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1. Heuristic picture: Lempert’s Lagrangian formalism
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Lagrangian system in physics

Lagrangian mechanics: coordinate free expression of Newtonian
mechanics (convenient to deal with holonomic constraint)

H = R3 ∋ x , TH ∋ (x , v).

In the Cartesian coordiante, the kinetic energy is T (x , v) = 1
2m|v |2.

Consider a potential V (x , v) = mg |x |. The Lagrangian of this system is

L = T − V : TH → R.

The principle of least action says that the motion ϕt ∈ H of a particle
from x0 ∈ H to x1 ∈ H is characterized as the minimizer of the action
functional

S(ϕ) :=

∫ T

0

L(ϕt , ϕ̇t)dt.

The Euler–Lagrange equation is

∂L
∂x

(ϕt , ϕ̇t)−
d

dt

∂L
∂v

(ϕt , ϕ̇t) = 0.
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Lempert’s Lagrangian formalism

(X , L): a polarized manifold
H(X , L): the space of Kähler metrics in L

TH(X , L) ∼= H(X , L)× C∞(X )/R

Consider a functional
L : TH → R

which is invariant under the parallel translation (w.r.t. Mabuchi
connection): for any smooth curve ωt = ω +

√
−1∂∂̄ut , we have

L(ωt , f ◦ φt) = L(ω, f )

for φt ∈ Diff(X ) generated by the time dep. vector field (−1/2)∇ωt u̇t .

e.g. L(ω, f ) =
∫
X
|f̂ |pωn
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Lempert’s Lagrangian formalism

Assume L is fibrewise convex.

Theorem (Lempert ’20, principle of least action)

A weak geodesic (slightly regular) minimizes the action functional

S(ϕ) :=

∫ b

a

L(ωt , ϕ̇t)dt

among all path ϕ = {ϕt} connecting given endpoints ωa and ωb.

Theorem (Lempert ’20, Hadamard convexity)

Put

LT (ω, ω
′) = inf{S(ψ) | ψ : [0,T ] → H(X , L) connecting ω, ω′}.

Then for weak geodesics ϕ,ϕ′, LT (ϕ,ϕ
′) is convex.
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2. Extremal metric and Kähler–Ricci soliton
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Extremal metric and Calabi functional

The Calabi functional C : H(X , L) → R is given by

C (ω) :=
1

2

∫
X

ŝ(ω)2ωn.

The critical points are extremal metrics: ∂♯s(ω) = g i ȷ̄sȷ̄ is holomorphic.

Donaldson–Futaki invariant:

DF(X ,L) := (KX̄/P1 .L̄·n)− (KX .L
·n−1)

(n + 1)(L·n)
(L̄·n+1)

Relative Donaldson–Futaki invariant:

DFξ(X ,L) := DF(X ,L) + 1

4π

∫
X0

θ̂ξθηω
n
0

If (X , L) admits an extremal metric with ξ = ∂♯s, then we have
DFξ(X ,L) ≥ 0 (relatively K-semistable).
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Extremal metric and Calabi functional

Donaldson’s lower bound:

−4πDF(X ,L)
∥(X ,L)∥

≤ (2C (ω))1/2,

where we put

∥(X ,L)∥2 =
∫
R
(t − b)2DH(X ,L)

with the barycenter b :=
∫
R tDH(X ,L).

Optimal destabilization conjecture

We have the equality

sup
(X ,L)

−4πDF(X ,L)
∥(X ,L)∥

= inf
ω∈H(X ,L)

(2C (ω))1/2

and the supremum on the LHS is achieved by some test configuration.
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Lagrangian formalism on Calabi functional

We consider the functional Wext : TH(X , L) → R given by

Wext(ω, f ) := −1

2

∫
X

(ŝ(ω)− f̂ )2ωn +
1

2

∫
X

ŝ(ω)2ωn.

Observations (written in my preprint in preparation)

(Conservative) The Euler–Lagrange equation

∂Wext

∂ω
(ωt , ϕ̇t)−

d

dt

∂Wext

∂f
(ωt , ϕ̇t) = 0

for the action functional S(ϕ) :=
∫ b

a
Wext(ωt , ϕ̇t)dt is the geodesic

equation.

Wext(ωt , ϕ̇t) is monotonically decreasing along weak geodesic.
(Convexity of the Mabuchi functional)
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A new proof of Donaldson’s lower bound

We note
C (ω) = sup

f∈C∞(X )

Wext(ω, f ).

It is recently shown by C. Li that the slope of the Mabuchi functional
along to the geodesic ray associated to a normal test configuration
(X ,L) is given by MNA(X ,L) = limd→∞ d−1DF(Xd ,Ld).
Using this, we obtain

lim
t→∞

Wext(ωt , ϕ̇t) = −1

2

(
4πMNA(X ,L) + ∥(X ,L)∥2

)
.

We put for τ ≥ 0

CNA(X ,L; τ) := −1

2

(
4πτMNA(X ,L) + τ 2∥(X ,L)∥2

)
.

By the monotonicity, we obtain

CNA(X ,L; τ) = lim
t→∞

Wext(ωτ t , ϕ̇τ t) ≤ Wext(ω, ϕ̇) ≤ C (ω)
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A new proof of Donaldson’s lower bound

When DF(X ,L) ≥ 0, the maximum of CNA(X ,L; τ) is achieved at
τ = 0. When DF(X ,L) < 0, we have

C (ω) ≥ sup
τ≥0

CNA(X ,L; τ) = 2 · 4π2DF(X ,L)2

∥(X ,L)∥2
,

which shows Donaldson’s lower bound on Calabi functional. □

Theorem (Entropy maximization)

If the supremum of CNA is achieved by a product configuration, then
(X , L) is relatively K-semistable. This is the case when (X , L)
admits an extremal metric.

If (X , L) is K-semistable, then CNA is maximized at the trivial
configuration.
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Kähler–Ricci soliton and modified K-stability

Let X be a Fano manifold, i.e. −KX is ample. The normalized
Kähler–Ricci flow on X is

ω̇t = Ric(ωt)− 2πωt .

A Kähler–Ricci soliton is a self-similar solution: a pair of a Kähler metric
ω and a holomorphic vector field ξ such that

Lξω = Ric(ω)− 2πω.

We can define modified Futaki invariant Futξ(X ,L) and hence modified
K-stability of X w.r.t. ξ. (Tian–Zhu, Xiong, Berman, Datar–Székelyhidi)

There is a unique vector ξ such that Futξ = 0 for product configurations,

Problem But it is HARD to express the vector explicitly!
The invariant Fut• exists, but it is not explicitly given for X .

Nevertheless, we can check the modified K-stability in some case (toric,
horospherical), without detecting ξ.
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Kähler–Ricci soliton and H-functional

Let X be a Fano manifold. The H-functional H : H(X ,−KX ) → R is
given by

1

2π
H(ω) :=

∫
X

hehωn
/∫

X

ehωn − log

∫
X

eh
ωn

n!
.

The critical points are Kähler–Ricci solitons: ∂♯h is holomorphic.

Optimal destabilization along Kähler–Ricci flow

(Chen–Sun–Wang) For a Fano manifold X , there exists a finitely
generated filtration F of X such that the central fibre X is a
modified K-semistable Q-Fano variety, which moreover admits a
special degeneration X to a Q-Fano variety X 0 with Kähler–Ricci
soliton.

(Han–Li) The filtration is uniquely characterized (modulo
equivalence) as a maximizer of H-entropy.

(Dervan–Székelyhidi) supF H(F) = infω∈H(X ,L) H(ω).
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Lagrangian formalism on H-functional

Let X be a Fano manifold. We consider the functional
L : TH(X ,−KX ) → R given by

1

2π
L(ω, f ) := −

∫
X

fehωn
/∫

X

ehωn − log

∫
X

e−f ω
n

n!
.

Observations

(Conservative) The Euler–Lagrange equation

∂L

∂ω
(ωt , ϕ̇t)−

d

dt

∂L

∂f
(ωt , ϕ̇t) = 0

for the action functional S(ϕ) :=
∫ b

a
L(ωt , ϕ̇t)dt is the geodesic

equation.

(Dervan–Székelyhidi) L(ωt , ϕ̇t) is monotonically decreasing along
weak geodesic. (Convexity of the Ding functional) The limit along a
geodesic ray gives the H-entropy.
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3. A non-conservative Lagrangian formalism on µ-cscK metric
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µ-cscK metric

For λ ∈ R, we call a Kähler metric ω ∈ L µλ-cscK metric if

(s(ω) + □̄θξ) + (□̄θξ − ξθξ)− λθξ = const.

for some holomorphic vector field ξ with ∃θξ ∈ C∞(X ) s.t.√
−1∂♯θξ = ξ.

Theorem (I. ’19 + Lahdili ’20)

A Kähler–Ricci soliton ωKR ∈ −KX is a µ2π-cscK metric.

There is a Donaldson–Fujiki type moment map picture for µλ
ξ -cscK

metric.

For each (X , L), µλ-cscK metric is unique mod Aut for λ ≪ 0.

If there is an extremal metric ωext ∈ L, there is a family ωλ of
µλ-cscK metrics for λ ≪ 0 such that ωλ converges to ωext.
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Perelman’s W -functional and µ-cscK metrics

We consider the functional W̌ λ : TH(X , L) → R given by

W̌ λ(ω, f ) := −
∫
X

(
s(ω) + |∂♯f |2 − λ(n − f )

)
e−f ωn∫

X
e−f ωn

− λ log

∫
X

e−f ω
n

n!
.

Recall Perelman’s W -functional is

W (g , f ; τ) =
1

(4πτ)n/2

∫
X

(
τ(R(g) + |∇f |2)− (n − f )

)
e−f volg

for a Riemannian metric g and f ∈ C∞(X ) with
∫
X e−f volg = 1, usually considered

for τ ≥ 0

Theorem (I. ’20, to appear)

A state (ω, f ) ∈ TH is a critical point of W̌ λ if and only if ξ = ∂♯f is
holomorphic and ω is a µλ-cscK metric w.r.t. ξ.
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W -functional as a non-conservative Lagrangian system

(Non-conservative) The Euler–Lagrange equation
∂W̌λ

∂ω (ωt , ϕ̇t)− d
dt

∂W̌λ

∂f (ωt , ϕ̇t) = 0 is NOT equivalent to the
geodesic equation.

The extremal path is geodesic iff ∂♯
ωt
ϕ̇t is holomorphic, which

happens only when ωt = φ∗
t ω for φt ∈ Aut generated by a

holomorphic vector field ξ = ∂♯f .

Theorem (I. ’20, to aapear)

W̌ λ is monotonically decreasing along smooth geodesics.

For a smooth subgeodesic ray ϕt subordinated to a test
configuration, the limit limt→∞ W̌ λ(ωt , ϕ̇t) is given by the
non-archimedean µ-entropy.

limλ→±∞ λ
(
W̌ λ(ω, λ−1f )− W̌ λ(ω, 0)

)
= Wext(ω, f ).
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Archimedean µ-entropy

We define µ̌λ : H(X , L) → R by

µ̌λ(ω) := sup
f∈C∞(X )

W̌ λ(ω, f ).

Theorem (I. ’20, to appear)

1 For each λ ≤ 0 and ω, there exists a unique maximizer f ∈ C∞(X )
of W̌ λ(ω, ·) modulo constant.

2 In this case, the functional µ̌λ : H(X , L) → R is smooth.

3 Its critical points are precisely µλ-cscK metrics.

4 They are global minimizers of µ̌λ among all T -invariant Kähler
metrics, where T is the center of a maximal compact.

The µ-entropy µ̌λ is an analogy of Calabi functional.
↓

Question Is there an analogy of Donaldson’s lower bound?
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4. Volume minimization and µK-stability
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Entropy maximization for product filtration

Suppose we have a holomorphic Hamiltonian action (X , L) ↶ K by a
compact Lie group. We define µ̌λ

NA : k → R by

µ̌λ
NA(ξ) := W̌ λ(ω,−θωξ ),

using a K -invariant metric ω ∈ L and θξ ∈ C∞(X ):
√
−1∂̄θωξ = iξω.

Theorem (I. ’19 +α)

This is independent of the choice of ω and µ.

If there exists a µλ
ξ -cscK metric, then ξ is a critical point of µ̌λ

NA.

When λ ≤ 0, ξ maximizes µ̌λ
NA (among all vectors).

There always exist a maximizer of µ̌λ
NA.

(Phase transition) The value

λfreeze := sup{λ ∈ R | ∀λ′ < λ µ̌λ′

NA admits a unique critical point}

is not ±∞.
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“Non-archimedean” µ-entropy of test configuration

Recall

µ̌λ
NA(−

1

2
ξ) = W̌ λ(ω, µω

ξ ) = −
∫
X
(Ric(ω) + □̄µξ)e

ω+µξ∫
X
eω+µξ

+ λ(

∫
X
(ω + µξ)e

ω+µξ)∫
X
eω+µξ

− log

∫
X

eω+µξ)

Definition

For a test configuration (X ,L) and τ ≥ 0, we put

µ̌λ
NA(X ,L; τ) := 2π

(κC×

X0
.eLC× |X0 ; τ)

(eLC× |X0 ; τ)

+ λ
( (LC× |X0 .e

LC× |X0 ; τ)

(eLC× |X0 ; τ)
− log(eLC× |X0 ; τ)

)
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“Non-archimedean” µ-entropy of test configuration

Proposition

By the localization on P1 and the equivariant
Grothendieck–Riemann–Roch theorem for X0/{0} → X/C, we get

(eLC× |X0 ; τ) = (eL)− τ(eL̄C× ; τ)

(LC× |X0 .e
LC× |X0 ; τ) = (L.eL)− τ(L̄C× .eL̄C× ; τ)

(κC×

X0
.eLC× |X0 ; τ) = (KX .e

L)− τ(KC×

X̄/P1 .e
L̄C× ; τ)

Replacing KC×

X̄/P1 with bK
C×

X̄/P1 = KC×

X̄/P1 + [X red
0 ]C

× − [X0]
C×

, we obtain

the following by the equivariant Stokes theorem.

Theorem (I. ’20, to appear)

For a smooth subgeodesic ray ϕt subordinated to a test configuration

(X ,L), bµ̌
λ
(X ,L; τ) = limt→∞ W̌ λ(ωτ t , ϕ̇τ t).
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Toric expression

By the equivariant intersection formula, we obtain

Proposition (I. ’20, to appear)

Let (X , L) be a toric variety and P ⊂ t be the associated moment
polytope. Take a defining convex piecewise affine function q of the
moment polytope Q = {(µ, t) | µ ∈ P, q(µ) ≤ t ≤ 0} of a
T -equivariant normal test configuration (X ,L). Then

µ̌λ
NA(X ,L; τ) = −2π

∫
∂P

eτqdσ∫
P
eτqdµ

+ λ
(∫

P
(n + τq)eτq∫
P
eτqdµ

− log

∫
P

eτqdµ
)
.

Question Find an explicit example of a toric variety (X , L) and a

non-product (X ,L) (or filtration) maximizing µ̌λ
NA.
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Entropy maximization for tc/filtration

The µ-entropy makes sense also for f.g. filtrations. By differentiating the
µ-entropy at ξ to the direction of test configurations, we obtain

Theorem (I. ’20, to appear)

A If there is a vector ξ such that

µ̌λ
NA(ξ) ≥ µ̌λ

NA(X ,L; τ)

for every test configuration (X ,L; τ), then (X , L) is µλ
ξK-semistable.

B If for every test configuration (X ,L; τ), there is a vector ξ such that

µ̌λ
NA(ξ) ≥ µ̌λ

NA(X ,L; τ),

then (X , L) is µλK-semistable.
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5. Conjectural picture
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Optimal destabilization

Conjecture (µK-stability is entropy maximization)

When λ ≤ 0, the following are equivalent:

(X , L) is µλ
ξK-semistable

ξ is a maximizer of µ̌λ
NA among all (f.g.) filtrations

Conjecture (Optimal destabilization conjecture for µ-entropy)

1

sup
ϕ∈H(XNA,LNA)

µ̌λ
NA(ϕ) = inf

ω∈H(X ,L)
µ̌λ(ω).

2 When λ ≤ 0, ∃! a maximizer ϕ ∈ H(XNA, LNA) of µ̌λ
NA modulo

Aut(X , L).

3 “The central fibre” X0 of ϕ is mildly singular and µλ
ξK-semistable for

the vector ξ generated by ϕ. (The NA Monge–Ampére measure MANA(ϕ)

is a sum of dirac mass supporting on quasi-monomial valuations. )
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Filtration

A (bounded) filtration F assigns a subspace FλRm ⊂ Rm = H0(X , L⊗m)
for each λ ∈ R and m ≥ 0 which enjoys the following properties.

FλRm =
∩

λ′<λ Fλ′
Rm.

FλRm · Fλ′
Rm′ ⊂ Fλ+λ′

Rm+m′ .

∃C s.t. FλRm = 0 for λ ≥ Cm and FλRm = Rm for λ ≤ −Cm.

A filtration is finitely generated if there exists m such that for every k

FλRmk =
∑
|I |=k∑
i∈I λi≥λ

∏
i∈I

FλiRm.
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Filtration and degeneration

For (X , L) ↶ T and ξ ∈ t, we put

Fλ
ξ Rm :=

⊕
⟨µ,ξ⟩≥λ

H0(X , L⊗m)µ

for m ≥ 1 and Fλ
ξ R0 = C iff λ ≤ 0. This is a f.g. filtration.

Let Bσ := SpecC[σ∨ ∩M] ↶ T be the affine toric variety associated to a
strictly convex polyhedral cone σ ⊂ N ⊗ R of full dimension. Let
(X/Bσ,L) be a T -equivariant family of polarized schemes whose general
fibre is isomorphic to (X , L). For µ ∈ M and s ∈ H0(X , L⊗m), we define
s̄e−µ ∈ H0(X × T ,L⊗m) by s̄e−µ(x , t) = (s(x).t)χ−µ(t). Put

Fµ
(X/Bσ,L)Rm := {s ∈ H0(X , L⊗m) | s̄e−µ extends to a section over X}

and for ξ ∈ σ,

Fλ
(X/Bσ,L;ξ)Rm :=

∑
⟨µ,ξ⟩≥λ

Fµ
(X/Bσ,L)Rm.

Then F(X/Bσ,L;ξ) is a f.g. filtration.
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Filtration and non-archimedean metric

Boucksom–Jonsson, A non-archimedean approach to K-satbility

{filtrations}/ ∼ FS−−→ PSH↑(XNA, LNA) ⊂ PSH(XNA, LNA),

{f.g. filtrations}/ ∼ ∼−→ H(XNA, LNA),

where

H(XNA, LNA) =
{ 1

m
max

j
(log |sj |0 + λj)

∣∣∣ (sj )⊂H0(X ,L⊗m),
∩

j s
−1
j (0)=∅

λj∈R

}
.

Question Can we modify the definition of µ̌λ
NA so that it is independent

of the choice of the filtration F with FS(F) = ϕ?

1. Use a unique maximal filtration in the equivalent class of filtrations.
2. Express µ̌λ

NA(ϕ) as an integration on the Berkovich space XNA,
similarly as MNA.
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Towards non-archimedean formalism: non-archimedean
moment map

For a C× action on (X , L) and a U(1)-invariant metric ω ∈ L, we can associate
a unique moment map µ : X → R normalized by [ω + µ] = LC× . The measure
D = (idX × µ)∗ω

n on X × R determines µ and ω. For w ∈ C∞(R), we have∫
X×R

w(t)D =

∫
X

w(µ)ωn.

For a test configuration ϕ = (X ,L), we consider the following measure Dϕ on
XNA × R:

Dϕ =
∑
E

ordE (X0)(E .Lṅ).δvE ⊗DHE ,L|E .

Then we have ∫
XNA×R

w(−τ t)Dϕ = ([X0].w(L̄C×); τ),∫
XNA×R

AX (v)e
−τ tDϕ = (K log

X̄/P1 − K log

XP1/P
1 .e

L̄C× ; τ).


