{\infty}_{\mathcal{E}_{f}}(X) \to C^{\infty}_{\mathcal{E}_{f}}(X)$

- If ω ∈ L is a μ^λ-cscK metric for λ ≤ 0, then there exists a μ^λ-cscK metric ω' ∈ L' in a small perturbation L' of L.
- If ω ∈ L is a μ^λ-cscK metric for λ ≤ 0, then there exists a μ^λ-cscK metric ω̃ in L for a small perturbation λ̃ of λ.

L Theory on "stability": μ_c^{λ} -cscK metric and μ_c^{λ} K-stability

DG theory on "stability"

For a given Kähler class L, we are interested in the existence and the uniqueness modulo Aut(X, L) of μ^{λ} -cscK metrics.

Proposition (Reductiveness, ii)

If a Kähler class $L = c_1(\mathfrak{L})$ admits a μ^{λ} -cscK metric ω w.r.t. ξ , then $\operatorname{Aut}^0_{\xi}(X, \mathfrak{L})$ is reductive with a maximal compact subgroup $\operatorname{Isom}^0_{\xi}(X, \omega)$. If $\lambda \leq 0$, $\operatorname{Aut}^0_{\xi}(X, \mathfrak{L})$ is a maximal reductive subgroup in $\operatorname{Aut}^0(X, \mathfrak{L})$.

Theorem (Uniqueness of μ_{ξ}^{λ} -cscK metric, Lahdili2)

Given a Kähler class L, $\lambda \in \mathbb{R}$ and ξ , μ^{λ} -cscK metrics w.r.t. ξ in L are unique modulo $\operatorname{Aut}_{\xi}(X, L)$.

L Theory on "stability": μ_c^{λ} -cscK metric and μ_c^{λ} K-stability

DG theory on "stability"

For a given Kähler class L, we are interested in the existence and the uniqueness modulo Aut(X, L) of μ^{λ} -cscK metrics.

Proposition (Reductiveness, ii)

If a Kähler class $L = c_1(\mathfrak{L})$ admits a μ^{λ} -cscK metric ω w.r.t. ξ , then $\operatorname{Aut}^0_{\xi}(X, \mathfrak{L})$ is reductive with a maximal compact subgroup $\operatorname{Isom}^0_{\xi}(X, \omega)$. If $\lambda \leq 0$, $\operatorname{Aut}^0_{\xi}(X, \mathfrak{L})$ is a maximal reductive subgroup in $\operatorname{Aut}^0(X, \mathfrak{L})$.

Theorem (Uniqueness of $\mu_{\varepsilon}^{\lambda}$ -cscK metric, Lahdili2)

Given a Kähler class L, $\lambda \in \mathbb{R}$ and ξ , μ^{λ} -cscK metrics w.r.t. ξ in L are unique modulo $\operatorname{Aut}_{\xi}(X, L)$.

Conjecture (Uniqueness of phase)

Given a Kähler class L and $\lambda \leq 0$, μ^{λ} -cscK metrics in L are unique modulo Aut(X, L).

L Theory on "stability": $\mu_{\varepsilon}^{\lambda}$ -cscK metric and $\mu_{\varepsilon}^{\lambda}$ K-stability

Moving $\lambda \in \mathbb{R}$: extremal limit and phase transition

Proposition (Extremal limit, ii)

Suppose there exists an extremal metric $\omega_{\text{ext}} \in L$, then there exists a family of μ^{λ} -cscK metrics $\{\omega_{\lambda}\}$ in L for $\lambda \ll 0$ such that ω_{λ} converges smoothly to ω_{ext} as $\lambda \to -\infty$.

Proposition (Phase transition, ii)

Consider $L = c_1(\mathcal{O}(1))$ on $\mathbb{C}P^1$.

For $\lambda \leq 2\pi$, every μ^{λ} -cscK metric has trivial $\xi = 0$.

For $\lambda > 2\pi$, there exists a μ^{λ} -cscK metric w.r.t. non-trivial $\xi \neq 0$.

The latter metric is not the Fubini–Study metric and the isometry group reduces to $U(1) \subset SU(1)$.

Corollary (Non-uniqueness result)

Given a Kähler class *L* and $\lambda \gg 0$, μ^{λ} -cscK metrics in *L* are NOT unique modulo Aut(*X*, *L*), in general.

L Theory on "stability": μ_c^{λ} -cscK metric and μ_c^{λ} K-stability

Examples by Calabi ansatz

Let Σ be a proper curve and \mathcal{L} be a line bundle of degree $\ell \geq 1$. Consider the ruled surface $X := \mathbb{P}_{\Sigma}(\mathcal{L} \oplus \mathcal{O})$. In $H^{2}(X, \mathbb{R}) = [H^{*}(\Sigma)[B]/(B^{2} - \ell B.F)]^{(2)} = \mathbb{R}B \oplus \mathbb{R}F$, the Kähler cone is given by

$$\mathcal{C}_X = \{xB + yF \mid x > 0, y > -\frac{\ell}{2}x\}$$

Proposition (Nakagawa, ii)

Every Kähler class in the subcone $C'_X = \{xB + yF \mid x, y > 0\}$ admits a μ^{λ} -cscK metric w.r.t. non-trivial $\xi \neq 0$ for every $\lambda \geq 0$.

Remark: There exists $L \in C'_X$ with no extremal metric.

Question

- What can we say about $L \in \mathcal{C}_X \setminus \mathcal{C}'_X$?
- Can we compute $\inf \{\lambda \in \mathbb{R} \mid \exists \mu^{\lambda'} \text{-cscK in } L \text{ for every } \lambda' > \lambda \}$?

L Theory on "stability": μ_c^{λ} -cscK metric and μ_c^{λ} K-stability

Connecting KRs and extremal metric

Proposition (Connecting KRs and extremal metric, ii)

In the Kähler class $-K_X$ of $X = \mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$, there exists a smooth family $\{\omega_\lambda\}_{\lambda \in [-\infty, 2\pi]}$ of μ^{λ} -cscK metrics, which gives an extremal metric at $\lambda = -\infty$ and a KRs at $\lambda = 2\pi$.

Question

What about the case $\lambda > 2\pi$? Observe phase transition in this example.

- Theory on "stability": μ_{ϵ}^{λ} -cscK metric and μ_{ϵ}^{λ} K-stability

$\mu_{\varepsilon}^{\lambda}$ K-stability (in toric case, for brevity)

Since
$$\mathscr{L}_{\xi_f}g = 0$$
, $T_{cpt} := \overline{\exp \mathbb{R}\xi_f} \subset \operatorname{Isom}(X,g)$ is a closed torus.

Keep this in mind, we consider an algebraic torus action T on (X, L). For $\lambda \in \mathbb{R}, \xi \in \mathfrak{t} := \operatorname{Hom}(T, \mathbb{C}^{\times}) \otimes \mathbb{R}$ and a T-equivariant test configuration $(\mathcal{X}, \mathcal{L})$, we can define the $\mu_{\mathcal{E}}^{\lambda}$ -Futaki invariant $\operatorname{Fut}_{\mathcal{E}}^{\lambda}(\mathcal{X}, \mathcal{L})$.

When $(X, L) \bigcirc T$ is toric, a convex function q on the moment polytope $P := -\mu(X) \subset \mathfrak{t}^{\vee}$ encodes a *T*-equivariant test configuration $(\mathcal{X}, \mathcal{L})$.

μ_{ξ}^{0} -Futaki invariant for toric test configuration

$$\frac{1}{2\pi} \operatorname{Fut}_{\xi}^{0}(q) = \frac{\int_{\partial P} q e^{-\langle x, \xi \rangle} d\sigma}{\int_{P} e^{-\langle x, \xi \rangle} d\mu} - \frac{\int_{\partial P} e^{-\langle x, \xi \rangle} d\sigma}{\int_{P} e^{-\langle x, \xi \rangle} d\mu} \frac{\int_{P} q e^{-\langle x, \xi \rangle} d\mu}{\int_{P} e^{-\langle x, \xi \rangle} d\mu}$$
$$= \frac{d}{dt} \Big|_{t=0} \frac{\int_{\partial P} e^{\langle x, -\xi \rangle + tq} d\sigma}{\int_{P} e^{\langle x, -\xi \rangle + tq} d\mu}$$

 \Box Theory on "stability": μ_c^{λ} -cscK metric and μ_c^{λ} K-stability

Conjectures based on moment map picture

Conjecture (Existence of $\mu_{\varepsilon}^{\lambda}$ -cscK metric)

A Kähler class L admits a μ^{λ} -cscK metric w.r.t. ξ if and only if $\operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X}, \mathcal{L}) \geq 0$ (μ_{ξ}^{λ} K-semistable) for every ξ -equivariant (\mathcal{X}, \mathcal{L}) and $\operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X}, \mathcal{L}) = 0$ only for product configurations (μ_{ξ}^{λ} K-polystable).

Theorem (Lahdili1, iii, AJL)

 \Rightarrow is true (for smooth test configuration).

Conjecture (Moduli space of $\mu_{\mathcal{E}}^{\lambda}$ K-semistable polarized varieties)

For each $\lambda, \xi \in \mathfrak{t}$, there exists an algebraic moduli space of polarized varieties with μ_{ξ}^{λ} -cscK metrics, whose moduli stack consists of T-equivariant family of polarized varieties which are $\mu_{\varepsilon}^{\lambda}$ K-semistable.

3. Theory on "instability": NA μ -entropy and Perelman entropy

AG theory on 'instability': (toric) NA μ -entropy

Recall

$$\frac{1}{2\pi} \operatorname{Fut}_{\xi}^{0}(q) = \frac{d}{dt} \Big|_{t=0} \frac{\int_{\partial P} e^{\langle x, -\xi \rangle + tq} d\sigma}{\int_{P} e^{\langle x, -\xi \rangle + tq} d\mu}.$$

Definition (Non-archimedean μ -entropy)

$$\check{\boldsymbol{\mu}}_{\mathrm{NA}}^{\lambda}(\boldsymbol{q}) := -2\pi \frac{\int_{\partial P} e^{\boldsymbol{q}} d\sigma}{\int_{P} e^{\boldsymbol{q}} d\mu} + \lambda \Big(\boldsymbol{n} + \frac{\int_{P} q e^{\boldsymbol{q}} d\mu}{\int_{P} e^{\boldsymbol{q}} d\mu} - \log \int_{P} e^{\boldsymbol{q}} d\mu \Big)$$

We can define $\check{\mu}_{\mathrm{NA}}^{\lambda}(\mathcal{F})$ also for (not necessarily *T*-equiv.) degeneration $(X, L) \stackrel{\mathcal{F}}{\rightsquigarrow} (X_0, L_0)$ of general (X, L), but I don't explain it here.

NA μ -entropy and μ K-stability

Theorem (Entropy maximization is optimal, v)

Suppose a "degeneration" $(X, L) \stackrel{\mathcal{F}}{\leadsto} (X_0, L_0)$ maximizes $\check{\mu}_{NA}^{\lambda}$, then (X_0, L_0) is $\mu^{\lambda} K$ -semistable w.r.t. $\xi_{\mathcal{F}}$.

NA μ -entropy and μ K-stability

Theorem (Entropy maximization is optimal, v)

Suppose a "degeneration" $(X, L) \stackrel{\mathcal{F}}{\leadsto} (X_0, L_0)$ maximizes $\check{\mu}_{NA}^{\lambda}$, then (X_0, L_0) is $\mu^{\lambda} K$ -semistable w.r.t. $\xi_{\mathcal{F}}$.

Conjecture (Optimal destabilization)

If X has only klt singularities, there exists a unique "degeneration" $(X, L) \stackrel{\mathcal{F}}{\leadsto} (X_0, L_0)$ which maximizes $\check{\mu}^{\lambda}_{\mathrm{NA}}$.

Recall:

Theorem (CSW, DS, HL, BLXZ, v)

Let X be a Q-Fano variety. Then there exists a unique "special degeneration" $X \stackrel{\mathcal{F}_E}{\leadsto} X_0$ which maximizes $\check{\mu}_{\mathrm{NA}}^{2\pi}$, which is related to the Gromov–Hausdorff limit of the normalized Kähler–Ricci flow.

Restriction to affine functions (product tcs / vectors)

We can also write $\check{\mu}^{\lambda}_{\mathrm{NA}}(\langle\cdot,\zeta
angle)$ as follows:

$$-\frac{\int_X s_{-\mu_{\zeta}}^{\lambda}(\omega)e^{-\mu_{\zeta}}\omega^n}{\int_X e^{-\mu_{\zeta}}\omega^n} + \lambda(n - \log \int_X e^{-\mu_{\zeta}}\omega^n/n!).$$

If $L = -K_X$ (Fano) and $\lambda = 2\pi$, the first term is n: Tian–Zhu functional.

Proposition (Volume minimization, ii)

If the exists a μ^{λ} -cscK metric w.r.t. $\xi \in \mathfrak{t}$, then ξ must be a critical point (actually, a maximizer) of the functional $\check{\mu}_{NA}^{\lambda}(\langle \cdot, -\zeta \rangle)$ on \mathfrak{t} .

Restriction to affine functions (product tcs / vectors)

We can also write $\check{{m \mu}}^\lambda_{\rm NA}(\langle\cdot,\zeta\rangle)$ as follows:

$$-\frac{\int_X s_{-\mu_{\zeta}}^{\lambda}(\omega)e^{-\mu_{\zeta}}\omega^n}{\int_X e^{-\mu_{\zeta}}\omega^n} + \lambda(n - \log \int_X e^{-\mu_{\zeta}}\omega^n/n!).$$

If $L = -K_X$ (Fano) and $\lambda = 2\pi$, the first term is n: Tian–Zhu functional.

Proposition (Volume minimization, ii)

If the exists a μ^{λ} -cscK metric w.r.t. $\xi \in \mathfrak{t}$, then ξ must be a critical point (actually, a maximizer) of the functional $\check{\mu}_{NA}^{\lambda}(\langle \cdot, -\zeta \rangle)$ on \mathfrak{t} .

Recall:

Conjecture (Uniqueness of phase)

Given a Kähler class L and $\lambda \leq 0$, μ^{λ} -cscK metrics in L are unique modulo Aut(X, L).

Since $\operatorname{Isom}_{\xi}(X,\omega)$ is maximally compact for $\lambda \leq 0$, it suffices to show the uniqueness of the critical points of $\check{\mu}_{\operatorname{NA}}^{\lambda}(\langle \cdot, -\zeta \rangle)$.

Phase transition, revival

In other words, the conjecture is equivalent to the following:

Conjecture (Uniqueness of phase, reduced)

Given a Kähler class L, $\lambda \leq 0$ and a maximal torus $T \subset Aut(X, L)$, the critical points of $\check{\mu}_{NA}^{\lambda}(\langle \cdot, -\zeta \rangle)$ are unique.

A sophisticated version of Laplace principle shows the following:

Proposition (Phase transition, ii)

The functional $\check{\mu}_{\rm NA}^{\lambda}(\langle\cdot,-\zeta\rangle)$ is proper and bounded from above, hence admits a critical point. Moreover,

 $\sup\{\lambda \in \mathbb{R} \mid \check{\boldsymbol{\mu}}_{\mathrm{NA}}^{\lambda'}(\langle \cdot, -\zeta \rangle) \text{ admits unique critical point for every } \lambda' < \lambda\}$

is never $\pm\infty$. (The result $\neq +\infty$ was unexpected.)

Now we have shown the conjecture is true for non-positive $\lambda' < \sup\{\lambda \ | \ ... \}.$

A sketch of the future of μ -cscK metrics and μ K-stability (Eiji Inoue)

L Theory on "instability": NA μ -entropy and Perelman entropy

DG theory on 'instability': Perelman's entropy

For $\omega \in \mathcal{H}(X,L)$ and $f \in C^{\infty}(X)$, we put

$$egin{aligned} \mathcal{W}^{\lambda}(\omega,f) &:= -rac{\int_X s_f^{\lambda}(\omega) e^f \omega^n}{\int_X e^f \omega^n} + \lambda(n - \log \int_X e^f \omega^n/n!), \ \mu_{\operatorname{Per}}^{\lambda}(\omega) &:= \sup_f \mathcal{W}^{\lambda}(\omega,f). \end{aligned}$$

Theorem (Donaldson type inequality, iv)

$$\sup_{\mathcal{F}}\check{\boldsymbol{\mu}}_{\mathrm{NA}}^{\lambda}(\mathcal{F})\leq \inf_{\omega}\boldsymbol{\mu}_{\mathrm{Per}}^{\lambda}(\omega).$$

Conjecture (Minimax conjecture)

$$\sup_{\mathcal{F}}\check{\boldsymbol{\mu}}_{\mathrm{NA}}^{\lambda}(\mathcal{F}) = \inf_{\omega} \boldsymbol{\mu}_{\mathrm{Per}}^{\lambda}(\omega).$$

Perelman's μ^{λ} -entropy and μ^{λ} -cscK metrics

Theorem (Perelman's μ^{λ} -entropy and μ^{λ} -cscK metrics, iv)

- Critical points of W^λ : H(X, L) × C[∞](X) → ℝ are precisely the pairs (ω, f) of μ^λ-cscK metric ω w.r.t. ξ_f and the potential f.
- For λ ≤ 0, μ^λ_{Per}: H(X, L) → ℝ is smooth and its critical points are precisely μ^λ-cscK metrics ω w.r.t. some ξ.
- For $\lambda \leq 0$, any μ^{λ} -cscK metric attains the minimum of $\mu_{\text{Per}}^{\lambda}$.
- For $\lambda \leq 0$, the vector ξ associated to a μ^{λ} -cscK metric gives a filtration \mathcal{F}_{ξ} which attains the maximum of $\check{\mu}_{NA}^{\lambda}$ and we have the equality:

$$\sup_{\mathcal{F}}\check{\mu}^{\lambda}_{\mathrm{NA}}(\mathcal{F}) = \inf_{\omega} \mu^{\lambda}_{\mathrm{Per}}(\omega).$$

Summary

Theorem (μ^{λ} -cscK metric is characterized by Perelman μ -entropy)

For $\lambda \leq 0$, TFAE:

- $\omega \in \mathcal{H}(X, L)$ is a μ^{λ} -cscK metric.
- ω minimizes $\mu_{\text{Per}}^{\lambda} : \mathcal{H}(X, L) \to \mathbb{R}$.

We put $\mathcal{H}_{\mathrm{NA}}^{\mathbb{R}}(X, L) := \{ \text{ f.g. filtrations } \mathcal{F} \} / \sim.$

Theorem (Entropy maximization is optimal)

B implies A:

- A: The central fibre of $\mathcal{F} \in \mathcal{H}_{NA}^{\mathbb{R}}(X, L)$ is μ^{λ} K-semistable w.r.t. $\xi_{\mathcal{F}}$.
- B: \mathcal{F} maximizes $\check{\mu}_{\mathrm{NA}}^{\lambda} : \mathcal{H}_{\mathrm{NA}}^{\mathbb{R}}(X, L) \to \mathbb{R}$.

Conjecture

For $\lambda \leq 0$, A implies B.

Conjectures, I: YTD conjecture and moduli space

Conjecture (Compact moduli space of KRs Q-Fano varieties)

There exists a projective moduli space of \mathbb{Q} -Fano varieties with Kähler–Ricci solitons.

Conjecture (Existence of $\mu_{\varepsilon}^{\lambda}$ -cscK metric)

A Kähler class L admits a μ^{λ} -cscK metric w.r.t. ξ if and only if $\operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X}, \mathcal{L}) \geq 0$ (μ_{ξ}^{λ} K-semistable) for every ξ -equivariant (\mathcal{X}, \mathcal{L}) and $\operatorname{Fut}_{\xi}^{\lambda}(\mathcal{X}, \mathcal{L}) = 0$ only for product configurations (μ_{ξ}^{λ} K-polystable).

Conjecture (Moduli space of $\mu_{\varepsilon}^{\lambda}$ K-semistable polarized varieties)

For each $\lambda, \xi \in \mathfrak{t}$, there exists an algebraic moduli space of polarized varieties with μ_{ξ}^{λ} -cscK metrics, whose moduli stack consists of T-equivariant family of polarized varieties which are μ_{ξ}^{λ} K-semistable.

A sketch of the future of μ -cscK metrics and μ K-stability (Eiji Inoue)

L Theory on "instability": NA μ -entropy and Perelman entropy

Conjectures, II: Existence and Uniqueness of optimal degeneration

Conjecture (Uniqueness of phase)

Given a Kähler class L and $\lambda \leq 0$, μ^{λ} -cscK metrics in L are unique modulo Aut(X, L).

Conjecture (Optimal destabilization)

$$\exists!$$
 "degeneration" $(X, L) \stackrel{\mathcal{F}}{\rightsquigarrow} (X_0, L_0)$ which maximizes $\check{\mu}_{\mathrm{NA}}^{\lambda}$.

Conjecture (Minimax conjecture)

$$\sup_{\mathcal{F}}\check{\boldsymbol{\mu}}_{\mathrm{NA}}^{\lambda}(\mathcal{F}) = \inf_{\omega} \boldsymbol{\mu}_{\mathrm{Per}}^{\lambda}(\omega).$$

Approach: non-archimedean pluripotential theory

Conjecture (Optimal destabilization)

 $\exists!$ "degeneration" $(X, L) \stackrel{\mathcal{F}}{\leadsto} (X_0, L_0)$ which maximizes $\check{\mu}_{\mathrm{NA}}^{\lambda}$.

Want to consider a completion of the space of f.g. filtrations $\mathcal{H}_{NA}^{\mathbb{R}}(X, L)$. \downarrow Use Boucksom–Jonsson's non-archimedean pluripotential theory

Theorem (v)

There exists

- a complete metric space $\mathcal{E}_{NA}^{exp}(X, L)$ consisting of functions on the Berkovich space X^{NA} ,
- a canonical embedding $\mathcal{H}^{\mathbb{R}}_{\mathrm{NA}}(X,L) \hookrightarrow \mathcal{E}^{\mathsf{exp}}_{\mathrm{NA}}(X,L)$ and
- an usc extension of $\check{\mu}_{\mathrm{NA}}^{\lambda} : \mathcal{H}_{\mathrm{NA}}^{\mathbb{R}}(X,L) \to [-\infty,\infty)$ to $\mathcal{E}_{\mathrm{NA}}^{\mathsf{exp}}(X,L)$.

A sketch of the future of μ -cscK metrics and μ K-stability (Eiji Inoue)

L Theory on "instability": NA μ -entropy and Perelman entropy

Toric case is verified

Theorem (New!)

There exists a lsc convex function q on P which maximizes toric $\check{\mu}_{\mathrm{NA}}^{\lambda}$ for $\lambda \leq 0$ and $\int_{P} e^{\rho q} d\mu < \infty$ for $\rho \in [1, \frac{n}{n-1})$.

Conjecture

The maximizer q is piecewise affine.

References

- i: The moduli space of Fano manifolds with KRs ...
- ii: Constant µ-scalar curvature ...
- iii: Equivariant calculus ...
- iv: Entropies in μ-framework ... , I
- ν: Entropies in μ-framework ... , II
- AJL: Apostolov, Jubert, Lahdili, Weighted K-st. and coercivity ...
- BHJ: Boucksom, Hisamoto, Jonsson, Uniform K-stability, DH ...
- BLXZ: Blum, Liu, Xu, Zhuang, The existence of KRs degeneration
- CSW: Chen, Sun, Wang, Kähler-Ricci flow, KE metric, and ...
- DS: Dervan, Székelyhidi, The Kähler-Ricci flow and optimal ...
- HL1: Han, Li, On the YTD conjecture for generalized KRs ...
- HL2: Han, Li, Algebraic uniqueness of KRF limits ...
- Lahdili1: Kähler metrics with constant weighted scalar curvature ...
- Lahdili2: Convexity of weighted Mabuchi functional ...
- Nakagawa: On generalized Kähler–Ricci solitons

A sketch of the future of $\mu\text{-cscK}$ metrics and $\mu\text{K-stability}$ (Eiji Inoue)

L Theory on "instability": NA μ -entropy and Perelman entropy

Thank you!