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Preface

This thesis consists of the following two parts:

• In part I, we establish a framework unifying both the frameworks on
cscK metrics & K-stability and Kähler–Ricci solitons & modified K-
stability, which we call the framework on µ-cscK metrics & µK-stability
of polarized manifolds.

• In part II, we study moduli problems on Fano manifolds admitting
Kähler–Ricci solitons.

Part I is a reorganization of the articles [Ino2], [Ino3] and that in part II
is a reorganization of the articles [Ino1], [Ino3], while these articles appear in
the order of [Ino1], [Ino2], [Ino3].

The main aim of part I is to formulate a proper framework on µ-cscK
metrics and µK-stability. Another aim, which is especially important in
the case of Kähler–Ricci solitons, is to refine the definition of modified K-
stability related to the existence of Kähler–Ricci solitons. Though modified
Futaki invariant is defined only for special degenerations, it is desirable in
view of application to moduli problem that such invariants are defined also
for general test configurations. The framework on µ-cscK helps to distinguish
the role of the polarization L and the anti-canonical ‘polarization’ −KX/C of
test configurations, which are indistinguishable for special degenerations.

In chapter 1 of part I, we introduce the notion of µ-scalar curvature for
Kähler metric, motivated by a Donaldson–Fujiki type moment map picture
on Kähler–Ricci solitons proved in chapter 3 (cf. [Ino1]). The concept fits
into a Lahdili’s more general framework on weighted cscK metrics, where we
use an exponential weight. We study constraints for the existence of Kähler
metrics with constant µ-scalar curvature, which we call µ-cscK metrics for
short. Some compactness results on a generalization of Tian–Zhu’s functional
in this µ-cscK setup shows that not only the concept unifies the framework of
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cscK metrics and Kähler–Ricci solitons, but also it has an intriguing connec-
tion with extremal metrics, which cannot expected from moment map picture
and is special aspect of µ-cscK metrics among weighted cscK metrics. This
chapter corresponds to the article [Ino2].

In chapter 2 of part I, we introduce the notion of µK-stability of polarized
manifolds as a framework unifying both K-stability and modified K-stability.
We show that the existence of µ-cscK metrics in the first Chern class of the
polarization implies the µK-semistability of the polarized manifold. We also
construct a characteristic class which generalizes Paul–Tian’s CM line bundle
to the context of µK-stability. We make use of this product in chapter 4 in
part II. This chapter is based on the article [Ino3].

The aim of part II is to unveil a proper formulation of moduli problem
on Fano manifolds with Kähler–Ricci solitons and to construct its separated
complex analytic/algebraic moduli space.

In chapter 3 of part II, we construct a complex analytic moduli space
of Fano manifolds admitting Kähler–Ricci solitons. It is observed that the
moduli problem must be formulated as a construction of a complex analytic
space enjoying a universal property with respect to an Artin stack of families
of adequate Fano manifolds equivariant with respect to the torus action gen-
erated by a vector field ξ with vanishing modified Futaki invariant Futξ ≡ 0.
We directly make use of the moment map picture on Kähler–Ricci solitons
to construct local charts on the moduli space and then show the holomorphy
of the coordinate changes by establishing a uniqueness result on degenera-
tions of a Fano manifold to Fano manifolds with Kähler–Ricci solitons, using
Donaldson–Sun’s argument on Gromov–Hausdorff limit of algebraic varieties.
This chapter corresponds to the article [Ino1] and is written independently
from the results in part I.

In chapter 4 of part II, we show applications of Theorem G in chapter 2
of part I to the algebraic moduli problem. We firstly show that the moduli
space constructed in chapter 3 is indeed algebraic as predicted. Theorem G is
applied to show Zariski openness of the subset consisting of Fano manifolds
which degenerate to some Fano manifolds with Kähler–Ricci solitons. We
then propose an approach to the compactification problem of the moduli
space. This chapter is based on the article [Ino3].
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Part I

Constant µ-scalar curvature
Kähler metrics and µK-stability
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Introduction for Part I

In this part I, we introduce the notions on µ-cscK metrics and µK-stability
of polarized manifolds and establish a foundation on these concepts. The
framework unifies the frameworks on cscK metrics and Kähler–Ricci solitons
and propose a refinement of modified K-stability related to the existence of
Kähler–Ricci solitons.

The µ-scalar curvature is firstly introduced as a family of functions asso-
ciated to a Kähler metric on a Kähler manifold with an action by a torus T
which is parametrized by the parameters ξ ∈ t and λ ∈ R. We call µλ

ξ -scalar
curvature the function corresponding to the parameter (ξ, λ). When ξ = 0,
µλ
ξ -scalar curvature is nothing but the usual scalar curvature. On the other

hand, when ξ ̸= 0, Kähler–Ricci solitons give typical examples of µ-cscK
metrics for ξ ̸= 0: for Kähler metrics in the cohomology class c1(X), the
µ2π
ξ -scalar curvature is constant if and only if the metric is a Kähler–Ricci

soliton with respect to the vector field ξ: Ric(ω)− LJξω = ω.
Our starting point on µ-scalar curvature is a Donaldson–Fujiki type mo-

ment map picture. For fixed ξ ∈ t, the µλ
ξ -scalar curvature has an inter-

pretation as a moment map on the space JT (M,ω) of T -invariant almost
complex structures on a symplectic manifold (M,ω) with respect to a sym-
plectic structure Ωξ on JT (M,ω) associated to the measure e−2µξωn for a
moment map µ : M → t∨ of ω. This moment map picture formally predicts
that the existence of µλ

ξ -cscK metrics must be characterized by the positivity
of some numerical invariant associated to degenerations of the given polarized
manifold. The invariant will be introduced and studied in chapter 2.

In chapter 1, we study µ-scalar curvature not only from this perspective,
which is well-studied aspect in the case of cscK metrics, but also from a
different viewpoint based on Tian–Zhu’s volume minimization argument on
Kähler–Ricci solitons. In the latter viewpoint, we fix our parameter λ ∈ R
and study constraints on ξ for the existence of µλ

ξ -cscK metrics. It turns out
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that for each λ ≤ 0, there are only finitely many ξ which has a chance to
admit µλ

ξ -cscK metrics and moreover such ξ is unique when λ≪ 0, regardless

of the actual existence of µλ
ξ -cscK metrics. We also observe an intriguing new

phenomenon as λ tends to −∞: the rescaled vectors λξλ converge to extremal
vector field as λ→ −∞. This implies in chapter 2 that the existence of µλ-
cscK metrics for every λ ≪ 0 implies the relative K-semistability of the
polarized manifolds, which is related to the existence of extremal metrics.
Conversely, we can also show the existence of extremal metrics implies the
existence of µλ-cscK metrics for every λ ≪ 0. In this way, we conclude
that µλ-cscK metrics can be considered as a continuity path connecting to
extremal metric.

In chapter 2, we formulate the µK-stability of polarized manifolds. A
new parameter ξ ∈ t, which does not appear in the usual K-stability, pre-
vents us to express ‘µ-Futaki invariant’ by an intersection formula similar to
the usual Donaldson–Futaki invariant. Instead, we express it by an equiv-
ariant intersection formula. The formula enables us to observe the behaviors
of µ-Futaki invariants along the normalization and resolutions of test con-
figurations. Using Lahdili’s result on weighted K-semistability with respect
to smooth test configurations, we conclude the µK-semistability of polar-
ized manifolds with µ-cscK metrics. On the other hand, we also construct
an equivariant characteristic class Dξµ

λ ∈ H2
G(B,R) for equivariant families

(X ,L) → B of polarized schemes which generalizes Paul–Tian’s CM line
bundle. We develop basics on relative equivariant intersection on schemes to
construct such characteristic class. This product will be used in section 4 of
chapter II.

3



Chapter 1

Constant µ-scalar curvature
Kähler metric

In this chapter, we propose a new variant of scalar curvature of Kähler metric
with a moment map, which we call µ-scalar curvature, motivated by a ver-
sion of Donaldson-Fujiki moment map picture on a weighted measure eθξωn

associated to a holomorphic vector field ξJ . We design our framework on con-
stant µ-scalar curvature Kähler metrics (µ-cscK metrics for short) so that it
fits into both of the frameworks on cscK metrics and Kähler-Ricci solitons.
From the moment map picture, we are naturally motivated to study a family
of µ-cscK metrics parametrized by λ ∈ R. It turns out that µ-cscK metrics
can also be regarded as a continuity path to/from extremal metrics.

We exhibit some fundamental constraints to the existence of µ-cscK met-
rics by investigating a variant of Tian–Zhu’s volume functional, which is
closely related to Perelman’s W-functional. A new K-energy is studied as an
approach to the uniqueness problem of µ-cscK metrics and as a prelude to
new K-stability concept.

The content corresponds to the article [Ino2].

1.1 Main results

We simply begin with the definition of µ-scalar curvature and the main results
of this chapter.
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Setup

Let X be a Kähler manifold and ω be a Kähler form on X. We call a
smooth real vector field ξ on X ∂̄-Hamiltonian with respect to ω if the
complexified vector field ξJ := Jξ +

√
−1ξ is holomorphic (⇔ LξJ = 0) and

iξJω is ∂̄-exact. Note that iξJω is ∂̄-closed for any holomorphic ξJ . As ξJ

is holomorphic, we have iξJ (ω +
√
−1∂∂̄ϕ) = iξJω +

√
−1∂̄ξJϕ, so that the

∂̄-Hamiltonian property does not depend on the choice of the Kähler form
ω in the fixed Kähler class [ω]. Moreover, it is known by [LS] that a vector
field ξ preserving J on a compact Kähler manifold is ∂̄-Hamiltonian with
respect to [ω] if and only if it has a fixed point, thus in particular the ∂̄-
Hamiltonian property is even independent of the Kähler class [ω]. We call a
function θ satisfying

√
−1∂̄θ = iξJω a ∂̄-Hamiltonian potential with respect

to ω, which is complex-valued in general. We call a ∂̄-Hamiltonian vector
field ξ properly ∂̄-Hamiltonian if ξ generates a closed torus, i.e., the closure
expRξ ⊂ Aut(X) is compact.

We define the µξ-scalar curvature sξ(ω) of a Kähler metric ω and a ∂̄-
Hamiltonian vector ξ by

sξ(ω) = (s(ω) + □̄θ) + (□̄θ − ξJθ), (1.1)

where θ is a ∂̄-Hamiltonian potential of ξ with respect to ω and s(ω) denotes
the Kählerian scalar curvature: s(ω) := −gkl̄∂k∂̄l log det g. We can take
a real-valued θ iff ω is ξ-invariant since we have

√
−1(dReθ − JdImθ) =√

−1∂̄θ −
√
−1∂̄θ = iξJ−ξ̄Jω = 2

√
−1iξω. In this case, θ is ξ-invariant, so

ξJθ is also real valued.
A version of Donaldson-Fujiki moment map picture characterizes µ-scalar

curvature. As we will see this motivative interpretation in section 1.2.1, here
we instead simply observe how the individual terms of the µ-scalar curvature
arise. The first term s(ω) + □̄θ is just the trace of the Bakry–Emery Ricci
curvature Ric(ω)−

√
−1∂∂̄θ, which is well-studied in Riemannian and metric

measure geometry. The second term □̄θ−ξJθ often arises as the Lie derivative
of the weighted measure:

LξJ (e
θωn) = −(□̄θ − ξJθ)eθωn.

Another important aspect is that this second term is a ∂̄-Hamiltonian poten-
tial of the Bakry–Emery Ricci curvature Ric(ω)−

√
−1∂∂̄θ, i.e.

√
−1∂̄(□̄θ−

ξJθ) = iξJ (Ric(ω)−
√
−1∂∂̄θ).
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We may also regard sξ(ω) as the trace of the following ‘complex analogy
of (m=1)-Bakry–Emery curvature’ for an integrable complex structure J :

Ric(ω) + 2
√
−1∂∂̄θ −

√
−1∂θ ∧ ∂̄θ.

We can easily see that this (1, 1)-form does not change by simultaneously
replacing the equivariant form ω + θ with ω̃ + θ̃ = c(ω + θ) and ξ with
ξ̃ = c−1ξ for a positive constant c > 0, so that we have

sc−1ξ(cω) = c−1sξ(ω) (1.2)

for every positive constant c > 0. (Note sξ(cω) ̸= c−1sξ(ω) when ξ ̸= 0. )
Next, introducing a parameter λ ∈ R, we define the µλ

ξ -scalar curvature
of a Kähler metric ω by

sλξ (ω) = (s(ω) + □̄θ) + (□̄θ − ξJθ)− λθ. (1.3)

We call a Kähler metric ω a constant µλ
ξ -scalar curvature Kähler metric

(µλ
ξ -cscK metric for short) if sλξ (ω) is constant. We may also use variant

terminologies such as µλ-cscK metric or µ-cscK metric when the abbrevi-
ated parameters are determined/unimportant in the context. Since we have
Im(sλξ (ω)) = ∆Imθ − 2Jξ(Imθ)− λImθ, we get∫

X

Im(sλξ (ω))Imθ e
Reθωn =

∫
X

(∆Imθ − 2Jξ(Imθ)− λImθ)Imθ eReθωn

=

∫
X

|dImθ|2eReθωn − λ
∫
X

(Imθ)2eReθωn

by (dImθ,Reθ) = 2ξ(Reθ) = 2Jξ(Imθ). Thus we automatically obtain Lξω =
0 for any µλ

ξ -cscK metric ω with λ ≤ 2λ1 for the positive first eigenvalue λ1 of
1
2
(∆−∇Reθ). In this thesis, we are mainly interested in this case, especially

the case λ ≤ 0. So from now on we always assume the ξ-invariance of the
Kähler metric ω. Hence sλξ (ω) is real-valued.

A cscK metric obviously gives an example of µ-cscK metric for ξ = 0 and
every λ. We will see in section 1.2.1 that a Kähler-Ricci soliton Ric(ω) −
LξJω = λω gives an example of µλ

ξ -cscK metric for λ > 0, which satisfies

λ ≤ 2λ1. If ω is a µλ
ξ -cscK metric, then for any positive constant c > 0,

ω̃ = cω is a µλ̃
ξ̃
-cscK metric for ξ̃ := c−1ξ and λ̃ := c−1λ. The product

(X × Y, ωX + ωY ) of a µ
λ
ξX
-cscK metric ωX on X and a µλ

ξY
-cscK metric ωY

on Y gives a µλ
ξX+ξY

-cscK metric.
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Main results

Now we collect the main results in this chapter. The first three results, except
for Theorem B (3), are analogous to well-known foundational results on cscK
metric and Kähler-Ricci soliton (cf. [Sze-book], [TZ2]. [AS] is a good survey.
).

In the following, X denotes a compact Kähler manifold. Let us firstly
recall the reduced automorphism group (cf. [Gau]). Put

h0(X) := {ξ ∈ XR(X) | ξ is ∂̄-Hamiltonian. }, (1.4)

which is naturally a complex vector space by putting
√
−1ξ := Jξ. De-

note by Aut0(X/Alb) the connected subgroup of the group Aut(X) of bi-
holomorphisms associated to h0(X). It is known by [LS] that h0(X) is the
space of vector fields tangent to the Jacobi map Ax : X → Alb(X), or
equivalently, the space of vector fields with non-empty zero set. This group
Aut0(X/Alb) is called the reduced automorphism group of X. Similarly, we
put h0,ξ(X) := {ζ ∈ h0(X) | [ξ, ζ] = 0} for a vector ξ ∈ h0(X) and denote by
Aut0ξ(X/Alb) the connected subgroup of Aut(X) associated to h0,ξ(X).

Note that for a line bundle L on X, the identity component Aut0(X,L) of
the group of biholomorphisms lifting to L is contained in the reduced auto-
morphism group Aut0(X/Alb). Moreover, it is known that Aut0(X,L⊗n) co-
incides with Aut0(X/Alb) for some positive integer n (because Aut0(X/Alb)
is linear algebraic). If X has no holomorphic 1-form, or equivalently b1(X) =
0, then the reduced automorphism group Aut0(X/Alb) coincides with the
identity component Aut0(X) of the group of biholomorphisms of X.

Theorem A (Reductiveness). Let ω be a constant µλ
ξ -scalar curvature Kähler

metric on a compact Kähler manifold X. Then

1. the group Aut0ξ(X/Alb) is the complexification of the compact con-

nected subgroup HIsom
0
ξ(X,ω) associated to the Lie algebra of Hamil-

tonian Killing vector fields with respect to the µλ
ξ -cscK metric ω com-

patible with ξ. Especially, it is reductive. (Corollary 1.3.5)

2. When λ ≤ 0, Aut0ξ(X/Alb) is maximal among reductive subgroups of

Aut0(X/Alb). This fails in general when λ≫ 0. (Corollary 1.3.19)

When b1(X) = 0, we can replace Aut0ξ(X/Alb) by the identity component

Aut0ξ(X) of the group of biholomorphisms preserving ξ and HIsom
0
ξ(X,ω) by
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the identity component Isom0
ξ(X,ω) of the group Isomξ(X,ω) of isometries

preserving ξ.

Theorem B (µ-Futaki invariant and µ-volume functional). Let X be a com-
pact Kähler manifold, [ω] be a Kähler class and ξ be a properly ∂̄-Hamiltonian
vector field on X.

1. There is a C-linear functional Futλξ : h0(X)→ C depending only on the

quadruple (X, [ω], ξ, λ) such that Futλξ vanishes if the Kähler class [ω]
admits a µλ

ξ -cscK metric. (Proposition 1.3.6)

2. For any compact Lie subgroup K ⊂ Aut0(X/Alb) and λ ∈ R, there
always exists a vector ξ ∈ k such that Futλξ |kc vanishes, regardless of the
existence of µλ-cscK metrics. (Corollary 1.3.15)

3. We have the uniqueness of such ξ for λ≪ 0. Moreover, the value

λfreeze := sup{λ ∈ R | ∀λ′ < λ Futλξλ′ |kc = 0 for a unique ξλ′}

is never ±∞. (Proposition 1.5.3 and its remark)

The second claim in the above is a partial generalization of a volume
minimization result in [TZ2], except for the uniqueness. Indeed, we will see
in section 5.2 that vectors ξ with Futλξ ≡ 0 are not unique for λ ≫ 0 as
claimed in the above (3). As for general theory, we are mainly interested
in the case λ ≤ 0 since in this case we have a nice compactness/finiteness
results as in Corollary 1.3.18 and Corollary 1.3.19. The author suspects the
above value λfreeze is always slightly positive.

In section 4, we prove the following extension result, which generalizes
the result of [Chen2]. This is the first step for studying the uniqueness of
µλ
ξ -cscK metrics and ‘µK-stability’.

Theorem C (µK-energy and geodesic). Let (X, [ω]) be a compact Kähler
manifold with T -action. Fix a vector ξ ∈ t and λ ∈ R.

1. There is a functional Mλ
ξ on the space of ξ-invariant smooth Kähler

metrics in the Kähler class [ω] such that the critical points of Mλ
ξ

are precisely µλ
ξ -cscK metrics and that Mλ

ξ is convex along smooth
geodesics.
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2. There is a canonical extension of this functionalMλ
ξ to the spaceH

1,1
ω,ξ of

ξ-invariant sub-Kähler metrics with C1,1-potentials. Here a sub-Kähler
metric with C1,1-potentials means a (1, 1)-form ωϕ = ω+

√
−1∂∂̄ϕ with

L∞-coefficients given by a smooth Kähler metric ω and a C1,1-smooth
ω-psh function ϕ, i.e., a C1,1-smooth function satisfying ωϕ ≥ 0 as a
current.

The following result illustrates an intriguing special aspect of µ-scalar
curvature. From this result, our parameter λ can be thought as a continuity
path connecting µ0-cscK metric/Kähler-Ricci soliton and extremal metric.

Theorem D (Behavior of K-optimal vectors). Fix a compact subgroup K ⊂
Aut0(X/Alb).

1. Let {(ξi, λi) ∈ k × R}i∈N be a sequence satisfying Futλiξi |kc ≡ 0 and
λi → −∞. (Note such a sequence always exists by Theorem B. ) Then
the rescaled sequence λiξi ∈ k converges to the extremal vector ξext
which is uniquely characterized by the property

F̌ut
0

ξext(ζ) :=

∫
X

(
(s(ω)− s̄)− (θξext − θext)

)
θζω

n = 0

for every ζ ∈ k, where we put s̄ =
∫
X
s(ω)ωn/

∫
X
ωn and θext :=∫

X
θξextω

n/
∫
X
ωn. (Section 2.2 and Corollary 1.3.18)

2. If there are µλi
ξi
-cscK metrics ωi with a uniform C3,α-bound of the Kähler

potentials ϕi of ωi = ω+
√
−1∂∂̄ϕi and a uniform lower bound Cω ≤ ωi,

then ωi subconverges to an extremal metric ωext on X. (Section 2.2)

3. Conversely, if there is an extremal metric on ωext in a Kähler class [ω],
then there are constants λ− and λ+ such that there is a family of µ-cscK
metric {ωλ}λ∈(−∞,λ−)∪(λ+,∞) where for each λ ∈ (−∞, λ−)∪(λ+,∞) the
metric ωλ is a µλ

ξλ
-cscK for some vector field ξλ in the Kähler class [ω]

such that ωλ converges to ωext smoothly as λ→ ±∞. (Theorem 1.5.5)

By Theorem B (3), the vector field ξλ in the above Theorem D (3) is
unique for each λ≪ 0, while we may have other solutions for λ≫ 0.

In section 5.1, we prove the following result analogous to one of the main
results in [LS] on extremal metric.
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Theorem E (Perturbation of Kähler class). Let ω be a µλ
ξ -cscK metric

on a compact Kähler manifold X. Suppose we have λ < 2λ1 for the first
eigenvalue λ1 > 0 of the operator □̄ − Jξ = 1

2
(∆ − ∇Reθξ) restricted to

the space C∞
ξ (X,R) of ξ-invariant real-valued functions. Then there exists

a neighbourhood U of [ω] in the Kähler cone and a positive constant ϵ > 0
such that for every Kähler class [ω̃] ∈ U and λ̃ ∈ (λ− ϵ, λ+ ϵ), there exists a

vector ξ̃ and a constant µλ̃
ξ̃
-scalar curvature Kähler metric ω̃λ̃ in the Kähler

class [ω̃].

It follows that if a Kähler class [ω] admits a cscK metric, then a small
perturbation of [ω] admits both extremal metric and µλ-cscK metrics for
λ < 2λ1. For example, the Kähler class c1(X) of CP 2 blown up at three
points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) admits cscK metric, but a small
perturbation of c1(X) does not admit cscK metrics (cf. [LS, Example 3.2]).
This example shows that there exists a non-trivial path of µλ-cscK metrics
connecting extremal metric and µ0-cscK metric.

In section 6.2, we give more explicit examples of µ-cscK metrics on ruled
surfaces, using Calabi ansatz method. It turns out that there is a Kähler
class that does not admit extremal metrics, but do admit µ0-cscK metrics. In
particular, we observe that there exists a path of µλ-cscK metrics connecting
Kähler–Ricci soliton and extremal metric on X = CP 2#CP 2 in the Kähler
class c1(X).

Relation with Lahdili’s work

Just after uploading the first version of [Ino2] on arXiv, the author was
informed that the µ-scalar curvature is a special part of weighted scalar
curvature introduced in [Lah]. As there are some overlaps on the results,
especially on µK-energy, we collect them here. Proposition 1.4.2 in this thesis
should correspond to Theorem 5 in [Lah] and its corollary is mentioned in
Remark 4. Proposition 1.4.1 is also covered in the proof of Proposition 1
in his paper. Proposition 1.3.6 corresponds to Proposition 2 in [Lah], but
the statement is slightly different. Computing with µ-Lichnerowicz operator,
we can extend the domain of Futλξ to h0(X) from the centralizer h0,ξ(X)
of ξ, where the latter case is considered in [Lah]. While it is natural to
consider only a torus equivariant test configurations to formulate weighted
K-stability (or µK-stability), our slight deviation to non-equivariant direction
h0,ξ(X)⊥ ⊂ h0(X) enables us to conclude the maximality of Aut0ξ(X/Alb) ⊂
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Aut0(X/Alb) among reductive subgroups in Aut0(X/Alb) for X admitting a
µλ
ξ -cscK metric for some λ ≤ 0 (see Corollary 1.3.19). This is indeed not the

case when λ ≫ 0 as we see in the example of CP 1. Lahdili also considers a
weighted Futaki invariant for smooth test configurations, which should have
an advantage towards an algebraic formulation of µK-stability (or weighted
K-stability) for general test configurations (cf. section 1.4.2). The materials
in the section 1.2.2, 1.3.3, 1.5.1 and 1.6 have different original flavors from
these overlaps.

Organization

In section 1.2.1, we explain a motivative interpretation of µ-scalar curvature
as a moment map. We observe in section 1.2.2 how µ-scalar curvature is
related to extremal metric, assuming some results in section 1.3.3. We prove
Theorem A in section 1.3.1 and check Theorem B (1) in section 1.3.2 using a
formula obtained in section 1.3.1. Theorem B (2) is verified in section 1.3.3.
We also prove Theorem D in this section, combining with the observation in
section 1.2.2. Theorem C is demonstrated in section 1.4.1. We also present
some naive stability notion which should fit into our ‘µ’-framework. We note
that Lahdili introduced weighted Futaki invariant for smooth test configura-
tions in [Lah] in his weighted framework. This will be refined in the future
study [Ino2] for general test configurations in our µ-framework. In section
1.5, we prove Theorem E, Theorem B (3) and Theorem D (3). In section 1.6,
we firstly observe there are non-trivial µλ-cscK metrics on CP 1 for λ ≫ 0,
and then we construct explicit examples of µ-cscK metrics on ruled surfaces,
using Calabi ansatz method.

1.2 Motivative observation on µ-cscK metrics

1.2.1 µ-scalar curvature and Donaldson-Fujiki picture

In this section, we fix a symplectic structure ω on a smooth manifold M and
a smooth vector field ξ preserving ω and vary complex structures J and the
parameter λ ∈ R.

In this setup, we can also consider all variation of Kähler metrics on a
fixed complex manifold X = (M,J) and in a fixed Kähler class as follows.
Let ω′ be another Kähler metric onX in the Kähler class [ω]. As tω′+(1−t)ω
is nondegenerate for all t ∈ [0, 1], we can apply Moser’s theorem to obtain a
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diffeomorphism ϕ of M so that ϕ∗ω′ = ω. We obtain another ω-compatible
complex structure ϕ∗J on M . Conversely, if we have an ω-compatible com-
plex structure J ′ which is biholomorphic to J via some diffeomorphism ϕ
of M , i.e. J ′ = ϕ∗J , then we obtain another Kähler form ω′ := (ϕ−1)∗ω
on X = (M,J). This gives a natural identification of the space of Kähler
metrics in a fixed Kähler class [ω] on a complex manifold X = (M,J) with
the quotient space

{J ′ ∈ J (M,ω) | (M,J ′) is biholomorphic to (M,J)}/Symp(M,ω).

The leaf {J ′ ∈ J (M,ω) | (M,J ′) is biholomorphic to (M,J)} can be psycho-
logically regarded as ‘the orbit of J by the complexified action of J (M,ω) ↶
Symp(M,ω)’, which enables us to interpret YTD-type conjecture as an infi-
nite dimensional analogy of the finite dimensional Kempf-Ness theorem. (cf.
[Don1], [Sze-book]. )

Moment map

Let (M,ω) be a closed C∞-symplectic manifold. A smooth vector field ξ on
M preserves ω if and only if iξω is closed, as Lξω = diξω. Put ham(M,ω) as

ham(M,ω) := {ξ ∈ X(M) | iξω is exact }, (1.5)

which is a Lie subalgebra of the Lie algebra X(M) of smooth vector fields.
A smooth right action M ↶ T by a Lie group T is called Hamiltonian

if the linearization t → X(M) factors through ham(M,ω). In this case,
we have an equivariant smooth map µ : M → t∗ satisfying −dµξ = iξω
called a moment map, where we consider the coadjoint action on t∗ and
µξ is a real valued function on M defined by µξ(x) := ⟨µ(x), ξ⟩. For two
moment maps µ, µ′ with respect to the same action and the same symplectic
form ω, we know that µ − µ′ is constant as d(µ − µ′) = 0 and moreover
µ − µ′ ∈ (t∗)T = {ν ∈ t∗ | ν.t = ν for every t ∈ T} by the equivariance
of the maps. In other words, moment maps are unique modulo (t∗)T . We
will mainly consider an action by a closed real torus T ∼= (U(1))k and have
(t∗)T = t∗ in this case.

There is an associated element [ω + µ] ∈ H2
T (M ;R) of the equivariant

de Rham cohomology. For another T -invariant symplectic form ω′ and a
moment map µ′, we have [ω + µ] = [ω′ + µ′] if and only if there exists a T -
invariant 1-form ϕ such that ω = ω′+dϕ and µξ = µ′

ξ+ iξϕ. In particular, we
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have [ω+µ] = [ω+µ′] if and only if µ = µ′ as ξ has a zero. The push-forward
measure µ∗(ω

n/n!) on t∗ is called the Duistermaat–Heckman measure, which
defines the same measure independent of the choice of ω + µ in the same
equivariant cohomology class [GGK].

Vector fileds

For an ω-compatible almost complex structure J , we put

ξJ := Jξ +
√
−1ξ, ξ̄J := Jξ −

√
−1ξ (1.6)

and θξ := −2µξ. Then we have

√
−1∂̄θξ = iξJω,

√
−1∂θξ = −iξ̄Jω, (1.7)

where ∂̄ := (d +
√
−1Jd)/2 and ∂ := (d −

√
−1Jd)/2. In other words, we

have ξJ = gpq̄θq̄∂p and ξ̄
J = gpq̄θp∂̄q in the usual Kählerian notation. We also

have Jξ = −∇gJµξ and thus

ξJθξ = −2(Jξ)µξ = 2|ξ|2gJ = |ξJ |2gJ (1.8)

= |∂̄θξ|2gJ = trgJ (
√
−1∂θξ ∧ ∂̄θξ). (1.9)

µ-scalar curvature

Let (M,ω) be a closed C∞-symplectic manifold with a Hamiltonian action
by a closed real torus T and µ : M → t∗ be a moment map. For an ω-
compatible almost complex structure J , we denote by s(J) the hermitian
scalar curvature defined by Donaldson [Don1], which coincides with the usual
Kähler (the half of the Riemannian) scalar curvature sKä(gJ) =

1
2
sRm(gJ) for

integrable J . Note that this s(J) differs from the half of the Riemannian
scalar curvature 1

2
sRm(gJ) for non-integrable J in general.

The µ-scalar curvature sξ(gJ) of a metric gJ(·, ·) = ω(·, J ·) (associated to
a T -invariant ω-compatible almost complex structure J on M) with respect
to a vector ξ ∈ t is defined as follows:

sξ(gJ) := (s(J)−∆gJµξ) + (−∆gJµξ + 2ξJµξ), (1.10)

where ∆gJ denotes the usual Riemannian Laplacian ∆gJ = d∗d with respect
to gJ Since two moment maps with respect to the same symplectic form only
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differ by a constant, (1.10) is independent of the choice of the moment map µ.
When ξ = 0 and J is integrable, the µ-scalar curvature is of course nothing
but the usual Kählerian scalar curvature.

As ∆gJ is the twice of ∂̄/∂-Laplacians □̄ = □ = −gij̄∂i∂̄j when J is
integrable, we can express (1.10) as

sξ(gJ) = (sKä(gJ) + □̄θξ) + (□̄θξ − ξJθξ)

= (□̄ log det g − ξJ log det g +
n∑

i=1

∂iξ
i) + (□̄θξ − ξJθξ)

= (□̄− ξJ) log(eθξ det g) +
n∑

i=1

∂iξ
i, (1.11)

using θξ = −2µξ. Note that ξ
J log det g−

∑
∂iξ

i = −□̄θξ is a globally-defined
function while ξJ log det g is just locally-defined on a holomorphic chart.

Put

s̄ξ(J) :=

∫
X

sξ(gJ)e
−2µξωn

/∫
X

e−2µξωn (1.12)

=

∫
X

(s(gJ)−∆gJµξ)e
−2µξωn

/∫
X

e−2µξωn.

A similar calculation as in the proof of Proposition 3.1 in [Ino1] (cf. section
3.3.1) shows

d

dt
s̄ξ(Jt) =

(1
4

d

dt
(4s(Jt), e

−2µξ) +

∫
X

2|ξ|2gJ
)/∫

X

e−2µξωn

=
(1
4
(L−2e

−2µξ ξJt, JtJ̇t) +

∫
X

2ω(ξ, J̇tξ)e
−2µξωn

)/∫
X

e−2µξωn

=

∫
X

(
(−Jdµξ ⊗ ξ + dµξ ⊗ Jξ, JtJ̇t) + 2ω(ξ, J̇tξ)

)
e−2µξωn

/∫
X

e−2µξωn

= 0.

So s̄ξ(J) is a constant independent of J compatible with ω. For an integrable
complex structure J , we can compute it as

s̄ξ =
(∫

X

ne−2µξRic(ω) ∧ ωn−1 +

∫
X

□̄(−2µξ)e
−2µξωn

)/∫
X

e−2µξωn

=

∫
X

(Ric(ω) + □̄θξ) eω+θξ
/∫

X

eω+θξ

= 2π(c1(X, ξ) · ec1(L,ξ))/ec1(L,ξ),
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where the last expression depends only on the equivariant Chern classes.
For each λ ∈ R, we define the µλ-scalar curvature sλξ (gJ) of a metric gJ

by
sλξ (gJ) = sξ(gJ) + 2λµξ. (1.13)

We put

µ̄ξ :=

∫
M

µξe
−2µξωn

/∫
M

e−2µξωn (1.14)

and

µ̂ξ := µξ − µ̄ξ, (1.15)

s̄λξ := s̄ξ + 2λµ̄ξ, (1.16)

ŝλξ (gJ) := sλξ (gJ)− s̄λξ . (1.17)

Then the constant s̄λξ depends only on the equivariant Chern classes cT1 (X), cT1 (L)

and sλξ (gJ) is constant iff ŝ
λ
ξ (gJ) = 0.

Relation with Kähler-Ricci soliton

There are two fundamental examples of constant µ-scalar curvature Kähler
metric:

• A constant scalar curvature Kähler metric is also a constant µ-scalar
curvature Kähler metric with respect to ξ = 0 and any λ ∈ R.

• A Kähler-Ricci soliton gJ with respect to ξ, i.e. Ric(gJ)−LξJgJ = λgJ ,
is a constant µ-scalar curvature Kähler metric with respect to ξ and λ.

The second claim follows from a standard calculation in [TZ2] (cf. [Ino1]).
For the readers’ convenience, we exhibit the proof here. Remember that
Kähler-Ricci soliton with nontrivial ξ ̸= 0 could exist only when λ > 0 and
[λω] ∈ 2πc1(X). In particular, X is a Fano manifold in this case. Take a
Ricci potential h of ω, i.e. Ric(ω)− λω =

√
−1∂∂̄h, and consider a moment

map µ with respect to ω normalized as∫
X

µehωn = 0. (1.18)

Taking the Lie derivative LξJ of Ric(ω)− λω =
√
−1∂∂̄h, we have

√
−1∂∂̄(□̄θξ − λθξ) =

√
−1∂∂̄((∂̄♯h)θξ),

15



where we used that ξJ is holomorphic and (∂̄♯h)θξ = ξJh. Note that the
operator □̄−∂̄♯h is formally self-adjoint with respect to the weighted measure
ehωn, therefore (□̄− ∂̄♯h)f = φ has a solution f (unique up to constant) iff∫
X
φehωn = 0. So under the normalization (1.18), we obtain

□̄θξ − ξJh− λθξ = 0. (1.19)

Then we can express s̄ξ as

s̄ξ =

∫
X

(□̄(−h+ θξ) + λn)eθξωn
/∫

X

eθξωn

= λn+

∫
X

(−□̄h+ ξJh+ λθξ)e
θξωn

/∫
X

eθξωn

= λn+ λ

∫
X

θξe
θξωn

/∫
X

eθξωn, (1.20)

where we again used that □̄ − ξJ is formally self-adjoint with respect to
the weighted measure eθξωn. Now suppose ω is a Kähler-Ricci soliton, then
taking the trace of Ric(gJ)− Lξ′gJ = λgJ , we obtain

s(gJ) + □̄θξ = λn.

As h is equal to θξ up to constant, we have θ̄ξ =
∫
X
θξe

θξωn = 0 under the
normalization (1.18) and □̄θξ − ξJθξ − λθξ = 0. Therefore, we conclude

sξ(gJ)− λθξ = (s(gJ) + □̄θξ) + (□̄θξ − ξJθξ)− λθξ = s̄ξ.

The normalization (1.18) of the moment map µ is equivalent to [ω+µ] =
cT1 (X) where cT1 (X) denotes the equivariant Chern class of the anticanoni-
cal bundle −KX , which can be represented by the equivariant closed form
Ric(ω) + □̄θ in the equivariant deRham cohomology.

Donaldson-Fujiki picture for µ-scalar curvature

Now we explain the moment map picture for µ-scalar curvature. Let (M,ω)
be a real 2n-dimensional C∞-symplectic manifold. Denote by Jξ(M,ω) the
space of all ξ-invariant almost complex structures compatible with ω, which
admits the structure of an infinite dimensional Fréchet manifold and is path-
connected. We have the following symplectic structure Ωξ on Jξ(M,ω):

Ωξ(A,B) :=

∫
M

Tr(JAB)e−2µξωn (1.21)
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for each A,B ∈ TJJξ(M,ω) ⊂ EndTM .
For simplicity, we assume the first Betti number of M is zero. In this

case, we can identify the Lie algebra sympξ(M,ω) of the Fréchet Lie group
Sympξ(M,ω) of symplectic diffeomorphisms preserving ξ with the space
C∞

ξ (M)/R of real-valued ξ-invariant C∞-functions on M modulo constant.
We identify a 2n-form φ on M satisfying

∫
M
φ = 0 and Lξφ = 0 with the

following element of the dual of sympξ(M,ω): f 7→
∫
M
fφ.

Now define a smooth map Sλ
ξ : Jξ(M,ω) → sympξ(M,ω)∗ of Fréchet

manifolds by
Sλ
ξ (J) := 4ŝλξ (gJ)e

−2µξωn. (1.22)

Then we have the following. The proof will be given in Proposition 3.3.1.

Proposition 1.2.1 ([Ino1]). The map Sλ
ξ : Jξ(M,ω) → sympξ(M,ω)∗ is a

moment map with respect to the symplectic structure Ωξ and the action of
Sympξ(M,ω) on Jξ(M,ω). Namely, Sλ

ξ is a Sympξ(M,ω)-equivariant smooth
map satisfying

− d

dt

∣∣∣
t=0
⟨Sλ

ξ (Jt), f⟩ = Ωξ(LXfJ0, J̇0) (1.23)

for every smooth curve Jt ∈ Jξ(M,ω) and f ∈ C∞
ξ (M), where Xf is the

Hamiltonian vector field of f : df = −iXfω.

Note that moment maps with respect to the symplectic structure Ωξ is
unique up to Sympξ(M,ω)-invariant elements of sympξ(M,ω). In particular,
the map J 7→ (ŝξ(gJ) + µζ −

∫
M
µζe

−2µξωn/
∫
M
e−2µξωn)e−2µξωn also gives a

moment map for any ζ tangent to the action of the closed torus generated
by ξ. In this thesis, we restrict our interest to the proportional one, i.e.
ζ = −2λξ for some λ ∈ R.

The following invariant gives a constraint on λ for each fixed ξ and con-
versely a constraint on ξ for each fixed λ for the non-emptiness of the moduli
space (Sλ

ξ )
−1(0)/Sympξ(M,ω). We will study these constraints in the next

section and section 1.3.3, respectively.

Corollary 1.2.2 (µ-Futaki invariant). Let t be the Lie algebra of the closed
torus generated by ξ. The following linear map Futλξ : t→ R,

Futλξ (ζ) :=

∫
M

ŝλξ (gJ)(−2µζ)e
−2µξωn

/∫
M

e−2µξωn

is independent of the choice of J ∈ Jξ(M,ω) and the moment map µ (as we
divide it by

∫
M
e−2µξωn).
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If we fix a complex structure J , it is independent of the choice of the
Kähler metric ω′ in the Kähler class [ω] (by Moser’s theorem). So in particu-
lar, Futλξ can be regarded as an invariant of the quadruple (X, [ω], ξ, λ) where
X = (M,J) is a complex manifold. As observed in [Wang1], the moment
map picture further expects that Futλξ extends to h0,ξ(X). In section 1.3.2, we

further show that Futλξ extends to h0(X), which is larger than h0,ξ(X). Such
an extension is out of expectations coming from the moment map picture.

Note that the above corollary also shows that this complex invariant Futλξ
(restricted to t) is also a T -equivariant deformation invariant.

Weighted cscK metrics and µ-cscK metrics

For a smooth positive function v on P , Lahdili [Lah] defines the weighted
scalar curvature sv(ω) by

sv(ω) := s(ω) ·(v◦µω)+∆ω(v◦µω)− 1

2

∑
1≤i,j≤k

(Jξi)µ
ω
ξj
·( ∂2v

∂xi∂xj
◦µω). (1.24)

As observed in [Lah], weighted scalar curvature has a moment map picture
similar to that for µ-scalar curvature in the previous section.

When v is of the form v(x) = ṽ(⟨x, ξ⟩) with some smooth positive function
ṽ on R and ξ ∈ t, we can simplify it as

sv(ω) = s(ω) · (ṽ ◦ µω
ξ ) +

(
∆ωµ

ω
ξ · (ṽ′ ◦ µω

ξ )− (∇µω
ξ ,∇µω

ξ ) · (ṽ′′ ◦ µω
ξ )
)
− 1

2
(Jξ)µω

ξ · (ṽ′′ ◦ µω
ξ )

= s(ω) · (ṽ ◦ µω
ξ ) + ∆ωµ

ω
ξ · (ṽ′ ◦ µω

ξ ) +
1

2
(Jξ)µω

ξ · (ṽ′′ ◦ µω
ξ )

Substituting v(x) = e⟨x,−2ξ⟩ yields our µ-scalar curvature sξ(ω):

sv(ω) =
(
(s(ω) + □̄θξ) + (□̄θξ − (Jξ)θξ)

)
eθξ =: sξ(ω)e

θξ .

So µ0
ξ-cscK metrics are equivalent to weighted cscK metrics with the weight

v(x) = e⟨x,−2ξ⟩. For general λ ∈ R, µλ
ξ -cscK metrics are regarded as a special

case of weighted extremal metrics.

1.2.2 From µ-cscK metrics to extremal metric: λ ↘
−∞

In this section, we fix a complex structure J on M and a Kähler class [ω].
We observe some intriguing features of µλ-cscK, assuming some results in the
rest of this chapter.
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Constraint on λ

There is an a priori constraint on λ for each fixed ξ ̸= 0 to admit a µ-
cscK metric in a fixed Kähler class [ω]. If there is a µλ

ξ -cscK metric ω′, i.e.

ŝλξ (ω
′) = 0, in the Kähler class [ω], then we must have

0 = Futλξ (ξ) = Fut0ξ(ξ)−λ
(∫

X

θ2ξe
θξωn

/∫
X

eθξωn −
(∫

X

θξe
θξωn

/∫
X

eθξωn
)2)

.

(1.25)
For ζ ∈ t, we put

νξ(ζ) :=

∫
X

θ2ζe
θξωn

/∫
X

eθξωn −
(∫

X

θζe
θξωn

/∫
X

eθξωn
)2
. (1.26)

This is invariant when we add a constant c on θζ , so it must be positive when
ζ ̸= 0 since it is obviously positive when normalizing θζ so that

∫
X
θζe

θξωn =
0. The function νξ is an invariant of the equivariant deRham class [ω + µ]
and ξ, since it can be expressed as

νξ(ζ) =

∫
P
⟨m,−2ζ⟩2e⟨m,−2ξ⟩DH(m)∫

P
e⟨m,−2ξ⟩DH(m)

−
(∫

P
⟨m,−2ζ⟩e⟨m,−2ξ⟩DH(m)∫

P
e⟨m,−2ξ⟩DH(m)

)2
,

using the Duistermaat-Heckman measure DH = µ∗ω
n, which is an invariant

of the equivariant deRham class [ω+µ] associated to the moment map. Here
P denotes the support of the measure DH.

Thus from (1.25) we can determine λ as

λ = λξ := Fut0ξ(ξ)/νξ(ξ), (1.27)

where the right hand side is an invariant of the triple (X, [ω], ξ) (also an
invariant of the symplectic triple (M,ω, ξ)). The sign of λξ coincides with
that of Fut0ξ(ξ).

λ as a function on the real blowing-up t̂

While the function λξ is well-defined and continuous just on the punctured
space t \ {0}, the following functional

ξ 7→ |ξ| · λξ (1.28)
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continuously extends to the real blowing-up

t̂ := {(ξ,Ξ) | ξ ∈ Ξ = [0,∞) · v ⊂ t, v ∈ t \ {0}} π−→ t : (ξ,Ξ) 7→ ξ

of t at the origin, where we take the norm on t as |ξ|2 :=
∫
X
θ2ξω

n. Indeed,
as |ξ| tends to 0, the function |ξ|−2νξ(ξ) on t \ {0} approaches to a positive
continuous function ν̂(0,Ξ) = 1/

∫
X
ωn− (

∫
X
θΞω

n/
∫
X
ωn)2 on the boundary

sphere π−1(0), where we put θΞ := θv for a unique vector v ∈ Ξ with |v| = 1

and similarly |ξ|−1 ·Fut0ξ(ξ) approaches to a continuous function F̂ut(0,Ξ) =
Fut(v) =

∫
X
(s − s̄)θΞω

n/
∫
X
ωn on π−1(0). Here the positivity of ν̂ again

follows by the Cauchy-Schwartz inequality.
We will see in section 1.3.3 that λξ, i.e. Fut0ξ(ξ), is always positive suf-

ficiently away from the origin. Assuming this, it follows that any sequence
ξi ∈ t with λξi → −∞ must converge to the origin 0 ∈ t. Moreover, as
the function |ξ| · λξ is bounded near the origin, we have a uniform bound
|λiξi| ≤ C, so that there is a subsequence such that λiξi converges to some
vector ξ̌ ∈ t. Now suppose Futλiξi = 0 for every i. Since we can compute all

Futλiξi by a fixed T -invariant Kähler metric ω, the limit of this functional is
given as

F̌ut
0

ξ̌(ζ) :=

∫
X

(
(s(ω)− s̄)− (θξ̌ − θξ̌)

)
θζω

n
/∫

X

ωn,

where we put θξ̌ :=
∫
X
θξ̌ω

n/
∫
X
ωn. We must have F̌ut

0

ξ̌ ≡ 0 for the limit

vector ξ̌.
Such a vector ξ̌ is uniquely characterized as the critical point of the fol-

lowing strictly convex functional on t:

C(ξ) :=

∫
X

(
(s(ω)− s̄)− (θξ − θξ)

)2
ωn
/∫

X

ωn −
∫
X

(s(ω)− s̄)2ωn
/∫

X

ωn,

(1.29)

whose derivative at ξ is 2F̌ut
0

ξ . (We add the second term so that the functional
is independent of the choice ω ∈ [ω]. ) The minimizer of this functional is
called the extremal vector. We denote it by ξext. From the above observation,
we obtain ξ̌ = ξext for the limit vector ξ̌, independent of the choice of the
subsequence of {i}. It follows that the original sequence λiξi also converges
to ξext.
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Extremal metric in the limit of λ→ −∞

Suppose there is a sequence of µλi
ξi
-cscK metrics ωi in the fixed Kähler class

[ω] with λi → −∞:

(s(ωi) + □̄ωiθξi(ωi)) + (□̄ωiθξi(ωi)− ξJi θξi(ωi))− λiθξi(ωi) = s̄λiξi ,

where θξi(ωi) denotes the ∂̄-Hamiltonian potential with respect to ωi in the
same equivariant class. Fix a reference metric ω and take a Kähler potential
ϕi of ωi so that maxϕi = 0.

Suppose we have a uniform C3,α-bound of ϕi and a uniform bound Cω ≤
ωi, then the limit of the metrics gives a metric ω−∞ ∈ [ω] after taking a
subsequence. Remember that the vectors ξi must converge to 0 and the
sequence λiξi converges to the extremal vector ξext (by the observation in the
last subsection). It follows that θξi(ωi) = θξi(ω)− ξJi ϕi converges to 0 in C2,α

and the limit metric ω−∞ must satisfy the following equation

s(ω−∞)− θξext(ω−∞) = const,

which is nothing but the equation of extremal metric.
Conversely, we will see in section 1.5 the following:

• If there exists an extremal metric, there also exists µλ-cscK metrics in
the same Kähler class for λ sufficiently small or large.

• If there is a µλ-cscK metric for λ ≤ 0, then we can find a µλ′
-cscK metric

in the same Kähler class for small perturbations λ′ ∈ (λ− ϵ, λ+ ϵ).

Thus the problem of connecting µ0-cscK metric/Kähler–Ricci soliton and
extremal metric (when both of them exist) reduces to the problem on the a
priori estimate.

Though we firstly introduced the parameter λ so that we can include
Kähler-Ricci soliton in our study on µ-cscK metric, the above observation
now tells us that the parameter λ can be regarded as a continuity path
connecting µ0-cscK metric/Kähler–Ricci soliton and extremal metric.
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1.3 µ-Futaki invariant, µ-volume functional and

automorphism group

1.3.1 µ-Lichnerowicz operator and reductiveness

In this section, we fix a complex structure J on M , a Kähler metric ω and a
function θ on M . We prove the reductiveness of the automorphism group of
a Kähler manifold admitting µ-cscK. This result is a first step to construct a
good moduli space of the complex structures of Kähler manifolds admitting
µ-cscK metrics, in order to apply GIT locally. We firstly begin with basic
calculations for the readers’ and the author’s convenience.

Warming up for calculations

Let (X,ω) be a Kähler manifold, θ be a smooth real-valued function on X
and (E, h) be a hermitian (not necessarily holomorphic, so far) vector bundle
on X. Define an L2-norm ⟨·, ·⟩θ by

⟨α, β⟩θ :=
∫
X

h(α, β) eθωn

for smooth sections α, β ∈ Ω0(E). For a differential operator D : Ω0(E) →
Ω0(F ) from E to F , denote by Dθ∗ : Ω0(F )→ Ω0(E) the formal left adjoint
of D with respect to such pairing, i.e.

⟨Dθ∗α, β⟩E,θ = ⟨α,Dβ⟩F,θ

for all sections α ∈ Ω0(F ), β ∈ Ω0(E). As usual, we denote by Λ : Ωp,q(E)→
Ωp−1,q−1(E) the adjoint operator of ω∧:

hp−1,q−1(Λ(α), β) = hp,q(α, ω ∧ β),

where hp,q is the induced hermitian metric on Λp,q ⊗ E defined as

(u1···p∧u1̄···q̄⊗σ, v1···p∧ v1̄···q̄⊗ τ) := h(σ, τ) ·det
(
g(ui, vj) 0

0 g(uk̄, vl̄)

)i,j=1,...,p

k,l=1,...,q

for u1···p = u1∧· · ·∧up, v1···p = v1∧· · ·∧vp ∈ Λp,0
x X, u1̄···q̄ = u1̄∧· · ·∧uq̄, v1̄···q̄ =

v1̄ ∧ · · · ∧ vq̄ ∈ Λ0,q
x X and σ, τ ∈ Ex.
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Example 1.3.1. For α = αij̄ ⊗ dzi ∧ dz̄j ∈ Ω1,1(E), we have

Λ(α) = −
√
−1gij̄αij̄.

For γ = γij̄k̄ ⊗ dzi ∧ dz̄j ∧ dz̄k ∈ Ω1,2(E), we have

Λ(γ) = −
√
−1gij̄(γij̄k̄ − γik̄j̄)dz̄k.

For a hermitian connection ∇ on (E, h), the following local expressions
yield global operators.

∇′ :=
n∑

i=1

dzi ∧∇∧
∂i
: Ωp,q(E)→ Ωp+1,q(E), (1.30)

∇′′ :=
n∑

i=1

dz̄i ∧∇∧
∂̄i
: Ωp,q(E)→ Ωp,q+1(E), (1.31)

where
∇∧ : Ω0(Λp,q ⊗ E)→ Ω1(Λp,q ⊗ E)

is the induced connection on Λp,q ⊗ E. These operators ∇′,∇′′ are the first
order differential operators from Λp,q ⊗ E to Λp+1,q ⊗ E and Λp,q ⊗ E to
Λp,q+1 ⊗ E, respectively, and ∇′ +∇′′ is the exterior covariant derivative of
∇.

Put θp := ∂θ/∂zp, θq̄ := ∂θ/∂z̄q on a holomorphic chart of X and denote
by ξ′, ξ′′ the following global vector fields associated to θ

ξ′ := ∂♯θ = gpq̄θq̄∂p, ξ′′ := ∂̄♯θ = gpq̄θp∂̄q.

Then the formal adjoints ∇′θ∗,∇′′θ∗ of ∇′,∇′′ with respect to the pairing
⟨·, ·⟩θ can be written as

∇′θ∗ = ∇′∗ − iξ′ =
√
−1
(
Λ∇′′ −∇′′Λ

)
− iξ′ , (1.32)

∇′′θ∗ = ∇′′∗ − iξ′′ = −
√
−1
(
Λ∇′ −∇′Λ

)
− iξ′′ . (1.33)

Indeed, using ⟨α, β⟩θ = ⟨α, βeθ⟩, we compute

⟨∇′θ∗α, β⟩θ = ⟨α,∇′β⟩θ
= ⟨α,∇′(eθβ)⟩ − ⟨α, ∂θ ∧ β⟩θ
= ⟨∇′∗α, β⟩θ − ⟨iξ′α, β⟩θ.
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Weitzenböck formula

Let (L, e−ϕ) be a holomorphic hermitian line bundle on X, where we denote
the hermitian connection by a local expression e−ϕ. We denote by ∇ the
Chern connection on L. The Chern curvature is given by ∂∂̄ϕ. Put

∇♯ := ∇′
T 1,0X⊗L ◦ ♯ : Ω0,1(L)→ Ω1,0(T 1,0X ⊗ L),

∇♯♯ := ∇′′
T 1,0X⊗L ◦ ♯ : Ω0,1(L)→ Ω0,1(T 1,0X ⊗ L),

where ♯ : Ω0,1(L)→ Ω0(T 1,0X ⊗ L) is given by ♯(αj̄dz̄
j) = gij̄αj̄∂i. Consider

the following four variants of weighted Laplacian acting on Ω0,1(L):

□θ := ∇′θ∗∇′ +∇′ ∇′θ∗ = ∇′θ∗∇′,

□̄θ := ∇′′θ∗∇′′ +∇′′ ∇′′θ∗,

□θ
# := ∇♯θ∗∇♯ = ♭(∇′θ∗

TX⊗L∇′
TX⊗L)♯,

□̄θ
# := ∇♯♯θ∗∇♯♯ = ♭(∇′′θ∗

TX⊗L∇′′
TX⊗L)♯,

where ♭ : Ω0(T 1,0X ⊗ L)→ Ω0,1(L) is given by ♭(ηi∂i) = gij̄η
idz̄j.

Lemma 1.3.2 (Weighted Laplacians). The above weighted Laplacians can
be expressed by the usual Laplacians as follows.

□θ = □−∇∧
ξ′ , (1.34)

□̄θ = □̄−∇∧
ξ′′ − gij̄θik̄dz̄k ⊗ ∂̄j, (1.35)

□θ
# = □# −∇∧

ξ′ , (1.36)

□̄θ
# = □̄# −∇∧

ξ′′ , (1.37)

where θik̄ = ∂2θ/∂zi∂z̄k and gij̄θik̄dz̄
k ⊗ ∂̄j ∈ End(T 0,1X) is identified with

the operator acting on Ω0,1(L).

Proof. Let αk̄ ⊗ dz̄k be an element of Ω0,1(L) expressed by local sections αk̄

of L. Then from (1.32), we have

□θ(αk̄ ⊗ dz̄k) = ∇′θ∗∇′(αk̄ ⊗ dz̄k)

=
(
∇′∗∇′ − iξ′∇′

)
(αk̄ ⊗ dz̄k)

= (□−∇∧
ξ′)(αk̄ ⊗ dz̄k).
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We can do similarly as for □θ
# and □̄θ

#.

As for □̄θ, we calculate as follows.

□̄θ(αk̄ ⊗ dz̄k) = (∇′′θ∗∇′′ +∇′′∇′′θ∗)(αk̄ ⊗ dz̄k)

=
(
(∇′′∗∇′′ +∇′′∇′′∗)− (iξ′′∇′′ +∇′′iξ′′)

)
(αk̄ ⊗ dz̄k)

= □̄(αk̄ ⊗ dz̄k)−∇∧
ξ′′(αk̄ ⊗ dz̄k) + dz̄q ∧ iξ′′∇∧

∂̄q
(αk̄ ⊗ dz̄k)− ∂̄L(gij̄θiαj̄)

= (□̄−∇∧
ξ′′)(αk̄ ⊗ dz̄k)− gij̄θik̄αj̄dz̄

k,

where we transform dz̄q ∧ iξ′′∇∧
∂̄q
(αk̄ ⊗ dz̄k) as

dz̄q ∧ iξ′′∇∧
∂̄q
(αk̄ ⊗ dz̄k) = dz̄q ∧ (ξk̄∂̄L,q̄αk̄ + αk̄(−ξ j̄Γk̄

q̄j̄))

= glk̄θl∂̄Lαk̄ − αk̄θlg
lj̄gpk̄gpj̄,q̄dz̄

q

= θl∂̄L(g
lk̄αk̄).

Corollary 1.3.3 (Weitzenböck formula). Write Ric(ω) =
√
−1∂̄∂ log det(gpq̄)

as
√
−1Rij̄dz

i∧dz̄j and put ξ := (ξ′−ξ′′)/2
√
−1. Then we have the following.

□θ − □̄θ = Λ(
√
−1∂∂̄ϕ)− 2

√
−1∇∧

ξ + gij̄θik̄dz̄
k ⊗ ∂̄j, (1.38)

□θ
# − □̄θ

# = Λ(
√
−1∂∂̄ϕ) + gij̄Rik̄dz̄

k ⊗ ∂̄j − 2
√
−1∇∧

ξ , (1.39)

□θ
# −□θ = 0, (1.40)

□̄θ
# − □̄θ = −gij̄(Rik̄ − θik̄)dz̄k ⊗ ∂̄j. (1.41)

Proof. The first two equalities follow from the above lemma combined with
the usual Kodaira-Nakano formula

□− □̄ = Λ(
√
−1∂∂̄ϕ),

□# − □̄# = ♭(gij̄R k
p ij̄

dzp ⊗ ∂k + gij̄ϕij̄dz
p ⊗ ∂p)♯

= gpq̄Rpl̄dz̄
l ⊗ ∂̄q + gij̄ϕij̄dz̄

q ⊗ ∂̄q.
Put αk̄,p := ∇pαk̄ and αk̄,q̄ := ∇q̄αk̄. Then using (1.32) and (1.33), we

obtain

∇♯(αk̄dz̄
k) = glk̄αk̄,pdz

p ⊗ ∂l, (1.42)

∇♯θ∗(βl
pdz

p ⊗ ∂l) = −glj̄gpq̄(βl
p,q̄ + βl

pθq̄)dz̄
j, (1.43)

∇♯♯(αk̄dz̄
k) = (glk̄αk̄)q̄dz̄

q ⊗ ∂l, (1.44)

∇♯♯θ∗(βl
q̄dz̄

q ⊗ ∂l) = ∇♯♯∗(βl
q̄dz̄

q ⊗ ∂l)− glȷ̄gpq̄θpβl
q̄dz̄

j. (1.45)
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µ-Lichnerowicz operator and Reductiveness

Proposition 1.3.4 (µ-Lichnerowicz operator). Put D := ∇♯♯∂̄ : C∞
C (X) →

Ω0,1(T 1,0X). Suppose ξ′ = ∂♯θ is a holomorphic vector field, then

(Dθ∗D)f = (∂̄θ∗□̄θ
#∂̄)f

= (∂̄θ∗□̄θ∂̄)f − (∂̄θ∗(gij̄(Rik̄ − θik̄)dz̄k ⊗ ∂̄j)∂̄)f
= (□̄− ξ′′)2f + (Ric(ω)− Lξ′ω,

√
−1∂∂̄f) (1.46)

+ (∂̄♯sξ(ω))(f),

where sξ(ω) = (s(ω) + □̄θ) + (□̄θ − ξ′θ).

Proof. It suffices to show the third equality. As ∂̄∂̄ = 0, we have ∂̄θ∗□̄θ∂̄ =
(∂̄θ∗∂̄)(∂̄θ∗∂̄) = (□̄− ξ′′)(□̄− ξ′′). The second term in the second formula can
be simplified as

−(∂̄θ∗(gij̄(Rik̄ − θik̄)dz̄k ⊗ ∂̄j)∂̄)f = (
√
−1(Λ∂) + iξ′′)(g

ij̄(Rik̄ − θik̄)fj̄dz̄k).
(1.47)

As for
√
−1(Λ∂)(gij̄(Rik̄ − θik̄)fj̄dz̄k),

√
−1(Λ∂)(gij̄(Rik̄ − θik̄)fj̄dz̄k) =

√
−1(−

√
−1glk̄)(gij̄(Rik̄ − θik̄)fj̄)l

= glk̄gij̄(Rik̄ − θik̄)flj̄ + glk̄(gij̄(Rik̄ − θik̄))lfj̄
= (Ric(ω)− Lξ′ω,

√
−1∂∂̄f) (1.48)

+ glk̄gij̄ ,l(Rik̄ − θik̄)fj̄ + glk̄gij̄(Rik̄,l − θik̄,l)fj̄,

where Rik̄,l = ∂Rik̄/∂z
l and θik̄,l = ∂3θ/∂zi∂z̄k∂zl. As Rik̄,l − θik̄,l = Rlk̄,i −

θlk̄,i, the last term of (1.48) is equal to

gij̄(glk̄(Rlk̄ − θlk̄))ifj̄ − gij̄glk̄ ,i(Rlk̄ − θlk̄)fj̄. (1.49)

As glk̄gij̄ ,l = −glk̄giq̄gpq̄,lgpj̄ = −glk̄giq̄glq̄,pgpj̄ = gik̄,pg
pj̄, the second term of

(1.48) is distinguished by the second term of (1.49). So we obtain

√
−1(Λ∂)(gij̄(Rik̄ − θik̄)fj̄dz̄k) = (Ric(ω)− Lξ′ω,

√
−1∂∂̄f) + (∂̄♯(s+ □̄θ))f.
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The rest term in (1.47) is

iξ′′(g
ij̄(Rik̄ − θik̄)fj̄dz̄k) = ξk̄gij̄(Rik̄ − θik̄)fj̄

= glk̄gij̄θl(Rik̄ − θik̄)fj̄
and the following calculations show (1.46). As ξ′ = gqp̄θp̄ is holomorphic, we

have (gpq̄θp)i = (gp̄qθp̄)ī = ∂̄iξq = 0. It follows that

(□̄θ)i = −(gpq̄θpq̄)i = −(gpq̄θp)iq̄ + (gpq̄,q̄θp)i

= (−gpk̄glq̄glk̄,q̄θp)i
= −(glq̄glq̄,k̄)igpk̄θp − glq̄glq̄,k̄(gpk̄θp)i
= gpk̄θpRik̄

and
(ξ′θ)i = (glk̄θk̄θl)i = (glk̄θl)iθk̄ + glk̄θlθik̄ = glk̄θlθik̄.

Corollary 1.3.5 (Reductiveness). Suppose there exists a µλ
ξ -cscK metric

ω on X, then the identity component Aut0ξ(X/Alb) of the subgroup of the
reduced automorphism group Aut(X/Alb) preserving ξ is the complexifica-
tion of the group HIsom

0
ξ(X,ω) of the Hamiltonian isometries of the µ-cscK

metric ω preserving ξ, especially, it is reductive.

Proof. If ω is a µ-cscK, then the operator Dθ∗D restricted to C∞
ξ (X,C) =

{f ∈ C∞(X,C) | ξf = 0} is a real operator. It follows that

{f ∈ C∞
ξ (X,C) | Df = 0} = {g+

√
−1h | Dg = Dh = 0, g, h ∈ C∞

ξ (X,R)},

which are respectively isomorphic to autξ(X, [ω]) and isomξ(X, g)⊕
√
−1isomξ(X, g)

as we have D = ∇♯♯∂̄ = ∂̄TX∂
♯.

1.3.2 µ-Futaki invariant

In this section, we fix a complex structure J on M , a Kähler class [ω], the
properly ∂̄-Hamiltonian vector field ξ and the parameter λ ∈ R.

Let ξ be a properly ∂̄-Hamiltonian vector field on a Kähler manifold X.
Taking a ξ-invariant Kähler metric ω ∈ [ω], we define a C-linear functional
Futλξ : h0(X)→ C by

Futλξ (ζ) :=

∫
X

ŝλξ (ω)θζ e
θξωn

/∫
X

eθξωn. (1.50)
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Remember that

ŝλξ (ω) = (s(ω) + □̄θξ) + (□̄θξ − ξJθξ)− λθξ − s̄λξ ,

s̄λξ =

∫
X

(s+ □̄θξ − λθξ)eθξωn
/∫

X

eθξωn.

The following proposition proves Theorem B (1).

Proposition 1.3.6. The linear functional Futλξ is independent of the choice
of the ξ-invariant Kähler metric ω in the fixed Kähler class [ω] and of the nor-
malization of the moment map θ (independent of the equivariant cohomology
class [ω + θ]).

Proof. Take two ξ-invariant Kähler forms ω, ω′ ∈ [ω] and take a smooth
function ϕ so that ω′ = ω +

√
−1∂∂̄ϕ. Put ωt := ω + t

√
−1∂∂̄ϕ. Then

the moment map µt with respect to ωt with ωt + µt ∈ [ω + µ] is given by
µt
ξ = µξ − tξJϕ/2. We put θtζ := θζ + tζJϕ for ζ ∈ h0(X), which satisfies

∂̄θtζ = iζJωt and is complex-valued in general and becomes real-valued when

ζ ∈ h0(X,ω). As we already know that
∫
X
eθ
t
ξωn is invariant, it is sufficient

to see
d

dt

∫
X

ŝλξ (gt)θ
t
ζ e

θtξωn
t = 0

for every t ∈ [0, 1]. Firstly, we compute

d

dt
ŝλξ (ωt) =

d

dt

(
(gij̄t R

t
ij̄ − g

ij̄
t θ

t
ξ,ij̄) + (−gij̄t θtξ,ij̄ − ξ

Jθt,ξ)− λθt,ξ
)

= −giq̄t ġtpq̄g
pj̄
t R

t
ij̄ − g

ij̄
t (g

kl̄ġtkl̄)ij̄ + giq̄t ġ
t
pq̄g

pj̄
t θ

t
ξ,ij̄ − g

ij̄
t (ξ

Jϕ)ij̄

+ giq̄t ġ
t
pq̄g

pj̄θtξ,ij̄ − g
ij̄(ξJϕ)ij̄ − ξJξJϕ− λξJϕ

= −□̄t□̄tϕ− (Ric(ωt)− LξJωt,
√
−1∂∂̄ϕ) + □̄tξ

Jϕ

+ (LξJωt,
√
−1∂∂̄ϕ) + (□̄t − ξJ)(ξJϕ)− λξJϕ

= −((□̄t − ξ̄J)2ϕ+ (Ric(ωt)− LξJωt,
√
−1∂∂̄ϕ))− ξ̄J□̄tϕ− □̄tξ̄

Jϕ+ ξ̄J ξ̄Jϕ

+ □̄tξ
Jϕ+ (LξJωt,

√
−1∂∂̄ϕ) + (□̄t − ξJ)(ξJϕ)− λξJϕ

= −Dθ∗
t Dtϕ+ (∂̄♯sξ(gt))(ϕ)− λξJϕ

− ξ̄J□̄tϕ+ □̄tξ
Jϕ+ (LξJωt,

√
−1∂∂̄ϕ)

= −Dθ∗
t Dtϕ+ (∂̄♯ŝλξ (gt))(ϕ) = −Dθ∗

t Dtϕ+ (∂♯ŝλξ (gt))(ϕ),
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where we used the ξ-invariance of metrics for ξ̄Jϕ = ξJϕ etc. and compute
the last line by

(LξJωt,
√
−1∂∂̄ϕ) = gil̄t g

kj̄
t θ

t
ξ,ij̄ϕkl̄

= gil̄t (ξ
kϕkl̄)i − gil̄t g

kj̄
t,iθ

t
ξ,j̄ϕkl̄ − gil̄t ξkϕkl̄i

= gil̄t ((ξ
kϕk)l̄)i − gkl̄t,pg

pj̄
t θ

t
ξ,j̄ϕkl̄ − ξk(gil̄t ϕil̄)k + gkj̄t θ

t
ξ,j̄g

il̄
t,kϕil̄

= −□̄ξJϕ+ ξJ□̄ϕ.
It follows that

d

dt

∫
X

ŝλξ (gt)θ
t
ζ e

θtξωn
t =

∫
X

−Dθ∗
t Dtϕ θ

t
ζe

θtξωn
t +

∫
X

(∂♯ŝλξ (gt))(ϕ) θ
t
ζe

θtξωn
t

+

∫
X

ŝλξ (gt)ζ
Jϕ eθ

t
ξωn

t −
∫
X

ŝλξ (gt)θ
t
ζ(□t − ξJ)(ϕ)eθ

t
ξωn

t

= −
∫
X

ϕ Dθ∗
t Dtθ

t
ζe

θtξωn
t +

∫
X

(∂♯ŝλξ (gt))(ϕ) θ
t
ζe

θtξωn
t

+

∫
X

ŝλξ (gt)ζ
Jϕ eθ

t
ξωn

t −
∫
X

∂♯(ŝλξ (gt)θ
t
ζ)(ϕ)e

θtξωn
t

= −
∫
X

ϕ Dθ∗
t Dtθ

t
ζe

θtξωn
t

and the last term vanishes as ζ ∈ h0(X).

By the definition of Futλξ , if there is a µλ
ξ -cscK metric in the Kähler class

[ω], Futλξ must vanish.
We put

F̃ λ
ξ (ζ) :=

∫
X

ŝλξ (ω)θζ e
θξωn = Futλξ (ζ)

∫
X

eθξωn. (1.51)

In contrast to Futλξ , F̃ λ
ξ depends on the choice of the moment map θ while

it is independent of the choice of the Kähler metric in the fixed Kähler class
[ω].

When X is a Fano manifold and [ω] = 2πc1(X), Fut1ξ reduces to the
following well-known form:

Fut1ξ(ζ) = −
∫
X

ζJ(h− θvξ )e
θvξωn = −

∫
X

θζe
θξωn

/∫
X

eθξωn,

where h is a Ricci potential and θvξ denotes the normalization of θξ satisfying∫
X
eθ
v
ξωn = 1. This invariant was investigated in [TZ2].
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1.3.3 µ-volume functional

Here we introduce a generalization of a functional considered in [TZ2].
Let X be a compact Kähler manifold with a Hamiltonian holomorphic

action of a compact Lie group K and ω be a K-invariant Kähler form on X.
Define the µ-volume functional Volλ with respect to ω on k by

Volλ(ξ) := es̄
λ
ξ

(∫
X

eθξωn
)λ

(1.52)

using a real-valued Hamiltonian potential θξ :
√
−1∂̄θξ = iξJω. We can easily

check that Volλ(ξ) is independent of the choice of the Hamiltonian potential.
Remember again that the constant s̄λξ is given by

s̄λξ =

∫
X

(s+ □̄θξ − λθξ)eθξωn
/∫

X

eθξωn.

As s̄λξ and
∫
X
eθξωn is independent of the choice of the ξ-invariant Kähler

metric, the µ-volume functional Volλ is also independent of the choice of the
K-invariant Kähler metric in the fixed Kähler class [ω].

When X is a Fano manifold and the Kähler class [ω] is equal to 2πc1(X),
we have s̄1ξ = n by (1.20) under the normalization (1.18) and thus obtain

Vol1 = en
∫
X
eθξωn, which is equivalent to the volume functional considered

in [TZ2]. We can easily see the properness and the convexity of Vol1 in this
case and thus obtain a unique critical point ξ of Vol1, which is equivalent to
Futξ ≡ 0.

In [Ino1], the author used this result in order to formulate an appropriate
moduli problem for Fano manifolds admitting Kähler-Ricci solitons, which
is equivalent to detect a sensible moduli stack, and to construct the mod-
uli space of them. It is important that we have such a result for all Fano
manifolds, not only for Fano manifolds admitting Kähler-Ricci solitons, as
we must include ‘K-semistable’ manifolds in the member of the moduli stack
in order to ensure the openness of the interested families in general families,
which corresponds to the Artinness of the moduli stack.

Variational formulas

Proposition 1.3.7. The derivative dξVol
λ of Volλ at ξ ∈ k is given by

(dξVol
λ)(ζ) = Volλ(ξ) · Futλξ (ζ).
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Proof. We calculate the derivative of log Volλ(ξ) = s̄λξ + λ log
∫
X
eθξωn. We

have the following basic calculations:

d

dt

∣∣∣
t=0

∫
X

(s+ □̄θξ+tζ − λθξ+tζ)e
θξ+tζωn (1.53)

=

∫
X

(
(s+ □̄θξ − λ) + (□̄θξ − ξJθξ − λθξ)

)
θζe

θξωn

= F̃ λ
ξ (ζ) + (s̄λξ − λ)

∫
X

θζe
θξωn,

d

dt

∣∣∣
t=0

∫
X

eθξ+tζωn =

∫
X

θζe
θξωn. (1.54)

It follows that

d

dt

∣∣∣
t=0
s̄λξ+tζ = Futλξ (ζ)− λ

∫
X

θζe
θξωn

/∫
X

eθξωn.

So we obtain

d

dt

∣∣∣
t=0

log Volλ(ξ + tζ) =
d

dt

∣∣∣
t=0

(
s̄λξ+tζ + λ log

∫
X

eθξ+tζωn
)

= Futλξ (ζ).

Remark 1.3.8. The log of the µ-volume functional is given by

log Volλ =

∫
X

(s+ □̄θvξ − λθvξ )eθ
v
ξωn,

where we put θvξ := θξ − log
∫
X
eθξωn so that

∫
X
eθ
v
ξωn = 1. As we have∫

X
□̄θvξeθ

v
ξωn =

∫
X
|∂̄θvξ |2e

θvξωn, this functional has the same expression with
the Perelman’s W -functional:

W (ω, f, λ−1) :=

∫
X

(2λ−1(s+ |∂̄f |2) + f)e−f
(λω
4π

)n
.

While we usually consider the W -functional for positive λ > 0 (and for
general smooth function f with the normalization

∫
X
e−f (λω

4π
)n = 1), we are

mainly interested in λ ≤ 0 for our Volλ in the context of µ-cscK.
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Next, we exhibit the second variational formula of Volλ. Define a smooth
map DVolλ : k→ k∗ by

DVolλ(ξ) = dξVol
λ = Volλ(ξ) · Futλξ . (1.55)

Proposition 1.3.9. The derivative dξDVol
λ : k → k∗ of DVolλ at ξ ∈ k is

given by

⟨dξDVolλ(ζ), •⟩ = Volλ(ξ)2 · Futλξ (ζ) · Futλξ (•)

− Volλ(ξ) ·
∫
X
θζe

θξωn∫
X
eθξωn

Futλξ (•)− Volλ(ξ) ·
∫
X
θ•e

θξωn∫
X
eθξωn

Futλξ (ζ)

+ Volλ(ξ) ·
(∫

X

eθξωn

)−1 ∫
X

(ŝλξ θζθ• + 2ζJθ•)e
θξωn

− λVolλ(ξ) ·
(∫

X

eθξωn

)−1(∫
X

θζθ•e
θξωn −

∫
X
θζe

θξωn∫
X
eθξωn

∫
X

θ•e
θξωn

)
.

Proof. Using the first variational formula, we have

⟨dξDVolλ(ζ), •⟩ = Volλ(ξ)2 · Futλξ (ζ) · Futλξ (•)− Volλ(ξ) ·
∫
X
θζe

θξωn∫
X
eθξωn

Futλξ (•)

+ Volλ(ξ)

(∫
X

eθξωn

)−1
d

dt

∣∣∣
t=0

F̃ λ
ξ+tζ(•).

The claim follows by the following computation.

d

dt

∣∣∣
t=0

F̃ λ
ξ+tζ(•) =

d

dt

∣∣∣
t=0

∫
X

(s+ 2□̄θξ+tζ − (ξ + tζ)Jθξ+tζ − λθξ+tζ − s̄λξ+tζ)θ•e
θξ+tζωn

=

∫
X

(2□̄θζ − 2ξJθζ − λθζ)θ•eθξωn −
F̃ λ

ξ (ζ)− λ
∫
X
θζe

θξωn∫
X
eθξωn

∫
X

θ•e
θξωn

+

∫
X

ŝλξ θ•θζe
θξωn

= 2

∫
X

ζJθ•e
θξωn −

∫
X
θ•e

θξωn∫
X
eθξωn

F̃ λ
ξ (ζ) +

∫
X

ŝλξ θ•θζe
θξωn

− λ
(∫

X

θζθ•e
θξωn −

∫
X
θζe

θξωn∫
X
eθξωn

∫
X

θ•e
θξωn

)
.
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Corollaries of the second variational formula

Using the second variational formula, we obtain a criterion for ξ to be a local
minimizer.

Corollary 1.3.10. Let ω be a µλ
ξ -cscK metric on X. If ξ is a local minimizer

of Volλ, then

λ ≤
2
∫
X
|ζJ |2geθξωn/

∫
X
eθξωn

νξ(ζ)
(1.56)

for every ζ ∈ k \ {0} (with |ζ| = 1).
Conversely, if we have

λ <
2
∫
X
|ζJ |2geθξωn/

∫
X
eθξωn

νξ(ζ)
(1.57)

for every ζ ∈ k\{0} (with |ζ| = 1), then ξ ∈ k is an isolated local minimizer of
the functional Volλ. (Note that 2

∫
X
|ζJ |2geθξωn/

∫
X
eθξωn depends on the µ-

cscK metric ω and so on λ. ) Especially, ξ is an isolated local minimizer
when λ ≤ 0.

Moreover, let λ1 be the first eigenvalue of the weighted ∂̄-Laplacian □̄g−ξJ
(restricted to the space of ξ-invariant real functions) with respect to the µ-
cscK metric ω and suppose λ < 2λ1, then ξ ∈ k is an isolated local minimizer.

Proof. If ξ is a local minimizer, then we should have (d/dt)2|t=0Vol
λ(ξ +

tζ) = dξDVolλ(ζ)(ζ) ≥ 0 for every ζ ̸= 0. On the other hand, if we have
(d/dt)2|t=0Vol

λ(ξ + tζ) = dξDVolλ(ζ)(ζ) > 0 for every ζ ̸= 0, then ξ is an
isolated minimizer. Then the first two claims follow by the second variational
formula of Volλ. The last statement follows by the Poincare’s inequality.

Note that the origin 0 ∈ k is a critical point of Volλ if and only if the usual
Futaki invariant Fut vanishes, which is independent of λ. So we also obtain
the following corollary, which will give a non-uniqueness of critical points in
the next subsection.

Corollary 1.3.11. Suppose Fut ≡ 0. Then the origin 0 ∈ k is an isolated
local minimizer of Volλ if

λ <

∫
X
((s− s̄)θ2ζ + 2|ζJ |2)ωn/

∫
X
ωn

ν0(ζ)
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and 0 ∈ k is a local minimizer only when

λ ≤
∫
X
((s− s̄)θ2ζ + 2|ζJ |2)ωn/

∫
X
ωn

ν0(ζ)

for every ζ ∈ k \ {0}, where the right hand side is independent of the choices
of the Kähler metric in the fixed Kähler class and the moment map.

Proof. Note ŝλ0 = s− s̄. The claim follows by the second variational formula.
We can express

∫
X
((s− s̄)θ2ζ +2|ζJ |2)ωn by the integral of equivariant closed

forms as∫
X

((s−s̄)θ2ζ+2|ζJ |2)ωn =
2

n+ 1

(∫
(Ric(ω)+□̄θζ)(ω+θζ)n+1− s̄

n+ 2

∫
X

(ω+θζ)
n+2
)
,

which proves the independence from ω. As for the independence of the
normalization of the moment map, it follows from Fut =

∫
X
(s − s̄)θωn ≡

0.

For a Kähler manifold (X, [ω]) with Fut ≡ 0, we put

λ∞(X, [ω]) := sup{λ ∈ R | Volλ is locally minimized at the origin } (1.58)

= min
|ζ|=1

∫
X
((s− s̄)θ2ζ + 2|ζJ |2)ωn

ν0(ζ)
.

Note that for every λ ≤ λ∞(X, [ω]), Volλ[ω] is locally minimized at the origin.
By the Poincare’s inequality, we have the following lower bound:

sup
ω∈[ω]

(min
X

s(ω) + 2λ1(ω))− s̄ ≤ λ∞(X, [ω]), (1.59)

where λ1(ω) denotes the first eigenvalue of □̄ω.
Now suppose X is a Fano manifold and there is a Kähler metric ω in a

fixed Kähler class on X with a lower bound on the Ricci curvature Ric(ω) ≥
δω for δ > 0. Then by Lichnerowicz–Obata’s theorem, we obtain a lower
bound on the first eigenvalue λ1(ω) ≥ n

2n−1
δ (note that □̄ = 1

2
∆). On the

other hand, we have s(ω) ≥ δn. It follows that if the Futaki invariant of X
vanishes, then by (1.59) we obtain a lower bound λ∞(X, [ω]) ≥ δ(n+ 2n

2n−1
)−s̄.

So in particular, in this case, the origin 0 ∈ k is an isolated local minimizer
of Volλ for all λ ≤ 0 if δ > 2n−1

(2n+1)n
s̄.
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As for [ω] = 2πc1(X), we can explicitly compute as

λ∞(X, 2πc1(X)) = 2. (1.60)

This follows by the equality of equivariant classes [Ric + □̄θζ ] = [ω+ θζ ] and
the formula in the proof of the above corollary. We can also deduce this by
using s− s̄ = −□̄h and □̄θζ − ζJh− θζ = 0 as in (1.19).

Question 1.3.12. Is λ∞(X, [ω]) positive for every Kähler manifold X and
Kähler class [ω] with vanishing Futaki invariant?

Properness of Volλ

Now we show that Volλ is proper for general X, not necessarily a Fano
manifold, and thus always have a critical point.

Lemma 1.3.13. Let M be a closed manifold and f be a Morse-Bott func-
tion. Normalize f so that max f = 0 by adding a constant and suppose
f−1(0) is connected of codimension k. Then for any smooth measure dm,
the parametrized measure tk/2etfdm converges to a non-zero finite measure
supported on f−1(0) as t tends to +∞.

Moreover, the parametrized measure (−1)ptk/2+pfpetfdm converges to a
non-zero finite measure supported on f−1(0) for every non-negative integer
p.

Proof. On any compact set K ⊂ M \ f−1(0), the parametrized measure
tk/2etfdm converges to zero in the order o(tk/te−ϵt) as f is smaller than some
−ϵ < 0 on K.

For a point p of f−1(0), we can take a local coordinate of p so that f(x)
can be written as = −(x21 + · · ·+ x2k). Then we can write tk/2etfdm as

tk/2etfdm = tk/2e−t(x2
1+···+x2

k)m(x)dx1 · · · dxn
for a positive function m(x) on this coordinate. It suffices to prove that
the parametrized measure tk/2e−t(x2

1+···x2
k)dx1 · · · dxn converges to a non-zero

finite measure supported on {x1 = · · · = xk = 0}. As we only need to check
the convergence of the integration of all the test functions of boxes, the claim
follows by the Gaussian integral.

As for (−1)ptk/2+pfpetfdm = tk/2+p(x21+· · ·+x2k)pe−t(x2
1+···+x2

k)m(x)dx1 · · · dxn,
we have ∫

x2p11 · · ·x
2pk
k e−t(x2

1+···+x2
k)dx1 · · · dxk =

k∏
i=1

∫
x2pii e−tx2

i dxi
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for pi with p1 + · · ·+ pk = p. Integrating by parts, we obtain∫ a

0

x2pii e−tx2
i dxi = −

1

2t
a2pi−1e−ta2 +

2pi − 1

2t

∫ a

0

x2pi−2
i e−tx2

i dxi

= · · · = o(e−ta2) + Ct−pi

∫ a

0

e−tx2
i dxi = o(e−ta2) + Ct−pit−1/2.

This proves the claim.

Proposition 1.3.14. Let X be a compact Kähler manifold and K be a
compact Lie group acting on X. The limit limt→∞ t−1 log Volλ(tξ) exists. It
is moreover independent of λ ∈ R and is strictly positive for each ξ ∈ k\{0}.
In particular, Volλ is proper on k for each λ ∈ R.

Proof. Recall that the Hamiltonian potential θξ is a Morse-Bott function
with only even indices and co-indices. In particular, θ−1

ξ (c) is a connected

submanifold for every c ∈ R (cf. [MS]). As Volλ is independent of the
normalization of θξ, we can suppose max θξ = 0. Note that we have θtξ = tθξ
for t ≥ 0 with respect to this normalization, while it is not linear on ξ. Let
2k be the real codimension of Σ := θ−1

ξ (0).
We can write the log of the µ-volume functional as

log Volλ(ξ) = s̄0ξ + λ log

∫
X

eθξωn − λ
∫
X

θξe
θξωn

/∫
X

eθξωn.

As for the first term, we can write as

s̄0tξ/t =

∫
X

(s(x)/t)etθξωn
/∫

X

etθξωn +

∫
X

□̄θξetθξωn
/∫

X

etθξωn.

Since maxx∈X |s(x)/t| goes to 0 and etθξωn/
∫
X
etθξωn is a probability measure

for any t, the first term converges to zero as t tends to infinity. Thanks to
the above lemma, the second term converges to the integration of □̄θξ with
respect to a non-zero finite measure supported on Σ. Since θξ is a Morse–
Bott function, the Hessian at critical points are non-degenerate to the normal
direction, so that we obtain a strict positivity of □̄θξ on Σ. It follows that
s̄0tξ/t converges to a positive constant limt→∞

∫
X
□̄θξtketθξωn/

∫
X
tketθξωn =∫

Σ
□̄θξdm∞/

∫
X
dm∞.

It suffices to show the rest terms converge to zero as t tends to infinity.
Again by the above lemma, tk

∫
X
etθξωn converges to a positive constant, so

that we have

t−1 log

∫
X

etθξωn = O(t−1 log t)→ 0
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as t→∞. Similarly, we have

t−1

∫
X

θtξe
θtξωn

/∫
X

eθtξωn = t−1

∫
X

tk+1θξe
tθξωn

/∫
X

tketθξωn = O(t−1)→ 0

as t→∞.

We obtain Theorem B (2).

Corollary 1.3.15. There exists a vector ξ ∈ k for which the µ-Futaki invari-
ant Futξ restricted to kc vanishes.

Remark 1.3.16. From Corollary 1.3.11 in the last subsection, we conclude that
critical points of Volλ are not unique for a Kähler class [ω] with vanishing
Futaki invariant Fut = 0 and sufficiently large λ.

Proposition 1.3.17. For each λ ∈ R and ξ ∈ k\{0}, the limit of t−1Futλtξ(tξ) =

Futλtξ(ξ) as t→∞ exists and is strictly positive. In particular, the functional

ξ 7→ Futλξ (ξ) is proper on k for each λ ∈ R.

Proof. Remember that Futλtξ(tξ) =
∫
X
ŝλtξθtξe

θtξωn/
∫
X
eθtξωn. As tkeθtξωn

converges to a positive measure, it suffices to prove that tk−1
∫
X
ŝλtξθtξe

θtξωn

converges to a positive constant for any ξ ∈ k (k depends on ξ). Similarly as
before, we can suppose max θξ = 0. Put Σ := θ−1

ξ (0). We can compute as

tk−1

∫
X

ŝλtξθtξe
θtξωn = tk+1

∫
X

(s/t+ □̄θξ)θξetθξωn + tk
∫
X

□̄θξetθξωn

− λtk+1

∫
X

θ2ξe
tθξωn − tk+1(s̄tξ/t− λθ̄tξ/t)

∫
X

θξe
tθξωn.

By the above lemma, the third term and θ̄tξ/t =
∫
X
θξe

tθξωn/
∫
X
etθξωn con-

verges to zero, so that the limit can be computed as the limit of∫
X

(s/t+ □̄θξ − s̄tξ/t)tk+1θξe
tθξωn +

∫
X

□̄θξtketθξωn.

Let dϖ denote the probability measure on Σ given as the limit of the
measures etθξωn/

∫
X
etθξωn = tketθξωn/

∫
X
tketθξωn. Then the integrand s/t+

□̄θξ − s̄tξ/t of the first term uniformly converges to □̄θξ −
∫
Σ
□̄θξdϖ. Again

thanks to the above lemma, we have non-zero finite measures dm′
∞ = limt→∞(−1)tk+1θξe

tθξωn

37



and dm∞ = limt→∞ tketθξωn supported on Σ. (We have dϖ = dm∞/
∫
Σ
dm∞.

) It follows that the limit is given by

−
∫
Σ

(
□̄θξ −

∫
Σ

□̄θξdϖ
)
dm′

∞ +

∫
Σ

□̄θξdm∞.

Since we have
√
−1∂̄(□̄θξ) = iξJRic(ω), □̄θξ is constant along each connected

critical manifold. It follows that □̄θξ is constant along Σ (thanks to the
connectedness of Σ, as we noted in the proof of the last proposition) and so
the integrand of the first term is identically zero. So the limit is

∫
Σ
□̄θξdm∞,

which is strictly positive as θξ has a non-degenerate Hessian to the normal
direction.

Now we obtain the following expected result, which shows that critical
points of Volλ must converge to the origin as λ tends to −∞ as we observed
in subsection 1.2.2.

Corollary 1.3.18. The set {ξ ∈ k | λξ ≤ 0} is compact for the functional λξ
considered in section 1.2.2. As a consequence, {ξ ∈ k | Futλξ ≡ 0 for some λ ≤
0} is compact.

Proof. It follows from

{ξ ∈ k | Futλξ ≡ 0 for some λ ≤ 0} ⊂ {ξ ∈ k | λξ ≤ 0} = {ξ ∈ k | Fut0ξ(ξ) ≤ 0}.

The following is a partial evidence for the uniqueness of the candidates
of ξ for µλ-cscK metrics.

Corollary 1.3.19. For each λ ≤ 0, the set {ξ | ∃ω ∈ [ω] is a µλ
ξ -cscK metric }

is finite and is in the centralizer of k. In particular, Aut0ξ(X/Alb) ⊂ Aut0(X/Alb)
is a maximal reductive subgroup if there exists a µλ

ξ -cscK for some λ ≤ 0.

Proof. The set κ of isolated local minimizers of Volλ with the non-degenerate
Hessians is a zero dimensional compact submanifold of k and thus consists
of finitely many points. As we saw in the last subsection, a vector ξ of a
µλ
ξ -cscK metric must be an element of κ when λ ≤ 0. This proves the first

claim.
For each g ∈ K, we have Futλg∗ξ(ζ) = Futλξ (g

−1
∗ ζ). It follows that K

fixes the set κ and thus κ must be in the centralizer of k. We can see the
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maximal reductiveness of Aut0ξ(X/Alb) from Corollary 1.3.5 and by taking
a maximal compact subgroup K. We already know that the properly ∂̄-
Hamiltonian vector ξ must be tangent to the centralizer of a maximal com-
pact subgroup K. (It is essential that µ-Futaki invariant is defined on h0(X)
rather than on h0,ξ(X) and vanishes on h0(X) rather than on the complexifi-
cation k′c ⊂ h0(X) of the Lie algebra k′ of the isometry group of the µλ

ξ -cscK

metric. It is a priori not evident that we can find a K-invariant µλ
ξ -cscK for

a maximal compact subgroup K ⊂ Aut0(X/Alb), however, the claim indeed
holds from this corollary and Corollary 1.3.5 as for λ ≤ 0. ) Therefore,
the subgroup Aut0ξ(X/Alb) contains the complexification of K, which is a

maximal reductive subgroup of Aut0(X/Alb).

1.4 µK-energy and µK-stability

1.4.1 µK-energy functional

We introduce µK-energy functional and observe some fundamental properties
of it.

Space of Kähler metrics and geodesics

Let ω be a Kähler metric on a Kähler manifold X and ξ be a properly
∂̄-Hamiltonian vector field preserving ω. We denote by Hω,ξ the space of
ξ-invariant smooth Kähler potentials with respect to ω and Ḧω,ξ the space
of ξ-invariant Kähler metrics in the fixed cohomology class [ω]. Namely, we
put

Hω,ξ := {ϕ ∈ C∞
ξ (X;R) | ω +

√
−1∂∂̄ϕ > 0}, (1.61)

Ḧω,ξ := {ωϕ ∈ [ω] | ωϕ = ω +
√
−1∂∂̄ϕ > 0, ξϕ = 0}. (1.62)

We consider the following Riemannian metric on Ḧω,ξ:

(ψ1, ψ2)ξ =

∫
X

ψ1ψ2 e
θξ(ϕ)ωn

ϕ , (1.63)

where we identify the tangent space TωϕḦω,ξ with {ψ ∈ C∞
ξ (X) |

∫
X
ψ eθξ(ϕ)ωn

ϕ =
0}. This pairing is real-valued as ωϕ is ξ-invariant.
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A path in Ḧω,ξ corresponds to a path of ξ-invariant functions ϕt normal-
ized as

∫
X
ϕ̇te

θξ(ϕt)ωn
ϕt

= 0. The energy of a finite path {ϕt}t∈[a,b] with respect
to the Riemannian metric (·, ·)ξ is given by

E(ϕt) =

∫ b

a

∫
X

|ϕ̇t|2eθξ(ϕt)ωn
ϕt .

A geodesic is by definition a critical point of the energy functional on the
space of paths with fixed initial and terminal points. Computing the first
derivative of the energy functional shows that geodesic paths precisely cor-
respond to paths satisfying the following equation

∇X(ϕ̈t − |∂̄ϕ̇t|2gϕt ) = 0 (1.64)

under the normalization
∫
X
ϕ̇te

θξ(ϕt)ωn
ϕt

= 0. As the equation does not change
by adding a function depending only on t, we can find a geodesic ϕt by solving
the equation

φ̈t − |∂̄φ̇t|2gφt = 0

and putting ϕt := φt−
∫ t

0
dt
∫
X
φ̇te

θξ(φt)ωn
φt . Note that the geodesic equation

itself does not depend on ξ, however, the normalization of paths does depend
on ξ.

µK-energy

Define the µK-energy Mλ
ξ on the space Hω,ξ of smooth Kähler potentials by

Mλ
ξ (ϕ) := −

∫ 1

0

dt

∫
X

ŝλξ (gϕt)ϕ̇t e
θξ(ϕt)ωn

ϕt , (1.65)

where ϕt is a path connecting 0 and ϕ, i.e. ϕ0 = 0 and ϕ1 = ϕ. It is
independent of the choice of the smooth path ϕt connecting 0 and ϕ. Indeed,
let ϕt,0 and ϕt,1 be two paths connecting 0 and ϕ and take an interpolating
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path ϕt,s of paths, then we can calculate as

d

ds

∫ 1

0

dt

∫
X

ŝλξ (gt,s)
dϕt,s

dt
eθ
t,s
ξ ωn

t,s

=

∫ 1

0

dt

∫
X

(
(−Dθ∗

t,sDt,s
dϕt,s

ds
+ (∂̄♯s̄λξ (gt,s))

dϕt,s

ds
)
dϕt,s

dt

+ ŝλξ (gt,s)
d2ϕt,s

dsdt
− ŝλξ (gt,s)

dϕt,s

dt
(□̄gt,s − ξJ)

dϕt,s

ds

)
eθ
t,s
ξ ωn

t,s

=

∫ 1

0

dt

∫
X

(
− (Dt,s

dϕt,s

ds
,Dt,s

dϕt,s

dt
) + ŝλξ (gt,s)(

d2ϕt,s

dtds
− (∂̄

dϕt,s

dt
, ∂̄
dϕt,s

ds
))
)
eθ
t,s
ξ ωn

t,s

=

∫ 1

0

dt
d

dt

∫
X

ŝλξ (gt,s)
dϕt,s

ds
eθ
t,s
ξ ωn

t,s

=

∫
X

ŝλξ (g1,s)
dϕ1,s

ds
eθ

1,s
ξ ωn

1,s −
∫
X

ŝλξ (g0,s)
dϕ0,s

ds
eθ

0,s
ξ ωn

0,s

= 0.

Here the third equality follows by the symmetry of the second expression
with respect to s and t and the last equality follows just by (d/ds)ϕ1,s =
(d/ds)ϕ0,s = 0.

The µK-energyMλ
ξ descends to the space of Kähler metrics Ḧω,ξ and the

critical points ofMλ
ξ precisely correspond to µλ

ξ -cscK metrics.
In the proof of the finite dimensional Kempf-Ness theorem for a moment

map µ : X → k∗, we make use of the convexity of the Kempf-Ness func-
tional k/kx → R to prove that µ−1(0) ∩ x.Kc = x.K, which is analytically
analogous to the uniqueness of (µ-)cscK in a given Kähler class and geo-
metrically corresponds to the injectivity of the map to the GIT quotient
µ−1(0)/K → Xss � Kc. In order to study the uniqueness of µ-cscK in the
same spirit of the Kempf-Ness theorem, we should have the following result.

Proposition 1.4.1 (Convexity along smooth geodesics). The µK-energyMλ
ξ

is convex along smooth geodesics.
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Proof. For a smooth path ϕt in Ḧω,ξ, we compute

d2

dt2
Mλ

ξ (ϕt) = −
d

dt

∫
X

ŝλξ (gϕt)ϕ̇te
θξ(ϕt)ωn

ϕt

= −
∫
X

(
−Dθ∗

t Dtϕ̇t + (∂♯ŝλξ (gϕt))(ϕ̇t)
)
ϕ̇te

θξ(ϕt)ωn
ϕt

−
∫
X

ŝλξ (gϕt)ϕ̈te
θξ(ϕt)ωn

ϕt +

∫
X

ŝλξ (gϕt)ϕ̇t(□̄t − ξ′)ϕ̇te
θξ(ϕt)ωn

ϕt

=

∫
X

|Dtϕ̇t|2gte
θξ(ϕt)ωn

ϕt −
∫
X

ŝλξ (gϕt)(ϕ̈t − |∂̄ϕ̇t|2gϕt )e
θξ(ϕt)ωn

ϕt .

It follows that for a smooth geodesic ϕt, we have

d2

dt2
Mλ

ξ (ϕt) =

∫
X

|Dtϕ̇t|2gte
θξ(ϕt)ωn

ϕt ≥ 0.

Extension to C1,1-potentials

We show thatMλ
ξ can be extended to the space

H1,1
ω,ξ := {ϕ ∈ C

1,1
ξ (X) | ω +

√
−1∂∂̄ϕ ≥ 0}

of C1,1-smooth sub-Kähler potentials, which generalizes the result of [Chen2]
known as Chen-Tian’s formula.

It is known by [Chen] that for any two smooth Kähler metrics there

always exists a unique connecting C1,1-smooth geodesic in H1,1
ω,ξ, where one

interprets the geodesic equation as a solution of a Monge-Ampère equation
on the complex manifold X × {a ≤ |z| ≤ b} with boundary. Using the C1,1-
extension of the usual K-energy, Berman and Berndtsson [BB] proves the
uniqueness of cscK and extremal metrics.
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Proposition 1.4.2. The µK-energyMλ
ξ can be expressed as follows.

Mλ
ξ (ϕ) =

∫
X

log
ωn
ϕ

ωn
eθξ(ϕ)ωn

ϕ − n!
∫ 1

0

dt

∫
X

ϕ̇t(Ric(ω) + □̄gθξ)e
ωϕt+θξ(ϕt)

+ s̄ξ

∫ 1

0

dt

∫
X

ϕ̇te
θξ(ϕt)ωn

ϕt + λ

∫ 1

0

dt
(∫

X

θξ(ϕt)ϕ̇te
θξ(ϕt)ωn

ϕt − θ̄ξ
∫
X

ϕ̇te
θξ(ϕt)ωn

ϕt

)
.

=

∫
X

log
eθξ(ϕ)ωn

ϕ

eθξωn
eθξ(ϕ)ωn

ϕ − n!
∫ 1

0

dt

∫
X

ϕ̇t

(
(Ric(ω)−

√
−1∂∂̄θξ) + (□̄gθξ − ξJθξ)

)
eωϕt+θξ(ϕt)

(1.66)

+ s̄ξ

∫ 1

0

dt

∫
X

ϕ̇te
θξ(ϕt)ωn

ϕt + λ

∫ 1

0

dt
(∫

X

θξ(ϕt)ϕ̇te
θξ(ϕt)ωn

ϕt − θ̄ξ
∫
X

ϕ̇te
θξ(ϕt)ωn

ϕt

)
,

where we put θ̄ξ :=
∫
X
θξe

θξωn/
∫
X
eθξωn (independent of ϕt).

Proof. Recall the definition

ŝλξ (gϕt) = (s(gϕt)+ □̄ϕtθξ(ϕt))+ (□̄ϕtθξ(ϕt)− ξJθξ(ϕt))−λθξ(ϕt)− (s̄ξ−λθ̄ξ).

Firstly, we transform s(gϕt) as follows:

s(gϕt) = trgϕt (
√
−1∂̄∂ log detωϕt)

= □̄ϕt log
ωn
ϕt

ωn
+ trgϕt (

√
−1∂̄∂ log detω)

= (□̄ϕt − ξJ) log
ωn
ϕt

ωn
+ ξJ log

ωn
ϕt

ωn
+ trgϕt (Ric(ω)).

For the second term, we have

ξJ log
ωn
ϕt

ωn
=
ωn

ωn
ϕt

ξJ
(ωn

ϕt

ωn

)
=
LξJ

(
ωnϕt
ωn
· ωn

)
ωn
ϕt

−
ωn
ϕt

ωn

LξJω
n

ωn
ϕt

= −□̄gϕt
θξ(ϕt)+□̄gθξ.

The integration of the first term yields the following entropy term∫
X

(
(□̄ϕt − ξJ) log

ωn
ϕt

ωn

)
ϕ̇t e

θξ(ϕt)ωn
ϕt =

∫
X

log
ωn
ϕt

ωn

(
(□̄ϕt − ξJ)ϕ̇t

)
eθξ(ϕt)ωn

ϕt

= − d

dt

(∫
X

log
ωn
ϕt

ωn
eθξ(ϕt)ωn

ϕt

)
−
∫
X

□̄ϕtϕ̇te
θξ(ϕt)ωn

ϕt

= − d

dt

(∫
X

log
ωn
ϕt

ωn
eθξ(ϕt)ωn

ϕt

)
−
∫
X

ξJ ϕ̇te
θξ(ϕt)ωn

ϕt .
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The second term of the last expression removes the following second term of
the minus of the µK-energy∫ 1

0

dt

∫
X

(□̄ϕtθξ(ϕt)− ξJθξ(ϕt))ϕ̇t e
θξ(ϕt)ωn

ϕt

=

∫ 1

0

dt

∫
X

(∂̄θξ(ϕt), ∂̄ϕ̇t)gϕt e
θξ(ϕt)ωn

ϕt

=

∫ 1

0

dt

∫
X

ξJ ϕ̇t e
θξ(ϕt)ωn

ϕt .

Thus we have the following expression of the minus of the µK-energy:

−Mλ
ξ (ϕ) = −

∫
X

log
ωn
ϕ

ωn
eθξ(ϕ)ωn

ϕ +

∫ 1

0

dt

∫
X

(
− □̄gϕt

θξ(ϕt) + □̄gθξ + trgϕt (Ric(ω))
)
ϕ̇t e

θξ(ϕt)ωn
ϕt

+

∫ 1

0

dt

∫
X

□̄gϕt
θξ(ϕt)ϕ̇te

θξ(ϕt)ωn
ϕt − s̄ξ

∫ 1

0

dt

∫
X

ϕ̇t e
θξ(ϕt)ωn

ϕt

− λ
∫ 1

0

dt
(∫

X

θξ(ϕt)ϕ̇te
θξ(ϕt)ωn

ϕt − θ̄ξ
∫
X

ϕ̇te
θξ(ϕt)ωn

ϕt

)
and obtain the first expression of the µK-energy by trgϕt (Ric(ω))ω

n
ϕt

= nRic(ω)∧
ωn−1
ϕt

. The second expression follows by∫
X

ξJϕeθξ(ϕ)ωn
ϕ =

∫ 1

0

dt
d

dt

∫
X

ξJϕte
θξ(ϕt)ωn

ϕt

=

∫ 1

0

dt

∫
X

ξJ ϕ̇te
θξ(ϕt)ωn

ϕt −
∫ 1

0

dt

∫
X

ξJϕt(□̄ϕt − ξJ)ϕ̇te
θξ(ϕt)ωn

ϕt

=

∫ 1

0

dt

∫
X

(□̄ϕt − ξJ)(θξ(ϕt)− ξJϕt)ϕ̇te
θξ(ϕt)ωn

ϕt

= n!

∫ 1

0

dt

∫
X

(−
√
−1∂∂̄θξ − ξJθξ)eωϕt+θξ(ϕt),

where we applied∫
X

ξJφeθξ(ϕt)ωn
ϕt =

∫
X

(∂̄θξ, ∂̄φ)e
θξ(ϕt)ωn

ϕt =

∫
X

(□̄ϕtθξ(ϕt)−ξJθξ(ϕt))φe
θξ(ϕt)ωn

ϕt

and □̄ϕtθξω
n
ϕt

= trgϕt (−
√
−1∂∂̄θξ)ωn

ϕt
= −n

√
−1∂∂̄θξ ∧ ωn−1

ϕt
.
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The first term in the second expression (1.66) of Mλ
ξ is known as the

entropy

Hµ(ν) =

∫
X

dν

dµ
log
(dν
dµ

)
dµ

for the probability measures ν = 1
Vξ
eθξ(ϕ)ωn

ϕ , µ = 1
Vξ
eθξωn. Here, for general

probability measures, dν/dµ denotes the Radon–Nykodim derivative, which
is a measurable function, and the value of the function (dν/dµ) log(dν/dµ) is
defined to be zero on which dν/dµ is zero. The total mass Vξ =

∫
X
eθξωn =∫

X
eθξ(ϕ)ωn

ϕ is independent of the choice of ϕ as the Duistermaat–Heckman
measure is an invariant of [ω + µ]. Applying the Jensen’s inequality with
respect to the convex function ϕ(t) = t log t on [0,∞), we get∫

X

dν

dµ
log
(dν
dµ

)
dµ ≥ ϕ

(∫
X

dν

dµ
dµ
)
= ϕ(1) = 0.

For any C1,1-smooth path of C1,1-smooth sub-Kähler potentials ϕt, the
current ωϕt is just a differential form with L∞-coefficient and θξ(ϕt) and ϕ̇t

are Lipschitz functions on X. As for Ric(ω),
√
−1∂∂̄θξ, □̄gθξ and ξJθξ, they

are constructed from the initial smooth metric ω, so are smooth. Thus we
obtain the following corollary.

Corollary 1.4.3 (Extension to the space of C1,1-smooth sub-Kähler poten-

tials). The µK-energy Mλ
ξ can be uniquely extended to the space H1,1

ω,ξ of

C1,1-smooth sub-Kähler potentials so thatMλ
ξ −Hξ is continuous, where Hξ

is the lower-semi continuous function

Hξ(ϕ) =

∫
X

log
eθξ(ϕ)ωn

ϕ

eθξωn
eθξ(ϕ)ωn

ϕ

on H1,1
ω,ξ.

1.4.2 A prelude to µK-stability

In this section, we discuss on ‘µK-stability’ which should fit into the existence
problem on µ-cscK metrics.

For a geodesic ray ϕ : [0,∞)→ H1,1
ω,ξ, we put

Mλ,NA
ξ (ϕ) := lim inf

t→∞

Mλ
ξ (ϕt)

t
,
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which might take the value ∞ for a general geodesic.
For a vector ζ ∈ h0(X), the following path ϕt gives a smooth geodesic:

√
−1∂∂̄ϕt = f ∗

t ω − ω,
∫
X

ϕ̇te
θξ(ϕt)(f ∗

t ω)
n = 0,

where ft is the one parameter subgroup generated by the vector field Jζ. As
for this geodesic ray ϕ, we can easily see that Mλ,NA

ξ (ϕ) exists along this ray

and is nothing but the µ-Fuatki invariant −Futλξ (ζ).
If the µK-energy is bounded from below, then we must have Mλ,NA

ξ (ϕ) ≥
0. The most naive and pretty analytic formulation of µK-stability is that
we call a quadruple (X, [ω], ξ, λ) µK-semistable (with respect to geodesics)
if we have Mλ,NA

ξ (ϕ) ≥ 0 for all geodesics ϕ and call it µK-polystable (with

respect to geodesics) if it is µK-semistable and we haveMλ,NA
ξ (ϕ) = 0 iff ϕ is

a geodesic given by a vector ζ ∈ h0(X). Then we conjecture there exists a µλ
ξ -

cscK metric in the Kähler class [ω] if and only if the quadruple (X, [ω], ξ, λ)
is µK-polystable. (cf. [Lah, Theorem 7])

Of course, it is desirable that we can reformulate this quite naive µK-
stability notion to fit into a more algebraic formalism. Namely, we should

• exhibit Mλ,NA
ξ (ϕ) for a geodesic ϕ associated to a test configuration by

an equivariant intersection formula using the equivariant polarization
L and the equivariant relative canonical sheaf ωX̄/P1 of the compactified
test configuration. (cf. [Lah] and [Ino3])

• detect the candidate vector ξ for the solution of the µ-cscK equation
uniquely in a torus action, in order to formulate a sensible notion of
families of µK-semistable T -varieties enjoying the separation property.

The detection of the candidate (called K-optimal in [Ino1]) vector ξ fol-
lows from, for instance, the uniqueness of local minimizers of Volλ when
λ ≤ 0. If this is the case, we can formulate the µλK-stability for a T -
equivariant polarized manifold (X, [ω]) by using the local minimizer ξ of
Volλ. It is interesting to ask if there is a wall-crossing phenomena, namely,
if the µλK-stability of (X, [ω]) with a torus action jumps at some λ ≤ 0.
We will see in the next section the behavior of the existence of the µλ-cscK
metric when perturbing λ.
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1.5 Perturbation and propagation

1.5.1 Perturbation of Kähler class and λ

Regularity

We firstly check an elliptic regularity for constant µ-scalar curvature Kähler
metric. Remember that the µ-scalar curvature of a Kähler metric ωϕ =
ω +
√
−1∂∂̄ϕ can be written as

sξ(ωϕ) = (□̄ϕ − ξJ)
(
log(eθξ(ϕ) det(gkl̄ + ϕkl̄))

)
+

n∑
i=1

∂iξ
i.

Using this, the equation of constant µ-scalar curvature

sξ(ω +
√
−1∂∂̄ϕ)− λθξ(ϕ) = s̄ξ − λθ̄ξ

reduces to the following coupled equationF = log
e
θξ(ϕ) det(gkl̄+ϕkl̄)

e
θξ det gkl̄

(□̄ϕ − ξJ)F = s̄ξ − λθ̄ξ + λθξ(ϕ)− (□̄ϕ − ξJ) log(eθξ det g) +
∑n

i=1 ∂iξ
i.

(1.67)
Take a C∞-smooth initial Kähler metric ω and a C2,α-smooth function ϕ

so that ωϕ = ω +
√
−1∂∂̄ϕ is a C0,α-smooth Kähler metric. Then θξ(ϕ) =

θξ − ξJϕ is a C1,α-smooth function and the equation (1.67) makes sense for
a C2-smooth function F .

Suppose F ∈ C2 satisfies the equation (1.67). By differentiating the first
equation in (1.67), we obtain a local equation

□̄ϕ(∂iϕ) = ∂iF − ∂i(ξJϕ)− gkl̄ϕ (∂igkl̄) + gkl̄(∂igkl̄). (1.68)

Since the right hand side of this equation is C0,α-smooth and the elliptic oper-
ator □̄ϕ has C0,α-coefficients, the elliptic regularity shows that ∂iϕ should be
C2,α-smooth. By taking all the derivative ∂i, we obtain the C3,α-smoothness
of ϕ. Then the right hand side of the second equation in (1.67) becomes
C1,α-smooth and the elliptic operator □̄ϕ− ξJ has C1,α-coefficients, so again
the elliptic regularity shows that F is actually C3,α-smooth. Now the boot-
strapping argument shows that the function ϕ and F must be C∞-smooth
functions.
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Perturbation

Let ω be a µλ
ξ -cscK metric on a compact Kähler manifold X. By Corol-

lary 1.3.5, the metric ω is preserved by some maximal closed torus T ⊂
Aut0ξ(X/Alb) containing the torus generated by ξ. The centralizer of T in

Aut0ξ(X/Alb) is the complexified algebraic torus T c. We denote byH1,1(X,R)
the space of harmonic real (1, 1)-form with respect to ∆g = d∗d + dd∗ asso-
ciated to the metric g = ωJ , i.e. H1,1(X,R) = {α ∈ Ω1,1(X,R) | ∆gα = 0},
which is isomorphic to H1,1(X,R) by the projection. The action of the max-
imal torus T on H1,1(X,R) is trivial as the action extends to the action
on H2(X,R), which is trivial as it preserves the integral lattice and T is
connected, so that each α ∈ H1,1 is T -invariant.

Let U ⊂ H1,1(X,R) × Ck+4,α(X,R)T be an open neighbourhood of the
origin on which we have ω + α +

√
−1∂∂̄ϕ > 0. For (α, ϕ) ∈ U , we denote

by gα,ϕ the Kähler metric associated to the Kähler form ωα,ϕ := ω + α +√
−1∂∂̄ϕ and by θα,ϕη the real-valued function satisfying

√
−1∂̄θα,ϕη = iηJωα,ϕ

and
∫
X
θα,ϕη eθ

α,ϕ
ξ ωn

α,ϕ = 0. (This normalization is well-defined since for any

constant c ∈ R we have
∫
X
θα,ϕη eθ

α,ϕ
ξ +cωn

α,ϕ = 0 iff
∫
X
θα,ϕη eθ

α,ϕ
ξ ωn

α,ϕ = 0. )

The function θα,ϕη linearly depends on η, so that θα,ϕ is a moment map with
respect to ωα,ϕ. Now consider a smooth map S λ

ξ : R× t×U → Ck,α(X,R)T
defined by

S λ
ξ (δ, ζ, α, ϕ) = sλ+δ

ξ+ζ (ω + α +
√
−1∂∂̄ϕ) (1.69)

= (s(gα,ϕ) + □̄gα,ϕθ
α,ϕ
ξ+ζ) + (□̄gα,ϕθ

α,ϕ
ξ+ζ − (ξ + ζ)Jθα,ϕξ+ζ)− (λ+ δ)θα,ϕξ+ζ .

The linearization of this smooth map S λ
ξ at (0, 0, 0, 0) ∈ t × U is given

by

(0, ζ, 0, 0) 7→ 2(□̄− ξJ)θζ − λθζ , (1.70)

(0, 0, 0, ϕ) 7→ −Dθ∗
ω Dωϕ+ (∂̄♯ωs

λ
ξ (ω))(ϕ) (1.71)

with respect to a general T -invariant initial metric ω, which is not necessarily
a µλ

ξ -cscK metric. We do not need the derivative to the directions (δ, 0, 0, 0)
and (0, 0, α, 0).

Now we show the following Theorem E.

Theorem 1.5.1. Let ω be a µ-cscK metric on a compact Kähler manifold
X with respect to ξ and λ ∈ R. Suppose we have λ < 2λ1 for the first
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eigenvalue λ1 of the weighted ∂̄-Laplacian □̄ω − ξJ restricted to the space
C∞(X)T , where T is a maximal torus contained in HIsom

0
ξ(X,ω). Then there

exists a neighbourhood U of [ω] in the Kähler cone and a positive constant
ϵ > 0 such that for each λ̃ ∈ (λ− ϵ, λ+ ϵ), every Kähler class [ω̃] in U admits
a µ-cscK metric ω̃λ̃ with respect to some vector ξ̃λ̃ ∈ t and the given λ̃. The
vector ξ̃λ̃ is in the center of a maximal compact of Aut0(X/Alb) when λ̃ ≤ 0.

Proof. Let S̄ λ
ξ : R × t × U → Ck,α(X,R)T/R be the projection of S λ

ξ . By
the implicit function theorem, it suffices to show that the derivative operator
d0S̄ λ

ξ : R× t×H1,1(X,R)×Ck+4,α(X,R)→ Ck,α(X,R)/R is Fredholm and

surjective when restricted to {0} × t× {0} × Ck+4,α(X,R).
As ω is a µλ

ξ -cscK metric, we have d0S λ
ξ (0, 0, 0, ϕ) = −Dθ∗Dϕ. Since

Dθ∗D is an elliptic operator and R × t × H1,1(X,R) is finite dimensional,
both d0S λ

ξ and d0S̄ λ
ξ are Fredholm operators.

The cokernel (the L2(eθξωn)-orthogonal complement of the image) of the
operator −Dθ∗D is given by

{ψ ∈ Ck,α(X,R)T |
∫
X

(Dθ∗Dϕ)ψ eθξωn = 0 for all ϕ ∈ Ck+4,α(X,R)T}

= {ψ ∈ Ck,α(X,R)T | Dψ = 0} = R⊕ t,

where the last equality holds as T is maximal. For each non-zero element
θζ ∈ t, which is normalized as

∫
X
θζe

θξωn = 0, we have∫
X

(d0S
λ
ξ (0, ζ, 0, 0))θζe

θξωn =

∫
X

(2|∂̄θζ |2 − λθ2ζ)eθξωn > 0

by our assumption λ < 2λ1 and the Poincare inequality. Therefore the image
d0S λ

ξ (0, ζ, 0, 0) is non-constant and the compositionD = p◦d0S λ
ξ |{0}×t×{0}×{0} :

t→ R⊕ t with the L2(eθξωn)-orthogonal projection p : Ck,α(X,R)T → R⊕ t
is injective. It follows that R⊕ ImD = R⊕ t and so d0S̄ λ

ξ is surjective when

restricted to {0} × t× {0} × Ck+4,α(X,R).

The perturbed vector ξ̃ is a local minimizer of Volλ̃[ω̃] by Corollary 1.3.10
in the above theorem.

Remark 1.5.2. As a cscK metric ω is a µλ
0 -cscK metric for every λ ∈ R, we

in particular obtain a µλ
ξ -cscK metric for every λ ≤ 0 and in every Kähler

class [ω̃] in a neighbourhood Uλ of [ω].
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It is proved in [LS] that there is also a neighbourhood U−∞ of [ω] such that
[ω̃] admits an extremal metric. Note that a µλ

ξ -cscK metric (or an extremal
metric) is not a cscK metric iff [ω̃] has non-trivial Futaki invariant Fut[ω̃] ̸= 0.

In the next section, we show that we can take such a neighbourhood U−∞
so that U−∞ ⊂ Uλ for every λ ≤ 0.

1.5.2 Propagation from infinity

µ-volume functional and Möbius bundles

Consider a funcitonal W (ξ, λ) = W λ(ξ) = log(Volλ(ξ)/(
∫
ωn)λ)− s̄ on k×R.

When κ→ 0, we have the limit of κ−1W (κη, κ−1) as follows:

κ−1W (κη, κ−1) = κ−1

(∫
X

(s+ □̄θκη)eθκηωn
/∫

X

eθκηωn − s̄
)

− κ−2

(∫
X

θκηe
θκηωn

/∫
X

eθκηωn − log

∫
X

eθκηωn
/∫

X

ωn

)
= κ−1

(∫
X

(s+ □̄θκη)eθκηωn
/∫

X

eθκηωn − s̄
)

− κ−1

(∫
X

θηe
θκηωn

/∫
X

eθκηωn −
∫
X

θηω
n
/∫

X

ωn

)
+ κ−2

(
log

∫
X

eθκηωn
/∫

X

ωn −
∫
X

θκηω
n
/∫

X

ωn

)
−→ d

dκ

∣∣∣∣
κ=0

(∫
X

(s+ □̄θκη)eθκηωn
/∫

X

eθκηωn −
∫
X

θηe
κηωn

/∫
X

eθκηωn

)
+ lim

κ→0
(2κ)−1

(∫
X

θηe
θκηωn

/∫
X

eθκηωn −
∫
X

θηω
n
/∫

X

ωn

)
=

(∫
X

ωn

)−2(∫
X

sθηω
n ·
∫
X

ωn −
∫
X

sωn ·
∫
X

θηω
n

)
− 1

2

(∫
X

ωn

)−2(∫
X

θ2ηω
n ·
∫
X

ωn −
(∫

X

θηω
n
)2)

= −1

2

∫
X

(
(s− s̄)− (θη − θη)

)2
ωn
/∫

X

ωn +
1

2

∫
X

(s− s̄)2ωn
/∫

X

ωn.
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The limit functional is nothing but −2C(η) in subsection 1.2.2. So we get a
well-defined continuous map

W̌ : k× R→ R : (η, κ) 7→ W̌ (η, κ) = W̌ κ(η) := κ−1W (κη, κ−1).

The limit functional W̌ 0 = −2C is proper, concave and its unique critical
point gives the extremal vector. By a similar calculus, we can easily see that
this map is at least C2-smooth.

Proposition 1.5.3. There exists a constant λ0 ∈ R such that Volλ has a
unique critical point for every λ < λ0.

Proof. The derivative of W̌ κ at η ∈ k is given by Futκ
−1

κη , so the critical points

of W̌ κ for κ ̸= 0 are precisely κ−1-times that of Volκ
−1

. It suffices to show
that there exists some κ0 < 0 such that W̌ κ admits a unique critical point for
each κ ∈ (κ0, 0). As we already see, the set K := {λξ ∈ k | Futλξ ≡ 0, λ ≤ 0}
is compact (moreover, {λξ | Futλξ ≡ 0} converges to ξext as λ→ −∞). Since

W̌ 0 = −2C is strictly concave, a small C2-perturbation of it is again strictly
concave on K, so that there exists κ0 < 0 such that W̌ κ has a unique critical
point on K for every κ ∈ (κ0,−κ0). Thus for κ ∈ (κ0, 0), W̌

κ has a unique
critical point on k as there is no critical points outside K.

Remark 1.5.4. We saw in the above proof that W̌ κ is strictly concave around
ξext. On the other hand, we have proven in Proposition 1.3.14 that the slope
at infinity limt→∞ t−1W̌ κ(tη) = limt→∞ signκ · (t|κ|)−1 log Volκ

−1

(t|κ|(signκ ·
η)) exists and its sign is that of κ for each κ ̸= 0. This in particular implies
that for a positive κ close to 0 (λ = κ−1 ≫ 0), the functional W̌ κ is a
‘mexican hat potential’ on k, so that the critical points are not unique for
these κ > 0 (λ≫ 0).

We can understand the relation of W λ and W̌ κ as local indications of a
map between Möbius bundles. Let V be a vector space over R. We construct
a circle S1 by gluing two copies of R, which we distinguish as R(0) = R and

R(∞) = R, by the diffeomorphism R(0) \ {0}
∼−→ R(∞) \ {0} : λ 7→ λ−1 and

denote by ∞ ∈ S1 the point corresponding to 0 ∈ R(∞). We construct a
vector bundle Möb(V ) over S1 by patching two copies of the trivial bundle
V ×R(0/∞) → R(0/∞) over the charts by the isomorphism V × (R(0) \ {0})

∼−→
V × (R(∞) \ {0}) : (ξ, λ) 7→ (λξ, λ−1) of vector bundles.
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We can construct a smooth map MöbW : Möb(k) → Möb(R) over S1,
which behaves non-linearly over the fibres, by patching the following two
horizontal maps via the vertical gluing maps:

k× R(0) R× R(0) (ξ, λ) (W (ξ, λ), λ)

k× R(∞) R× R(∞) (η, κ) (κ−1W (κη, κ−1), κ)

(ξ,λ)7→(λξ,λ−1) (ρ,λ)7→(λρ,λ−1)

The fibrewise derivative DMöbW : Möb(k) → Hom(Möb(k),Möb(R)) =
k∨ × S1 of this map is given by

k× R(0) k∨ × R(0) (ξ, λ) (Futλξ , λ)

k× R(∞) k∨ × R(∞) (η, κ) (Futκ
−1

κη , κ).

(ξ,λ)7→(λξ,λ−1) (ϕ,λ)7→(ϕ,λ−1)

From extremal metric to µ-cscK metrics

Consider the following for η ∈ k and κ ∈ R:

šκη(ω) := (s(ω) + □̄θκη) + (□̄θκη − (κη)Jθκη)− θη. (1.72)

When κ = 0, we have
š0η(ω) = (s(ω)− θη),

so that š0η(ω) is constant if and only if ω is an extremal metric with respect

to the vector field η. On the other hand, when κ ̸= 0, we have šκη = sκ
−1

κη ,
so that šκη(ω) is constant if and only if ω is a µλ

ξ -cscK metric with respect to
λ = κ−1 and ξ = κη.

Let ω be an extremal metric on X and T ⊂ HIsom
0
η(X,ω) be a maximal

torus containing the extremal vector η = Im∂♯s(ω). Take an open set U ⊂
H1,1(X,R) × Ck+4,α(X,R)T as in section 1.5.1. We define a map Š 0

η : R ×
t× U → Ck,α(X,R)T by

Š 0
η (κ, χ, α, ϕ) := šκη+χ(ω + α +

√
−1∂∂̄ϕ)

= (s(gα,ϕ) + □̄gα,ϕθ
α,ϕ
κ(η+χ)) + (□̄gα,ϕθ

α,ϕ
κ(η+χ) − (κ(η + χ))Jθα,ϕκ(η+χ))− θ

α,ϕ
η+χ,

where (α, ϕ) ∈ U ⊂ H1,1(X,R)× Ck+4,α
η (X,R)T .
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The linearization of this smooth map Š 0
η is given by

(0, χ, 0, 0) 7→ −θχ (1.73)

(0, 0, 0, ϕ) 7→ −D∗Dϕ+ (∂̄♯š0η(ω))(ϕ) (1.74)

By applying the implicit function theorem similarly to the proof of The-
orem 1.5.1, we get the following theorem.

Theorem 1.5.5. Let ω be an extremal metric on a compact Kähler manifold
X with the extremal vector η. There exists a neighbourhood U of [ω] in the
Kähler cone and constants λ−, λ+ ∈ R such that for each λ ∈ (−∞, λ−) ∪
(λ+,∞), every Kähler class [ω] in U admits a µ-cscK metric ωλ with respect
to some vector ξλ ∈ t and the given λ. The vector ξλ is uniquely determined
when λ≪ 0.

1.6 Examples

Here we observe explicit examples of Kähler classes admitting µ-cscK metrics,
using the method of Calabi ansatz. While we get some expected results for
λ ≤ 0, we also find some strange phenomenon when λ≫ 0.

1.6.1 Phase transition of µλ-cscK metrics on CP 1

µ-volume functional of CP 1

We firstly compute the µ-volume functional of CP 1. Consider a U(1)-action
on CP 1 given by (z : w).t = (zt : w). We denote by η ∈ u(1) the positive
generator of the U(1)-action.

Let us consider the following variant of µ-volume functional:

µλ(−2ξ) := − log
Volλ(ξ)

(n!en)λ
. (1.75)

The critical points µλ are precisely (−2)-times of the critical points of Volλ.
Then since θξ = µ−2ξ, the functional µλ can be expressed as the integration
of U(1)-equivariant closed forms:

µλ = −
∫
X
(Ricω + □̄µ)eω+µ∫

X
eω+µ

+ λ

∫
X
(ω + µ)eω+µ∫

X
eω+µ

− λ log
∫
X

eω+µ.
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When ω ∈ mπc1(X), we can normalize the moment map µ so that [ω+µ] =

c
U(1)
1 (X) = m

2
[Ricω + □̄µ] as equivariant cohomology classes. Under this

normalization, we have∫
X

(Ricω + □̄µ)eω+µ =
2

m

∫
X

(ω + µ)eω+µ

since the integration of equivariant closed form depends only on its equiv-
ariant cohomology class. Thus the functional µλ for [ω] = mπc1(X) can be
expressed as follows:

µλ = (λ− 2

m
)

∫
X
(ω + µ)eω+µ∫

X
eω+µ

− λ log
∫
X

eω+µ

= (λ− 2

m
)

∫
X
(n+ µ)eµ ωn

n!∫
X
eµ ωn

n!

− λ log
∫
X

eµ
ωn

n!
.

We can compute these integrals using the Duistremaat–Heckman measure
DH = µ∗(ω

n/n!) on u(1)∨ = R.η∨.
When X = CP 1, the Duistremaat–Heckman measure is nothing but the

Lebesgue measure restricted on [−mπ,mπ] ⊂ R. So we explicitly compute
µλ for CP 1 as

µλ(x.η) = (λ− 2

m
)

∫ mπ

−mπ
(1 + xt)extdt∫ mπ

−mπ
extdt

− λ log
∫ mπ

−mπ

extdt

= (λ− 2

m
)(

mπx

tanh(mπx)
− 1)− λ log(sinh(mπx)

mπx
)− λ log(2πm).

Put χ = mπx. Then the derivative is given by

d

dχ
µλ(

χ

mπ
.η) =

1

χ(sinhχ)2

( 2

m
(χ2 − χ sinhχ coshχ)− λ(χ2 − (sinhχ)2)

)
.

As long as λ ≤ 4/m, x = 0 is the unique critical point of µλ. However,
once λ exceeds 4/m, µλ yields three distinct critical points. In this case, non-
zero critical points of µλ maximizes µλ (minimizes Volλ), while the critical
point ξ = 0 turns into a ‘metastable/supercooled’ state.

µλ-cscK metrics on CP 1 for λ > λfreeze which are not cscK metrics

Any U(1)-invariant Kähler metric on CP 1 can be written as

ω =
1

2
u′′(ρ)dρ ∧ dθ
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on the open set C∗ ⊂ CP 1 for some strictly positive smooth function u on
R, using the coordinate (ρ, θ) ∈ R × S1 7→ (eρ+

√
−1θ : 1). For this metric

and ξ = x.η = 2πx ∂
∂θ
∈ u(1), we can compute the ingredients of µ-scalar

curvature as follows:

Ric(ω) = −1

2
(log u′′)′′dρ ∧ dθ, s(ω) = −(u′′)−1(log u′′)′′,

θξ = −(2πx)u′ + const., □̄θξ = (u′′)−1(2πx)u′′′, ξ′θξ = (2πx)2u′′.

Thus we get

sλξ (ω) = −(u′′)−1(log u′′)′′ + 2(u′′)−1(2πx)u′′′ − (2πx)2u′′ + λ(2πx)u′. (1.76)

We put I := Im(u′) and χ = 2πx. We denote by ρ : I → R the inverse
map of τ := u′ : R→ I and put φ(τ) := u′′(ρ(τ)). Using

d

dρ
=
dτ

dρ

d

dτ
= φ

d

dτ
,

d2

dρ2
= φφ′ d

dτ
+ φ2 d

2

dτ 2
,

we can reduce sλξ (ω) as follows:

sλξ (ω) = −(
d

dτ
− χ)2φ+ λχτ.

We can recover u (modulo linear function) from φ since they are related
by the Legendre transform U : I → R of u: if we put

U(τ) := ρ(τ)τ − u(ρ(τ)),

then we have φ(τ) = 1/U ′′(τ). Thus solving the equation of µλ
ξ -cscK metric

on C∗ reduces to finding a positive function φ on I which solves the equation

−( d
dτ
− χ)2φ+ λχτ = c

for a constant c. When χ ̸= 0, the equation is

(
d

dτ
− χ)2(φ− λ

χ
τ − 2λ− c

χ2
)

we can see the solution is given by

φλ
χ(τ) = aeχτ + bτeχτ +

λ

χ
τ +

2λ− c
χ2

(1.77)
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for some a, b, c ∈ R.
Now we impose boundary conditions on φ to get a metric on CP 1. We

may assume I = (0, 2m) for some m by adding linear function to u. Since πu′

gives a moment map, we have
∫
CP 1 ω = π

∫
I
dτ = 2πm. To get a solution with

ω ∈ 2πc1(O(1)), we assume m = 1. As usual Calabi ansatz (cf. [Sze-book,
Section 4.4]), we can see that the following boundary conditions on φ asserts
that the metric 1

2
u′′dρ ∧ dθ on C∗ extends to CP 1:

φ(0) = 0, φ(2) = 0,

φ′(0) = −2, φ(2) = 2.

If we have a solution φ satisfying this boundary condition, then φ is auto-
matically positive on I since φ has at most one inflection point:

φ′′(τ) = (bχ2τ + aχ2 + bχ)eχτ .

By the first three boundary conditions, we must have

a =
2λ sinhχ− 2χeχ

χ(sinhχ− χeχ)
, b =

(2− 2λ) sinhχ

sinhχ− χeχ
− λ

χ

c =
2λχ sinhχ− 2χ2eχ

sinhχ− χeχ
+ 2λ

We can reduce the last boundary condition φ′(1) = 2 to the following equality
on χ:

λ(χ2 − (sinhχ)2)− 2(χ2 − χ sinhχ coshχ) = 0, (1.78)

which is equivalent to d
dχ
µλ(χ.η) = 0. From the observation in 1.6.1, it has a

solution x ̸= 0 when λ > 4. Thus we get µλ
ξ -cscK metrics in the Kähler class

c1(X) for a non-zero ξ when λ > 4π.
To see the limiting behavior of these µλ-cscK metrics as λ → +∞, we

see λ as a function on χ and observe the limit φ
λ(χ)
χ as |χ| → ∞. Using

λ(χ) = 2χ + O(χ2e−2χ) from (1.78), we get aeχτ , beχτ , (2λ + c)/χ2 → 0 and

λ/χ → 2 for each τ ∈ [0, 2). Thus we see φ
λ(χ)
χ → 2τ on [0, 2) as χ → ∞.

The metric tensor g corresponding to φ is expressed as

g =
1

2
φ(τ)−1dτ ⊗ dτ + 1

2
φ(τ)dθ ⊗ dθ

on (0, 2)× S1, which we identify a metric on R× S1 ∼= C∗ via the diffeomor-
phism U ′(τ) =

∫ τ

1
φ(τ)−1dτ : (0, 2)→ R. Thus the limit metric is expressed
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as

g =
1

4τ
dτ ⊗ dτ + τdθ ⊗ dθ = dr ⊗ dr + r2dθ ⊗ dθ

on (r, θ) = (
√
τ , θ) ∈ (0,

√
2) × S1, which is the flat disk of radius

√
2.

Since φ
λ(χ)
χ converges locally uniformly on [0, 2), the diffeomorphisms U ′

χ :
[0, 2)→ [−∞,∞) converges to a smooth map U ′

∞(τ) = 1
2
log τ , which is not

a diffeomorphism onto [−∞,∞).

1.6.2 µ-cscK metrics on PΣ(L⊕O)
The case λ ≥ 0

Let L be an ample line bundle on a curve Σ of degree k ≥ 1. Let F be a
fibre of the ruled surface X = PΣ(L⊕O)→ Σ and B denote the section at
infinity: B := {(x, (0 : 1)) | x ∈ Σ}. The second cohomology H2(X,R) is
spanned by these divisors, whose intersections are given by

F · F = 0, F ·B = 1, B ·B = k.

The Kähler cone is given by

{aF + bB | b > 0,
a

b
> −k

2
}.

Now we show the following.

Proposition 1.6.1. Every Kähler class in the cone {aF + bB | a, b > 0}
admits a µλ-cscK metric for every λ ≥ 0.

Since the existence of µλ-cscK metric depends only on the ray of Kähler
class, we may assume the Kähler class is represented by 2π(F + mB) for
some m ∈ (0,∞).

As in [Sze-book, Section 4.4], we consider metrics of the form

p∗ωΣ +
√
−1∂∂̄u ◦ s

for a function u : R→ R, where ωΣ is the Kähler–Einstein metric on Σ with∫
Σ
ωΣ = 1 and s is the function s : L \ Σ → R : z 7→ log |z|2h defined by

a metric h on L with curvature kωΣ. Taking a local trivialization w of L
around z0 ∈ Σ so that (∂h/∂z)(z0) = 0, we have

ω = (1− ku′)ωΣ + u′′
√
−1dw ∧ dw̄

|w|2
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on the fibre Lz0 . Thus the metric is positive iff 1−ku′ > 0 and u′′ > 0. Since∫
F
ω = 2π(u′(∞)− u′(−∞)) and

∫
B
ω = 2π(1− ku′(−∞)), we have

[ω] = 2π((1− ku′(∞))F + (u′(∞)− u′(−∞))B).

When u′(∞) = 0 and u′(−∞) = −m, we have [ω] = 2π(F +mB).
We put τ := u′ : R→ (−m, 0) and denote by s : (−m, 0)→ R its inverse

map. Using the function φ(τ) := u′′(s(τ)) and lg := 2− 2g, we can express

s(ω) = − 1

1− kτ
((1− kτ)φ)′′ + lg

1− kτ
,

θξ = −4πxτ,

□̄θξ = −4πx
kφ− (1− kτ)φ′

1− kτ
,

ξ′θξ = (−4πx)2φ

for ξ = 2πx∂/∂θ. Thus we have

sλξ (ω) = −
1

1− kτ
(
d

dτ
− 4πx)2((1− kτ)φ) + 4πxλτ +

lg
1− kτ

.

Putting χ = 4πx, the problem of the existence of µλ-cscK metric under
the Calabi ansatz reduces to solving the following equation

(
d

dτ
− χ)2((1− kτ)φ) = −χλkτ 2 + (χλ+ kc)τ + (lg − c) (1.79)

on [−m, 0] together with the following boundary conditions (cf. [Sze-book,
Section 4.4]):

φ(0) = 0, φ(−m) = 0, (1.80)

φ′(0) = −1, φ′(−m) = 1.

The solutions of (1.79) is given by

φ(τ) =
1

1− kτ

(
aeχτ+bτeχτ−λk

χ
τ 2+

λχ+ kc− 4λk

x2
τ+

(2λ+ lg − c)χ+ 2kc− 6λk

χ3

)
Suppose we have a solution φ with λ ≥ 0, x < 0. Then since ((1 −

kτ)φ(τ))′′ = (bχ2τ + aχ2 + 2bχ)eχτ − 2λk
χ
, φ satisfies one of the following:
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1. If b ≥ 0, then φ has at most inflection point.

2. If b < 0, then φmay have two inflection points a, b ∈ (−m, 0). However,
φ is convex on the intervals (−m, a), (b, 0) and is concave on (a, b).

In both cases, ψ(τ) = (1− kτ)φ must be positive from the boundary condi-
tions ψ(0) = 0, ψ(−m) = 0 and ψ′(0) = −1, ψ(−m) = 1.

From the first three boundary conditions, we get

a = c
χ− 2k

χ3
+

(−2λ− lg)χ+ 6λk

χ3
, b = c

−χ+ k

χ2
+
−χ2 + (λ+ lg)χ− 2λk

χ2

and

c =
(−mχ3 +m(λ+ lg)χ

2 + (2λ+ lg − 2λkm)χ− 6λk)e−mχ

(mχ2 + (1−mk)χ− 2k)e−mχ − (1 +mk)χ+ 2k

+
(m2λ+mλ)χ2 − (4mλk + 2λ+ lg)χ+ 6λk

(mχ2 + (1−mk)χ− 2k)e−mχ − (1 +mk)χ+ 2k
.

Regarding a, b, c as a function on x, we can see that

lim
χ→0

c(χ) =
6 + 3mlg
3m+m2k

,

χ3a(χ) =
(
− 2k

6 + 3mlg
3m+m2k

+ 6λk
)
+
(
− 2λ− lg +

6 + 3mlg
3m+m2k

)
χ+O(χ2),

χ2b(χ) =
(
k
6 + 3mlg
3m+m2k

− 2λk
)
+
(
λ+ lg −

6 + 3mlg
3m+m2k

)
χ+O(χ2)

around χ = 0. Using this, we can see

lim
χ→0

φ′
χ(−m) = lim

χ→0

1

1 + km

(
aχe−mχ + be−mχ −mbχe−mχ +

2λk

χ
m− aχ− b− 1

)
= lim

χ→0

1

1 + km

(aχ3 + 2bχ2 − 2λk

χ

e−mχ − 1

χ
− bχ2 e

−mχ +mχe−mχ − 1

χ2

+ 2λk
e−mχ +mχ− 1

χ2
− 1
)

=
1

1 + km

(
(lg −

6 + 3mlg
3m+m2k

)(−m)− (k
6 + 3mlg
3m+m2k

− 2λk)(−m
2

2
)

+ 2λk(
m2

2
)− 1

)
=

1

2

klgm
2 + 4km+ 6

k2m2 + 4km+ 3
.
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In particular, φ′
χ(−m) extends continuously across χ = 0.

From the above explicit calculus, we can see that limχ→0 φ
′
χ(−m) < 1,

which is equivalent to mk((2k − lg)m + 4) > 0, as we have m > 0, k ≥
1, lg ≤ 2. Thus if we have limχ→−∞ φ′

χ(−m) = +∞, then there must be
some χ ∈ (−∞, 0) satisfying φ′

χ(−m) = 1, which solves φ satisfying all the
boundary conditions.

As χ tends to −∞, we can see the following:

c(χ) = −χ+
1−mk +mλ+mlg

m

+
1

m

(
− 1−mk +mλ+mlg

m
(1−mk) + 2λ+ lg − 2λkm− 2k

)
χ−1 +O(χ−2)

and χa(χ) → −1, χb(χ) → − 1
m

(χa(χ) − mχb(χ))χ → 0. Using this, we
obtain

φ′
χ(−m)χemχ → − 1

m
.

Thus φ′
χ(−m) tends to +∞ as χ goes to −∞. Similarly, we can also see that

φ′
χ(−m) → 0 as χ → −∞, but we do not use this fact as we already have

limχ→0 φ
′
χ(−m) < 1.

From the above observation, we get a positive solution φ of (1.79) sat-
isfying all the boundary conditions (1.80), which shows the existence of a
µλ-cscK metric in the Kähler class 2π(F +mB) for every λ ≥ 0.

Connecting Kähler–Ricci soliton and extremal metric via µ-cscK
metrics

Consider the case X = PCP 1(O(1) ⊕ O) = CP 2#CP 2. We have KX =
OX/Σ(−2)⊗π∗(KΣ⊗det(O(1)⊕O)∨) = 2(kF −B)− lgF − kF = −F − 2B.
It is known that there are both Kähler–Ricci soliton and extremal metric
in the Kähler class 2π(F + 2B). Now we show that there exists µλ-cscK
metrics also for (−∞, 0) with x < 0, which converges to the extremal metric
as λ → −∞ and to the µ0-cscK metric we constructed in section 1.6.1 as
λ→ 0. Thus we get a continuity path of µ-cscK metrics which connects the
Kähler–Ricci soliton (µ1-cscK) and the extremal metric.

In this case, since −λ/χ < 0, (1 − τ)φ(τ) might have two inflection
points a, b ∈ (−2, 0) such that (1 − τ)φ(τ) is concave on (−2, a), (a, 0) and
is convex on (a, b), which might make φ negative at some point in (−2, 0). If
this happens, we must have ((1− τ)φ)′′′(τ0) = 0 at some point τ0 ∈ (−2, 0).
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Since ((1−τ)φ)′′′ = (bχ3τ+aχ3+3bχ2)eχτ , we have τ0 = −a(χ)
b(χ)
− 3

χ
for χ < 0

solving φ′
χ(−2) = 1. To see the positivity of φ on (−2, 0), it suffices to show

τ0 > 0. To achieve this, we explicitly compute the following:

1. For χ < 0 solving φ′
χ(−2) = 1 with λ ∈ (−∞, 0), we have χ ∈

(−1, 0). Here the lower bound −1 is not effective. We actually have
χ ∈ (−0.265..., 0).

2. The function τ0(χ) = −a(χ)
b(χ)
− 3

χ
is positive on χ ∈ (−1, 0) for every

λ < 0.

For the second item, we explicitly write down as follows:

a(χ)

b(χ)
+

3

χ
=

α(χ) + λβ(χ)

χ(γ(χ) + λδ(χ))
,

where

α(χ) = (−2χ4 + χ3 + 2χ2 − 6χ)e−2χ + 9χ3 − 14χ2 + 6χ,

β(χ) = (4χ2 + 6χ− 6)e−2χ + 6χ3 + 5χ2 + 28χ− 6,

γ(χ) = (−χ3 + 2χ2 − 2χ)e−2χ + 3χ3 − 6χ2 + 2χ,

δ(χ) = (−χ2 + 4χ− 2)e−2χ + 7χ2 + 8χ− 2.

We can see that α(χ), γ(χ) > 0 and β(χ), δ(χ) < 0 for χ ∈ (−1, 0). So we
have τ0(χ) > 0 for χ ∈ (−1, 0). Since α(χ) is not necessarily positive for
more smaller χ < 0, we must bound χ. In fact, we have α(−1.5) < 0.

To see that χ ∈ (−1, 0) for λ < 0, we observe λ as a function on χ. We
can reduce φ′

χ(−m) = 1 to the following equality:

λ = χ
(9χ2 − 6χ− 2)e2χ + (−χ2 + 2χ− 2)e−2χ + (−12χ3 + 16χ2 + 4χ+ 4)

(9χ2 − 12χ+ 2)e2χ + (χ2 − 4χ+ 2)e−2χ + (−12χ4 + 16χ3 − 2χ2 + 16χ− 4)
.

We can see that λ is monotonically decreasing for χ ∈ (−∞, 0), λ(−1) > 0
and limχ→−0 λ(χ) = −∞, thus we conclude that λ(χ) ≤ 0 implies χ ∈
(−1, 0).
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Chapter 2

Equivariant calculus on
µ-character and µK-stability of
polarized schemes

We introduce and study µK-stability of polarized schemes with respect to
general test configurations as an algebro-geometric aspect of µ-cscK metric
we introduced in the last chapter. There are two fundamental ingredients.
On one hand, we develop a framework on ‘derivative of relative equivariant
intersection’, which we name equivariant calculus. As a part of equivariant
calculus, we establish convergence results on some infinite series of equiv-
ariant cohomology classes given by relative equivariant intersection, based
on a basic observation on the Cartan model of equivariant cohomology. On
the other hand, we derive an equivariant character µλ called µ-character for
equivariant family of polarized schemes from the equivariant intersection for-
mula of the log of the µ-volume functional. The derivative of the µ-character
not even yields µ-Futaki invariant, but also produces an analogue of the
equivariant first Chern class of CM line bundle, which is irrational in our
general µK-stability setup. The product invites us to approach the compact-
ification problem on the moduli space of Fano manifolds with Kähler–Ricci
solitons, which we study in chapter 4 of part II.

The content is based on the article [Ino3].
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2.1 Main results

The aim of this chapter is to justify the following definition of µ-Futaki
invariant by Theorem A and to unveil its GIT nature by Theorem G. We also
propose an approach to the compactification and the algebraization problem
of the moduli space of Fano manifolds with Kähler–Ricci solitons constructed
in [Ino1], as an application of these results.

Throughout this chapter, we denote by T an algebraic torus over C or its
closed real torus and by t = N(T )⊗ R its real Lie algebra. All schemes and
varieties are finite type over C.

Definition 2.1.1 (µ-Futaki invariant). Let (X,L) be a T -polarized pure n-
dimensional scheme. Fix parameters λ ∈ R and ξ ∈ t. For a T -equivariant
test configuration (X ,L) of (X,L), we define its µλ

ξ -Futaki invariant by

Futλξ (X ,L) = 4π
Evξ

(
(κTX̄/CP 1 .e

L̄T ) · (eLT )− (κTX .e
LT ) · (eL̄T )

)
(Evξ(eLT ))2

+ 2λ

Evξ
(
(L̄T .e

L̄T ) · (eLT )− (LT .e
LT ) · (eL̄T )

)
(Evξ(eLT ))2

− Evξ(e
L̄T )

Evξ(eLT )

 .
Here we denote

• by κTX̄/CP 1 ∈ H lf,T
2n (X̄ ,Q) and κTX ∈ H lf,T

2n−2(X,Q), the T -equivariant

(relative) canonical classes derived from the equivariant homology todd
class τTX(OX). These are well-defined for general (non-reduced, non-
irreducible, non-normal) schemes of finite type over C and are natural
in view of the equivariant Grothendieck–Riemann–Roch theorem, while
we do not have a general prescription associating a T -equivariant Weil
divisor KT

X to the T -equivariant dualizing sheaf ωX when X is not
Gorenstein in codimension one (or not normal). See section 2.4.2 for
more information. We indeed deal with general schematic families in
our application of Theorem G to the moduli problem.

• by (eL̄T ), (L̄T .e
L̄T ), (κTX̄/CP 1 .e

L̄T ), (eLT ), (LT .e
LT ) and (κTX .e

LT ), abso-

lute equivariant intersections, which are a priori elements of the ring
Ŝt∨ =

∏∞
k=0 S

kt∨ of formal power series. See the last paragraph in
section 2.4.1 for the precise definition. We verify in section 2.3.1 that
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these elements are indeed Taylor expansions of real analytic functions
on t, so we can regard these as elements of Cω(t).

• by Evξ, the evaluation map Evξ : Cω(t) → R valued at −2ξ ∈ t.
The factor −2 is essentially due to our convention on µλ

ξ -cscK metric

introduced in [Ino2]. It is the ratio of the ∂̄-Hamiltonian potential θ
to the moment map µ. Namely, for µξ and θξ satisfying −dµξ = iξω,√
−1∂̄θξ = iξJω for ξJ = Jξ +

√
−1ξ, we have θξ = −2µξ modulo

constant.

Our µ-Futaki invariant will be compared with the following established
Futaki invariants (see Proposition 2.3.13):

• Donaldson–Futaki invariant: Futλ0(X/C,L) is equivalent to the Donaldson–
Futaki invariant DF(X ,L) for every test configuration (X ,L) of a po-
larized scheme (X,L).

• Modified Futaki invariant (cf. [Xio, BW]): Suppose X is a Q-Fano
variety and L = −λ−1KX for λ > 0. Then Fut2πλξ (X ,L) is equivalent
to the modified Futaki invariant Futξ(X ,L) for every test configuration
(X ,L) of (X,L) with L = −λ−1KX/C.

Lahdili [Lah] proved the weighted K-semistability of weighted cscK man-
ifolds with respect to smooth test configurations by establishing the slope
formula and the boundedness for weighted Mabuchi functional . We also see
in Proposition 2.3.13 that our definition of µ-Futaki invariant is equivalent
to Lahdili’s definition of weighted Futaki invariant for smooth test configu-
rations in our µ-formalism.

We enhance his result to µK-semistability with respect to general test
configurations.

Theorem F. If a smooth Kähler manifold (X,L) admits a µλ
ξ -cscK metric,

then (X,L) is µλ
ξK-semistable with respect to general test configurations.

Namely, the µλ
ξ -Futaki invariant is non-negative for every T -equivariant test

configuration.

To reduce Theorem A to Lahdili’s result, we establish basics on absolute
equivariant intersection in section 2.3.1 and show the following fundamental
lemma. The proof is reminiscent of arguments in [BHJ] and [DR] for the
usual K-stability.
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Fundamental lemma (Theorem 2.3.16).

1. A T -polarized normal variety (X,L) is µλ
ξK-semistable (resp. µλ

ξK-

polystable, µλ
ξK-stable) with respect to general test configurations iff it

is µλ
ξK-semistable (resp. µλ

ξK-polystable, µλ
ξK-stable) with respect to

normal test configurations.

2. A T -polarized manifold (X,L) is µλ
ξK-semistable with respect to gen-

eral test configurations iff it is µλ
ξK-semistable with respect to smooth

test configurations with reduced centrals fibres and ample L.

Since the µλ
ξ -Futaki invariant Fut

λ
ξ (X ,L) is continuous on (λ, ξ) ∈ R× t,

Theorem D (1) of [Ino2] implies the following.

Corollary. If a smooth polarized manifold (X,L) admits µλ-cscK metrics for
every λ≪ 0 in the Kähler class c1(L), then (X,L) is relatively K-semistable
with respect to general test configurations.

The Yau–Tian–Donaldson conjecture for extremal metric predicts that
there exists an extremal metric in c1(L) when (X,L) is relatively K-polystable.
We proved in Theorem D (3) of [Ino2] that if there exists an extremal metric
then there exists a µλ-cscK metric for λ ≪ 0 in the same Kähler class. It
is natural to ask if one can show the estimate in Theorem D (2) under the
relative K-polystablity, which must hold if the YTD conjecture is true.

Next, we consider a relative version. Throughout this chapter, B denotes
a connected smooth variety with an algebraic action of an algebraic group
G over C. We always identify H0

G(B,R) with R. We denote by NSG(B,R)
the subspace of H2

G(B,R) spanned by the G-equivariant Neron–Severi group
which consists of G-equivariant first Chern classes of G-equivariant algebraic
line bundles.

Theorem G. Fix parameters λ ∈ R and ξ ∈ t. There exists an equivariant
characteristic class

Dξµ
λ
T×G(X/B,L) ∈ NSG(B,R)

associated to a T ×G-equivariant family (X/B,L) of polarized schemes on a
smooth G-variety B with the trivial T -action such that it enjoys the following
properties.
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1. Naturality: Suppose we have a morphism G′ → G of algebraic group
and a G′-equivariant morphism f : B′ → B from a smooth G′-variety
B′. Let (X ′/B′,L′) be the T ×G′-equivaraint family given by the base
change of (X/B,L) along f . Then we have Dξµ

λ
T×G′(X ′/B′,L′) =

f ∗Dξµ
λ
T×G(X/B,L).

2. µ-Futaki invariant: When the family (X/C,L) ⟲ C∗ is a T -equivariant
test configuration, then we have

Dξµ
λ
T×C∗(X/C,L) = Futλξ (X ,L).η∨ ∈ H2

C∗(C,R),

where η∨ denotes the positive generator of H2
C∗(X,Z) ∼= Z.

3. CM line bundle: When ξ = 0 (t = 0), we have

D0µ
λ
G(X/B,L) = −

4π

(L·n)
cG1 (CM(X/B,L))

for the CM line bundle CM(X/B,L), independent of λ ∈ R. (cf. [PT])

4. Parameter: The function D·µ
·
T×G(X/B,L) : t × R → H2

G(B,R) :
(ξ, λ) 7→ Dξµ

λ
T×G(X/B,L) is real analytic. It is moreover affine with

respect to λ ∈ R for each fixed ξ ∈ t.

We detect this characteristic class Dξµ
λ
T×G(X/B,L) based on the follow-

ing step-wise observation:

• We observe in section 2.2.1 the localization formula on equivariant inte-
gration yields Odaka–Wang’s intersection formula of Donaldson–Futaki
invariant (for product configuration) directly from the differential geo-
metric definition of Futaki invariant (for product configuration), which
we can easily generalize to our µ-cscK setup since the invariant comes
out of Donaldson–Fujiki type moment map picture as explained in
[Wang1]. We can also detect the equivariant first Chern class of the
CM line bundle by the same idea.

On the other hand, while we have a differential geometric definition
of µ-Futaki invariant fitting into the µ-cscK setup, we can not readily
derive an intersection formula of µ-Futaki invariant, obstructed by the
vector ξ ∈ t turning up in the µ-Futaki invariant Futλξ (η) (see the
equation (2.4)).
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• There is a functional µλ on t (the log of the µ-volume functional we in-
troduced in [Ino2]) whose differential at ξ ∈ t to the direction η ∈ t gives
the µ-Futaki invariant Futλξ (η). Contrast to the µ-Futaki invariant, we
easily find an equivariant cohomological expression of this functional.
The expression enables us to interpret µλ as a formal series of equiv-
ariant cohomology classes µλ

T (X,L) ∈ Ĥeven
T (pt,R) :=

∏∞
i=0H

2i
T (pt,R),

which is nothing but the Taylor expansion of the functional under the
identification Ĥeven

T (pt,R) ∼= Ŝt∨ :=
∏∞

i=0 t
∨. It is easy to generalize

this to an equivariant characteristic class µλ
G(X/B,L) ∈ Ĥeven

G (B,R)
for a G-equivariant family (X/B,L).

• We introduce ‘the differential operation D on ĤG(B,R)’ and study
its basic properties. We design the concept so that the differential
Dξµ

λ
T×C∗(X,L) ∈ H2

C∗(pt,R) of µλ
T (X,L) at ξ ∈ t gives the µ-Futaki

invariant in the sense that we have Dξµ
λ
T×C∗(X,L) = Futλξ (η).η

∨ for the
positive generator η ∈ H2

C∗(pt,Z) ∼= Z. We must show some conver-
gence results in equivariant cohomology in order to justify the definition
of the differential operation Dξ : Ĥ

even
T×G(B,R)→ H2

G(B,R).
By our construction of Dξµ

λ
T×G(X/B,L), the property (1) reduces to a

problem on the base-change behavior of the eqiuvariant relative canonical
class κX/B, which is in general regarded as a problem related to singularities
of families. Since we only need the base-change stability of the equivari-
ant intersection of eqiuvariant relative canonical class with equivariant line
bundle, it suffices to employ the equivariant Grothendieck–Riemann–Roch
theorem by Edidin–Graham [EG2] to see the property (1).

Finally, we explain in section 4 an application of Theorem B the compact-
ification problem on the moduli space of Fano manifolds with Kähler–Ricci
solitons constructed in [Ino1].

2.2 Preliminaries

2.2.1 Brief review on µ-cscK metric and µ-volume func-
tional

Weighted scalar curvature and µ-cscK metric

We briefly explain some basic notions around µ-cscK metric. The author
introduced µ-scalar curvature in the last chapter (cf. [Ino2]) to establish an
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inclusive framework of both cscK metric and Kähler–Ricci soliton based on
the moment map picture observed in [Ino1]. On the other hand, Lahdili [Lah]
also considered a generalization of Donaldson–Fujiki type moment map pic-
ture and introduced weighted scalar curvature as a far extensive framework,
which includes µ-scalar curvature. The moment map picture on weighted
scalar curvature yields a version of Yau–Tian–Donaldson conjecture which
states that the existence of weighted scalar curvature on a given manifold
must be equivalent to a proper notion of ‘weighted K-stability’. Lahdili in-
troduced the weighted Futaki invariant for test configurations with smooth
total spaces and proved that every weighted cscK manifold has non-negative
weighted Futaki invariants for all smooth test configurations. Since we reduce
our Theorem A to his result [Lah], we begin with his framework.

Let X be a compact Kähler manifold with a Hamiltonian action of a torus
T . Let ω be a T -invariant Kähler metric and µ : X → t∨ be a moment map.
Since X is compact, the moment polytope P = µ(X) (and even the measure
µ∗ω

n on t∨ supported on P ) depends only on the equivariant cohomology
class [ω + µ] ∈ H2

T (X,R) (cf. [GGK, Section 2.3–2.4]).
For a smooth positive function v on P , Lahdili [Lah] defines the weighted

scalar curvature sv(ω) by

sv(ω) := s(ω) · (v ◦µω)+∆ω(v ◦µω)− 1

2

∑
1≤i,j≤k

(Jξi)µ
ω
ξj
· ( ∂2v

∂xi∂xj
◦µω). (2.1)

Note we follow Kählerian convention on the scalar curvature s(ω) = trω(Ric(ω)),
so it is the half of the Riemannian scalar curvature.

When v is of the form v(x) = ṽ(⟨x, ξ⟩) with some smooth positive function
ṽ on R and ξ ∈ t, we can simplify it as

sv(ω) = s(ω) · (ṽ ◦ µω
ξ ) +

(
∆ωµ

ω
ξ · (ṽ′ ◦ µω

ξ )− (∇µω
ξ ,∇µω

ξ ) · (ṽ′′ ◦ µω
ξ )
)
− 1

2
(Jξ)µω

ξ · (ṽ′′ ◦ µω
ξ )

= s(ω) · (ṽ ◦ µω
ξ ) + ∆ωµ

ω
ξ · (ṽ′ ◦ µω

ξ ) +
1

2
(Jξ)µω

ξ · (ṽ′′ ◦ µω
ξ )

In particular, when v(x) = ṽ(⟨x,−2ξ⟩) with ṽ = et, we derive the µ-scalar
curvature sξ(ω):

sv(ω) =
(
(s(ω) + □̄θξ) + (□̄θξ − (Jξ)θξ)

)
eθξ =: sξ(ω)e

θξ

with θξ = µ−2ξ, which satisfies
√
−1∂̄θξ = iξJω for the holomorphic vector

field ξJ = Jξ +
√
−1ξ.
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For a real number λ ∈ R, we put

sλξ (ω) := sξ(ω)− λθξ = (s(ω) + □̄θξ) + (□̄θξ − (Jξ)θξ)− λθξ

and call it µλ
ξ -scalar curvature. We call a Kähler metric ω has constant

µλ
ξ -scalar curvature if sλξ (ω) equals to a constant. When λ = 0, the constant

s̄ξ :=

∫
X

sξ(ω)e
θξωn

/∫
X

eθξωn (2.2)

depends only on the cohomology class [ω] and the parameters λ ∈ R and
ξ ∈ t. When λ ̸= 0, the constant

s̄λξ := s̄ξ − λ
∫
X

θξe
θξωn

/∫
X

eθξωn (2.3)

depends further on the normalization of µ. Since moment maps are unique
modulo constant, the notion of µλ

ξ -cscK metric is independent of the choice
of the moment maps.

The µλ
ξ -cscK metric is equivalent to Kähler–Ricci soliton when L = −KX

and λ = 2π as observed in [Ino1]. The claim is as follows. Let X be a
Fano manifold and ω be a Kähler metric in the Kähler class 2πλ−1c1(X)
for λ > 0. Then the Kähler metric ω satisfies the equation of Kähler–Ricci
soliton Ric(ω)− LJξω = λω iff ω has constant µλ

ξ -scalar curvature.
The moment map picture on µ-scalar curvature inspires us to introduce

the following µ-Futaki invariant

Futλξ (η) = −
∫
X

(sλξ (ω)− s̄λξ )θηeθξωn
/∫

X

eθξωn. (2.4)

for η ∈ t. It depends only on the cohomology class [ω] ∈ H2(X,R) and hence
vanishes if there exists a µλ

ξ -cscK metric in the cohomology class [ω]. The
sign is reversed from the definition [Ino2, (49)] so that it coincides with the
slope of the µλ

ξ -Mabuchi functional along the geodesic ϕt = (exp tJη)∗θη.

On the intersection formula of Donaldson–Futaki invariant

Before studying µK-stability, we give a simple observation on Odaka–Wang’s
intersection formula. Donaldson [Don4] firstly introduced Futaki invariant for
test configurations as a generalization of differential geometric Futaki invari-
ant introduced in [Fut], using a polynomial expansion given by equivariant
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Riemann–Roch theorem. Odaka [Oda1] and Wang [?] showed a cohomo-
logical expression of Donaldson–Futaki invariant via Donaldson’s definition.
Here we observe that Odaka–Wang’s cohomological expression (for product
configurations) directly follows from the differential geometric definition of
Futaki invariant just by applying the localization formula in Example 2.4.6,
which is essentially Stokes theorem. This observation even yields an equivari-
ant cohomological expression for the equivariant first Chern class of CM line
bundle for smooth family. The author believe that this observation will help
the readers to understand the construction of the cohomological µ-Futaki
invariant Dξµ

λ(X/B,L).
Let X be a compact Kähler manifold and Λ : C∗ → Aut(X) be a one

parameter subgroup such that the U(1)-action on X is Hamiltonian with re-
spect to a Kähler metric ω in a cohomology class L. Let ηX be the associated
real holomorphic vector filed:

ηX(x) =
d

dθ

∣∣∣
θ=0

x.Λ(e2π
√
−1θ).

Fix a moment map µ : X → u(1)∨. We denote the equivariant cohomology
class [ω + µ] by LU(1).

We denote by XΛ the product C×X endowed with the C∗-action given
by (z, x).t = (zt, x.Λ(t)). Let π : XΛ → C and pX : XΛ → X be the
projections. The projections π and pX are C∗-equivariant. Consider the
pulled-back 2-form Ω := p∗Xω on XΛ. Then the map µX : XΛ → u(1)∨

defined by µX (b, x) := µ(x) is a moment map with respect to the restricted
U(1)-action on XΛ and Ω.

As usual, we compactify XΛ by gluing the product C×X with a C∗-action
(z, x).t = (t−1z, x) via the C∗-equivariant isomorphism (C \ {0}) × X →
XΛ \ π−1(0) : (u, x) 7→ (u−1, x.Λ(u−1)) and denote the compactification by
X̄Λ. We denote the glued morphism X̄Λ → CP 1 by the same symbol π.

Let

j : XΛ ↪→ X̄Λ, ȷ̌ : C×X ↪→ X̄Λ,

i : C ↪→ CP 1 : z 7→ (z : 1), ı̌ : C ↪→ CP 1 : w 7→ (1 : w)

be the associated immersions and

j0 = ȷ̌∞ : X ↪→ XΛ ↪→ X̄Λ, j∞ = ȷ̌0 : X ↪→ C×X ↪→ X̄Λ,

i0 = ı̌∞ : pt→ CP 1 : i0(pt) = (0 : 1), i∞ = ı̌0 : pt→ CP 1 : ı̌0(pt) = (1 : 0).
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be the embeddings of the central fibres and the origins.
By the equivariant Mayer–Vietoris sequence for X̄Λ = XΛ ∪ (C×X), we

have the following exact sequence:

0→ H2
U(1)(X̄Λ)

j∗0⊕j∗∞−−−−→ H2
U(1)(X)⊕(u(1)∨⊕H2(X))

[α+ν]⊕(c,[β]) 7→[α]−[β]−−−−−−−−−−−−−→ H2(X)→ 0,

where we identifiedH2
U(1)(XΛ) withH2

U(1)(X) andH2
U(1)(C×X) withH2(CP∞×

X) = u(1)∨ ⊕ H2(X) in natural ways. (Note the C∗-action on the central
fibre of C×X is trivial. ) In particular, we have the isomorphism

H2
U(1)(X̄Λ) ∼= H2

U(1)(X)⊕ u(1)∨ : [α + ν] 7→ j∗0 [α + ν]⊕ (ν ◦ j∞),

where ν ◦ j∞ is regarded as a constant. (Indeed, ν ◦ j∞ is a constant function
on X as d(νη ◦ j∞) = j∗∞dνη = −j∗∞iηX̄ ν = 0 by ηX̄ |j∞(X) = 0. ) Let
L̄U(1) ∈ H2

U(1)(X̄Λ,R) be the equivariant cohomology class corresponding

to [ω + µ] ⊕ 0 ∈ H2
U(1)(X) ⊕ u(1)∨ and L̄ ∈ H2(X̄Λ,R) be the associated

cohomology class.
Now we see that the following.

Lemma 2.2.1 (Intersection formula). In the setting as above, the cohomol-
ogy class Fut(ηX).η

∨ ∈ H2
U(1)({0}) is given as the image of the following

cohomology class along i∗0 : H
2
U(1)(CP 1)→ H2

U(1)({0}) ∼= R.η∨:

−4π · π̄∗
(
K

U(1)

X̄/CP 1 ⌣ L̄⌣n
U(1) +

n

n+ 1

(−KX .L
·(n−1))

(L·n)
L̄⌣(n+1)

U(1)

)
∈ H2

U(1)(CP 1).

As a consequence, we obtain the following well-known Odaka–Wang’s
intersection formula:

Fut(ηX) = 4π
(
(KX̄/CP 1 .L̄·n) +

n

n+ 1

(−KX .L
·(n−1))

(L·n)
(L̄·(n+1))

)
.

Proof. Since j∗0L̄U(1) = LU(1) = [ω + µ] and j∗0K
U(1)

X̄ = K
U(1)
X = − 1

2π
[Ricω +

□̄µ], we compute

−Fut(ηX).η∨ =

∫
X

θηŝω ω
n.η∨ =

(
n

∫
X

µ−2ηRicω ∧ ωn−1 − s̄
∫
X

µ−2ηω
n
)
.η∨

= −2
∫
X

(Ricω + □̄µ) ∧ (ω + µ)n + 2
s̄

n+ 1

∫
X

(ω + µ)n+1

= 2 ·
∫
X

(
− [Ricω + □̄µ] ∧ [ω + µ]n +

s̄

n+ 1
[ω + µ]n+1

)
= 4π ·

∫
X

j∗0

(
K

U(1)

X̄/CP 1 ⌣ L̄⌣n
U(1) +

n

n+ 1

−KX .L
·(n−1)

L·n L̄⌣(n+1)
U(1)

)
.
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Then the first claim follows by the formula
∫
X
j∗0 = i∗0π∗ for the submersion

π.
For the second claim, we employ the localization formula. By the local-

ization formula
∫
CP 1 u = −(i∗0u− i∗∞u)/η∨ on u ∈ H2

U(1)(CP 1,R) in Example
2.4.6, we have ∫

X̄
v =

∫
CP 1

π∗v = −i∗0π∗v/η∨

for v ∈ H2n+2
U(1) (X̄ ,R) with j∗∞v = 0. Since j∗∞L̄U(1) = [ω̃+0] and j∗∞K

U(1)
¯X/CP 1 =

[Ricω̃ + 0], we have

i∗∞π∗L̄
⌣(n+1)
U(1) =

∫
X

(ω̃ + 0)n+1 = 0

i∗∞π∗(K
U(1)

X̄/CP 1 ⌣ L̄n
U(1)) =

∫
X

(Ricω̃ + 0)(ω̃ + 0)n = 0,

so that we get

Fut(ηX) = −4π · i∗0π∗
(
K

U(1)

X̄/CP 1 ⌣ L̄n
U(1) +

n

n+ 1

−KX .ω
·(n−1)

ω·n L̄n+1
U(1)

)/
η∨

= 4π ·
∫
X̄

(
K

U(1)

X̄/CP 1 ⌣ L̄n
U(1) +

n

n+ 1

−KX .ω
·(n−1)

ω·n L̄n+1
U(1)

)
= 4π

(
(KX̄/CP 1 .L̄·n) +

n

n+ 1

−KX .ω
·(n−1)

ω·n (L̄·(n+1))
)
.

Equivariant cohomological interpretation of µ-Futaki invariant

Here we give an essential observation for Theorem G.
The µ-volume functional Volλ : t→ R

Volλ(ξ) := es̄
λ
ξ

(∫
X

eθξωn

)λ

(2.5)

was introduced in [Ino2] so that the derivative satisfies Dξ(− log Volλ)(η) =
Futλξ (η). The functional is designed so that it generalizes Tian–Zhu’s volume
functional

∫
X
eθξωn introduced in the study of Kähler–Ricci soliton [TZ2].

Indeed, we have s̄2πξ = 2πn when (X,L) = (X,−KX) is an n-dimensional
Fano manifold.
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We proved in [Ino2] that the µ-volume functional tends to +∞ as |ξ| → ∞
for each λ ∈ R, so that the functional always admits a critical point and the
critical points are unique for λ ≪ 0, but always not unique for λ ≫ 0.
Moreover, the set of vectors associated to some µ-cscK metric is (empty or)
finite for each λ ≤ 0 and is contained in the center of t. The author expects
that the critical points are indeed unique for λ ≤ 0.

Now we note the following equivariant intersection formulae∫
X

(s(ω) + □̄θξ)eθξωn = n!Evξ

∫
X

(Ricω + □̄µ)eω+µ = −2πn!Evξ(κTX .eLT ),∫
X

(n+ θξ)e
θξωn = n!Evξ

∫
X

(ω + µ)eω+µ = n!Evξ(LT .e
LT ),∫

X

eθξωn = n!Evξ

∫
X

eω+µ = n!Evξ(e
LT )

for LT := [ω + µ] and κTX := −cT1 (X) = − 1
2π
[Ricω + □̄µ]. Here we identify

the canonical class κTX with its equivariant Poincare dual −cT1 (X) just for
simplicity.

See Appendix 2.4.1 and 2.4.1 for the precise definition of the notation in
the last expressions. Here we just note that the equivariant push-forwards
(κTX .e

LT ), (LT .e
LT ) and (eLT ) along p : X → pt are elements of Ĥeven

T (pt,R)
and the evaluation Evξ = ev−2ξ of these elements are by definition the infi-
nite series Evξ(α.e

LT ) :=
∑∞

k=0
1
k!
Evξ(α.L

⌣k
T ) ∈ R for α = κTX , LT , [X]T . The

Cartan model of equivariant cohomology explains the equality Evξ(α.L
⌣k
T ) =∫

X
(A + ν−2ξ)(ω + µ−2ξ)

k with [A + ν] = α ∈ H2
dR,T (X,R), so the the con-

vergence of the infinite series follow by the convergence of the infinite series∑∞
k=0

1
k!
((A+ ν−2ξ)(ω+µ−2ξ)

k)⟨n⟩ of 2n-forms on X to the above integrands.
We discuss the convergence in more general setups in section 2.3.1 based on
a preliminary in section 2.4.2.

Now we can express the following variant

µλ(ξ) := − log
Volλ(ξ)

(n!en)λ
= −s̄λξ + λn− λ log

( 1

n!

∫
X

eθξωn
)

(2.6)

as

2πEvξ(κ
T
X .e

LT ) · (Evξ(eLT ))−1 + λEvξ(LT .e
LT ) · (Evξ(eLT ))−1 − λ log Evξ(eLT ).

Since µλ differs from − log Volλ by a constant, we have

Futλξ (η) =
d

dt

∣∣∣
t=0

µλ
(X,ω)(ξ + tη) = Dξµ

λ
(X,ω)(η). (2.7)
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On the other hand, since the degree zero part (eLT )⟨0⟩ = (L·n)/n! of the
equivariant cohomology class (eLT ) ∈ Ĥeven

T (pt,R) is positive, we can also
regard (eLT )−1, log(eLT ) as equivariant cohomology classes in Ĥeven

T (pt,R).
So the following gives a well-defined equivariant cohomology class

µλ
T (X,L) := 2π(κTX .e

LT ) · (eLT )−1 + λ(LT .e
LT ) · (eLT )−1 − λ log(eLT ). (2.8)

If we replace the equivariant lift [ω + µ] ∈ H2
T (X) of the cohomology class

[ω] ∈ H2(X) to another lift LT + c := [ω + µ+ c] by a constant c ∈ t∨, then
(eLT ), (LT .e

LT ), (κTX .e
LT ) are replaced as

(eLT+c) = ec(eLT ),

((LT + c).eLT+c) = ec(LT .e
LT ) + cec(eLT ),

(κTX .e
LT+c) = ec(κTX .e

LT ),

respectively. So µλ
T (X,L) depends only on the cohomology class L = [ω] and

the equivariant canonical class κTX .
If we take a base {x1, . . . , xk} of t∨, we can identify Ĥeven

T (pt,R) =
Ŝt∨ with the ring of formal power series RJx1, . . . , xkK. Then the element
µλ

T (X,L) is identified with the Taylor expansion of the functional µλ(−1
2
·)

on t at the origin. Since the functional µλ is real analytic, the differential
Dξµ

λ(η) must be recovered from the formal series µλ
T (X,L) when ξ is close

to the origin. Moreover, the derivative Dµλ away from the origin must be
recovered from µλ

T (X,L), since µ
λ is real analytic on the whole t. This is our

strategy for detecting an equivariant cohomological expression of µ-Futaki in-
variant. We will introduce a differential operation on equivariant cohomology
to arrange this idea in section 2.2.2.

2.2.2 Differential operation on equivariant cohomology

Here we introduce a differential operation on equivariant cohomology. We use
this notion to construct the cohomological µ-Futaki invariantDT

ξ µ
λ
G(X/B,L).

Let G be a topological group, B be a connected (for simplicity) topolog-
ical space with a G-action and T be a (closed/algebraic) torus acting on B
trivially. (We can also deal with the case when B is T -equivariantly homo-
topically equivalent to a space with the trivial T -action, such as B = C with
a linear C∗-action. ) From the assumption on the T -action, we have the
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following decomposition

Ĥeven
T×G(B,R) =

∞∏
k=0

⊕
i+j=k

Sit∨ ⊗H2j
G (B,R). (2.9)

For an element α of Ĥeven
T×G(B,R), we denote by α⟨i,j⟩ the Sit∨ ⊗H2j

G (B,R)-
component of α:

α =
∞∑
k=0

α⟨k⟩ =
∞∑
k=0

(∑
i+j=k

α⟨i,j⟩

)
.

As our formulation around µλ
ξ -cscK metric fits into the ∂̄-Hamiltonian

θξ = µ−2ξ rather than the moment map µξ, we may better to prepare our
notation by a factor of −2. First of all, we put

Evξ := ev−2ξ : H
k
T×G(B,R)→

⊕
0≤l≤k

H l
G(B,R). (2.10)

Definition 2.2.2 (Differential operation on equivariant cohomology). For
an equivariant cohomology class of even degree α ∈ Ĥeven

T×G(B,R), we define

the formal k-derivative D̂kα (on T to the direction G) to be the element of
Ŝt∨ ⊗H2k

G (B,R) :=
∏∞

i=0 S
it∨ ⊗H2k

G (B,R) defined as:

D̂kα := (−2)kk!
∞∑
i=0

α⟨i,k⟩ ∈
∞∏
i=0

Sit∨ ⊗H2k
G (B,R).

For k = 0, 1, . . . ,∞, we say that α is of class εk around ξ ∈ t if for each
l ∈ Z≥0 with l ≤ k (or l <∞ when k =∞) the sum

∑∞
i=0 Evξ(α

⟨i,l⟩) is locally
uniformly absolutely-convergent around ξ ∈ t with respect to some (hence
any) norm on H2l

G (B,R). In this case, the sum (−2)kk!
∑∞

i=0 Evξ(α
⟨i,k⟩) is

unconditional convergent in H2k
G (B,R). We denote the limit by

Dk
ξα := (−2)kk!

∞∑
i=0

Evξ(α
⟨i,k⟩) ∈ H2k

G (B,R) (2.11)

and simply denote it by Dξα for k = 1.

The following example illustrates the way to regard this operation as
differential.
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Example 2.2.3. Consider the case G = C∗, T = (C∗)×m and B = pt. In this
case, an equivariant cohomology class α ∈ Ĥeven

T×G(B,R) = RJν∨1 , . . . , ν∨m, η∨K
is identified with the formal power series

α =
∞∑
j=0

1

j!

( ∑
i=(i1,...,im)

1

i!
ai,j.(ν

∨)i
)
.(η∨)j ∈ RJν∨KJη∨K

with some ai,j ∈ R for each i = (i1, . . . , im) ∈ Zm
≥0. Here we put i! = i1! · · · im!

and (ν∨)i = (ν∨1 )
i1 · · · (ν∨m)im . Since

α⟨i,j⟩ =
1

j!

(∑
|i|=i

1

i!
ai,j.(ν

∨)i
)
.(η∨)j,

we have

D̂kα =
(∑

i

1

i!
ai,j.(ν

∨)i
)
.(−2η∨)k.

So we formally get

Dk
ξα =

(∑
i

1

i!
ai,k(−2x)i

)
.(−2η∨)k

for ξ = x.ν = x1ν1 + · · ·+ xmνm ∈ t.
Now we consider a group morphism Λ : G → T : t 7→ (tλ1 , . . . , tλm) and

treat the case when α is the pull-back (idT×Λ)∗β of some β =
∑

i
1
i!
bi.(ν

∨)i ∈
Ĥeven

T (B,R) = RJν∨K. The pull-back α = (idT × Λ)∗β ∈ Ĥeven
T×G(B,R) =

RJν∨KJη∨K is expressed as

α =
∑

i=(i1,...,im)

1

i!
bi.(ν

∨ + (λ1η
∨, . . . , λmη

∨))i

=
∑

i1,...,im

1

i1! · · · im!
b(i1,...,im)(ν1 + λ1η

∨)i1 · · · (νm + λmη
∨)im

=
∑

i1,...,im

1

i1! · · · im!
b(i1,...,im)

( i1∑
k1=0

(
i1
k1

)
(ν∨1 )

i1−k1(λ1η
∨)k1

)
· · ·
( im∑

km=0

(
im
km

)
(ν∨m)

im−km(λmη
∨)km

)
=
∑
i

∑
k≤i

1

(i− k)!k!
bi(ν

∨)i−kλk(η∨)|k|

=
∞∑
k=0

1

k!

( ∑
|k|=k

∑
l

k!

l!k!
bk+lλ

k(ν∨)l
)
.(η∨)k.
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So we formally get

Dk
ξα =

( ∑
|k|=k

∑
l

k!

l!k!
bk+l(−2λ)k(−2x)l

)
.(η∨)k.

The coefficient can be identified with the usual differential: suppose the
power series fβ(x) =

∑
i
1
i!
bix

i is locally uniformly absoulte-convergent on
Rm, then for Fβ(x) := fβ(−2x) we have( dk

dtk

)∣∣∣
t=0
Fβ(x+ tλ) =

∑
|k|=k

∑
l

k!

l!k!
bk+l(−2λ)k(−2x)l.

In particular, the pull-back α = (idT ×Λ)∗β is of class ε∞. This is the reason
we call D̂kα the formal derivative on T to the direction G.

Proposition 2.2.4 (Leibniz rule). We have the following formal Leibniz rule
for α, β ∈ Ĥeven

T×G(B,R):

D̂k(α ⌣ β) =
k∑

l=0

(
k

l

)
D̂lα ⌣ D̂k−lβ ∈

∞∏
i=0

Sit∨ ⊗H2k
G (B,R). (2.12)

Suppose α and β are of class εk around ξ ∈ t, then so is α ⌣ β and we have
the following Leibniz rule:

Dk
ξ (α ⌣ β) =

∑
l=0

(
k

l

)
Dl

ξα ⌣ Dk−l
ξ β ∈ H2k

G (B,R). (2.13)

Proof. The first claim follows directly by

D̂k(α ⌣ β) = k!
∞∑
i=0

(α ⌣ β)⟨i,k⟩ = k!
∞∑
i=0

∑
p+q=i

k∑
l=0

α⟨p,l⟩ ⌣ β⟨q,k−l⟩

=
k∑

l=0

k!
( ∞∑

p=0

α⟨p,l⟩
)
⌣
( ∞∑

q=0

β⟨q,k−l⟩
)

=
k∑

l=0

k!

l!(k − l)!

(
l!

∞∑
p=0

α⟨p,l⟩
)
⌣
(
(k − l)!

∞∑
q=0

β⟨q,k−l⟩
)

=
k∑

l=0

(
k

l

)
D̂lα ⌣ D̂k−lβ.
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The second claim on the absolute convergence follows by Tonelli’s theorem.
Indeed, we may take the norms {∥ · ∥l}l≤k on {H2l

G (B,R)}l≤k so that ∥u ⌣
v∥k ≤ ∥u∥l · ∥v∥k−l for every u ∈ H2l

G (B,R) and v ∈ H
2(k−l)
G (B,R). Then

since
∥Evξ(α⟨p,l⟩ ⌣ β⟨q,k−l⟩)∥k ≤ ∥Evξα⟨p,l⟩∥l · ∥Evξβ⟨q,k−l⟩∥k−l,

we have

∞∑
i=0

∥Evξ(α ⌣ β)⟨i,k⟩∥k ≤
∞∑
i=0

∑
p+q=i

k∑
l=0

∥Evξ(α⟨p,l⟩ ⌣ β⟨q,k−l⟩)∥k

≤
k∑

l=0

∞∑
i=0

∑
p+q=i

∥Evξα⟨p,l⟩∥l · ∥Evξβ⟨q,k−l⟩∥k−l

=
k∑

l=0

( ∞∑
p=0

∥Evξα⟨p,l⟩∥l
)( ∞∑

q=0

∥Evξβ⟨q,k−l⟩∥k−l

)
.

Suppose the degree zero part α⟨0⟩ ∈ H0
T×G(B,R) ∼= R is not zero (resp.

positive), then we can define an element α−1 (resp. logα) of Ĥeven
T×G(B,R) by

α−1 :=
1

α⟨0⟩ +
1

α⟨0⟩

∞∑
k=1

 k∑
l=1

( −1
α⟨0⟩

)l ∑
k∈Nl,|k|=k

α⟨k⟩

 ∈ Ĥeven
T×G(B,R) (2.14)

and

logα := logα⟨0⟩−
∞∑
k=1

 k∑
l=1

1

l

( −1
α⟨0⟩

)l ∑
k∈Nl,|k|=k

α⟨k⟩

 ∈ Ĥeven
T×G(B,R). (2.15)

Here we put |k| := k1 + · · ·+ km and α⟨k⟩ := α⟨k1⟩ · · ·α⟨kl⟩ ∈ H2|k|
T×G(B,R) for

the set of l-tuples of positive integers and for k = (k1, . . . , kl) ∈ Nl. These
definitions are based on the following expansion; for instance as for α−1,

α−1 =
1

α⟨0⟩

(
1 + (

1

α⟨0⟩α− 1)
)−1

=
1

α⟨0⟩

∞∑
l=0

(−1)l
( 1

α⟨0⟩α− 1
)l

=
1

α⟨0⟩

∞∑
l=0

( −1
α⟨0⟩

)l( ∞∑
k=1

α⟨k⟩
)l
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and for l ≥ 1, ( ∞∑
k=1

α⟨k⟩
)l

=
∞∑
k=l

∑
k∈Nl,|k|=k

α⟨k⟩

Note here for each k ∈ N, the sum
∑k

l=1

(
−1
α⟨0⟩

)l∑
k∈Nl,|k|=k α

⟨k⟩ inH2k
T×G(B,R)

is a finite sum.

Proposition 2.2.5. We have

D̂0(α−1) = (D̂0α)−1 ∈
∞∏
i=0

Sit∨, (2.16)

D̂(α−1) = −D̂α · (D̂0α)−2 ∈
∞∏
i=0

Sit∨ ⊗H2
G(B,R) (2.17)

for α ∈ Ĥeven
T×G(B,R) with α⟨0⟩ ̸= 0 and have

D̂0(logα) = log(D̂α) ∈
∞∏
i=0

Sit∨, (2.18)

D̂(logα) = D̂α · (D̂0α)−1 ∈
∞∏
i=0

Sit∨ ⊗H2
G(B,R) (2.19)

for α⟨0⟩ > 0.
If moreover α is of class ε0 (resp. ε1) around the origin, then α−1 and

logα are also ε0 (resp. ε1) around the origin (possibly on a smaller ball) and

D0
ξ(α

−1) = (D0
ξα)

−1 ∈ R, (2.20)

( resp. Dξ(α
−1) = −Dξα · (D0

ξα)
−2 ∈ H2

G(B,R)), (2.21)

D0
ξ(logα) = log(D0

ξα) ∈ R, (2.22)

( resp. Dξ(logα) = Dξα · (D0
ξα)

−1 ∈ H2
G(B,R)). (2.23)

around the origin.

Proof. First of all, we have (α−1)⟨0,0⟩ = (α⟨0⟩)−1 ∈ H0
G(B,R) = R and

(α−1)⟨i,0⟩ =
1

α⟨0⟩

i∑
l=1

( −1
α⟨0⟩

)l ∑
i∈Nl,|i|=i

α⟨i,0⟩ ∈ Sit∨ ⊗H0
G(B,R)
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for i ≥ 1, which is a finite sum. So we compute

D̂0(α−1) =
∞∑
i=0

(α−1)⟨i,0⟩ =
1

α⟨0⟩ +
1

α⟨0⟩

∞∑
i=1

i∑
l=1

( −1
α⟨0⟩

)l ∑
i∈Nl,|i|=i

α⟨i,0⟩

=
1

α⟨0⟩

∞∑
l=0

( −1
α⟨0⟩

∞∑
i=1

α⟨i,0⟩
)l

=
1

α⟨0⟩

(
1 +

1

α⟨0⟩

∞∑
i=1

α⟨i,0⟩
)−1

=
( ∞∑

i=0

α⟨i,0⟩
)−1

= (D̂0α)−1

in the ring
∏∞

p=0 S
pt∨.

Suppose α is of class ε0. To show that α−1 is also of class ε0, we must see
that the infinite series

∞∑
i=1

∣∣∣ i∑
l=1

( −1
α⟨0⟩

)l ∑
i∈Nl,|i|=i

Evξα
⟨i,0⟩
∣∣∣ (2.24)

converges uniformly around the origin. We can bound this by

∞∑
i=1

i∑
l=1

( 1

|α⟨0⟩|

)l ∑
i∈Nl,|i|=i

|Evξα⟨i,0⟩| =
∞∑
l=1

( 1

|α⟨0⟩|

∞∑
i=1

|Evξα⟨i,0⟩|
)l
.

This converges when 1
|α⟨0⟩|

∑∞
i=1 |Evξα⟨i,0⟩| < 1. Since

∑∞
i=1 |Ev0α⟨i,0⟩| = 0

and
∑∞

i=1 |Evξα⟨i,0⟩| is continuous with respect to ξ around the origin by its
uniform convergence, we can achieve the convergence condition when ξ is
sufficiently close to the origin, so that we get the uniform convergence of
(2.24).

To see D0
ξ(α

−1) = (D0
ξα)

−1 for ξ close to the origin, we put

fξ(i, l) :=


(

−1
α⟨0⟩

)l∑
i∈Nl,|i|=i Evξα

⟨i,0⟩ l ≤ i

0 l > i
.

Since
∞∑
l=1

∞∑
i=1

|fξ(i, l)| ≤
∞∑
l=1

( 1

|α⟨0⟩|

)l ∞∑
i=1

∑
i∈Nl,|i|=i

|Evξα⟨i,0⟩|

=
∞∑
l=1

( 1

|α⟨0⟩|

∞∑
i=1

|Evξα⟨i,0⟩|
)l
,
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fξ(i, l) is integrable on N2 by Tonelli’s theorem. It follows that

D0
ξ(α

−1) =
1

α⟨0⟩ +
∞∑
i=1

∞∑
l=1

fξ(i, l) =
1

α⟨0⟩ +
∞∑
l=1

∞∑
i=1

fξ(i, l) = (D0
ξα)

−1

by Fubini’s theorem.
Similarly, we have (α−1)⟨0,1⟩ = −(α⟨0⟩)−2α⟨0,1⟩ and

(α−1)⟨i,1⟩ =
1

α⟨0⟩

i∑
l=1

( −1
α⟨0⟩

)l
l

∑
i∈Z≥0×Nl−1,|i|=i

α⟨i1,1⟩ ·
l∏

p=2

α⟨ip,0⟩ ∈ Sit∨ ⊗H2
G(B,R)

for i ≥ 1, where we put
∏l

p=2 α
⟨ip,0⟩ := 1 when l = 1. We compute

D̂(α−1) =
∞∑
i=0

(α−1)⟨i,1⟩ = − α⟨0,1⟩

(α⟨0⟩)2
+

1

α⟨0⟩

∞∑
i=1

i∑
l=1

( −1
α⟨0⟩

)l
l

∑
i∈Z≥0×Nl−1,|i|=i

α⟨i1,1⟩ ·
l∏

p=2

α⟨ip,0⟩

= −
( ∞∑

i=0

α⟨i,1⟩
) 1

(α⟨0⟩)2

∞∑
l=1

l
( −1
α⟨0⟩

∞∑
i=1

α⟨i,0⟩
)l−1

= −D̂α · 1

(α⟨0⟩)2

(
1 +

1

α⟨0⟩

∞∑
i=1

α⟨i,0⟩
)−2

= −D̂α · (D̂0α)−2

in Ŝt∨ ⊗ H2
G(B,R). By the same argument as above, we see that α−1 is of

class ε1 around the origin when α is so. There is no essential difference for
logα. So we obtain the claim.

2.3 Equivariant calculus and µ-character

2.3.1 Equivariant calculus

On the absolute equivariant intersection (α.eL)

Let X be a pure n-dimensional scheme with a T -action. Here we consider
the differential D0

ξ(α.e
L) of the absolute equivariant intersection (α.eL) ∈

Ĥeven
T×{1}(pt,R) of a second equivariant locally finite homology class α ∈ H lf,T

2p (X,R)
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and a second equivariant cohomology class L ∈ H2
T (X,R). Since the decom-

position (2.9) gives the identification Ĥeven
T×{1}(pt,R) =

∏∞
i=0 S

it∨⊗H0(pt,R),
we have

(α.eL)⟨i,k⟩ =

{
1

(i+(n−p))!
(α.L⌣(i+(n−p))) k = 0

0 k ≥ 1
,

so that D̂k(α.eL) = 0 for k ≥ 1 and

D̂0(α.eL) =
∞∑
j=0

1

j!
(α.L⌣j).

For a pure n-dimensionalG-schemeX, we denote byHalg,G
2n−2(X,R) the sub-

space of H lf,G
2n−2(X,R) = H lf

2n−2+2dimC B2G
(E2G ×G X,R) spanned by divisors

on E2G ×G X. Here the scheme E2G is as in Appendix, i.e. a G-invariant
Zariski open set of the subset {v ∈ V | v.g = v ⇐⇒ g = 1} of a G-
representation V with dimC(V \ E2G) ≥ 2. This is a well-defined subspace
of H lf,G

2n−2(X,R) by [EG1]. Note that Halg,G
2n−2(X,R) is larger than the subspace

{
∑

i ai[E2G×GZi] | Zi ⊂ X : G-invariant divisor} spanned by G-equivariant
fundamental classes of G-invariant divisors. (See the case G = C∗ and X is
a point for example. ) We firstly note the following lemma.

Lemma 2.3.1. Let X and Z be pure n-dimensional G-schemes and f : Z →
X be a proper surjective G-equivariant morphism. Then the push-forward
maps f∗ : Halg,G

2n−2(Z,R) → Halg,G
2n−2(X,R) and f∗ : H lf,G

2n (Z,R) → H lf,G
2n (X,R)

are surjective.

Proof. Since the induced morphism id ×G f : E2G ×G Z → E2G ×G X is
also proper surjective, the claim reduces to the trivial case G = {1}. By the
reduction and the irreducible decomposition, we may assume that X and Z is
irreducible. (For each irreducible component Xi of X, there is an irreducible
component Zi of Z with f(Zi) = Xi. ) For any prime divisor Y ⊂ X,
f−1(Y ) ⊂ Z contains a prime divisor of Z. Indeed, if not, then f−1(Y ) is
(n − 2)-dimensional, so that f(f−1(Y )) ̸= Y as Y is (n − 1)-dimensional,
which contradicts to the surjectivity.

Now we prove the following fundamental on absolute equivariant inter-
section.
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Proposition 2.3.2. Let X be a pure n-dimensional proper scheme and L
be a second equivariant cohomology class on X. If α ∈ H lf,T

2n (X,R) or α ∈
Halg,T

2n−2(X,R) the infinite series

D0
ξ(α.e

L) =
∞∑
j=0

1

j!
Evξ(α.L

⌣j) =: Evξ(α.e
L)

is locally uniformly absolutely-convergent on t. When L is semi-ample and
big, Evξ(e

L) = Evξ([X].eL) is positive.

Proof. Take the irreducible decomposition of the reductionX irr → Xred → X
and a T -equivariant resolution of singularities X̃ → X irr. Let f : X̃ → X
be the composition of these morphisms. By Lemma 2.3.1, we can pick an
element α̃ ∈ Halg,T

2n−2(X̃,R) (resp. α̃ ∈ H lf,T
2n (X̃,R)) with f∗α̃ = α for α ∈

Halg,T
2n−2(X,R) (resp. α ∈ H lf,T

2n (X,R)). Since we have (α.eL) = (α̃.ef
∗L) by

the projection formula, we may assume X is smooth.
Suppose α ∈ H lf,T

2n−2(X,R). Pick equivariant 2-forms A + ν in the equiv-
ariant Poincare dual PDT (α) and Ω + µ in L. We have

Evξ(α.L
⌣j) = Evξ

∫
X

(A+ ν)(Ω + µ)j

=

∫
X

(( j

n− 1

)
µ
j−(n−1)
−2ξ A ∧ Ωn−1 +

(
j

n

)
ν−2ξµ

j−n
−2ξΩ

n
)
.

Now the infinite series of 2n-forms

∞∑
j=0

1

j!

(( j

n− 1

)
µ
j−(n−1)
−2ξ A ∧ Ωn−1 +

(
j

n

)
ν−2ξµ

j−n
−2ξΩ

n
)

is locally uniformly absolutely-convergent on t with respect to the C l-norm
for every l ∈ Z≥0, to the limit 2n-form

1

(n− 1)!
eµ−2ξA ∧ Ωn−1 +

1

n!
ν−2ξe

µ−2ξΩn.

It follows that by Corollary 2.4.12 and Lemma 2.4.13, the infinite series∑∞
j=0

1
j!
Evξ(α.L

⌣j) is locally uniformly absolutely-convergent to the integral∫
X

( 1

(n− 1)!
eµ−2ξA ∧ Ωn−1 +

1

n!
ν−2ξe

µ−2ξΩn
)
=:

∫
X

(A+ ν−2ξ)e
Ω+µ−2ξ .
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(In the absolute case, we may apply the usual harmonic analysis to see the
continuity of the form-to-cohomology proper push forward (2.49) of p : X →
pt. )

We similarly obtain the claim for α ∈ H lf,T
2n (X,R). If L is semi-ample and

big, then we can pick a 2-form Ω so that it is semi-positive and is strictly
positive on some open set of X. Since eµ−2ξ is positive,

Evξ(α.e
L) =

∑
i

PDT (α|Xi)
n!

∫
Xi

eµ−2ξΩ|nXi

is positive if the Poincare duals PDT (α|Xi) ∈ R ∼= H0
T (Xi,R) are positive

for each irreducible component. Here Xi are the connected components of
the smooth X. This proves the claim on the positivity as the Poincare dual
([Xred]T ⌢)−1([X]T ) of the fundamental class of an irreducible scheme X is
the length of OX/OXred at the generic point, which is positive.

The following is a key proposition to prove Theorem A.

Proposition 2.3.3. Let β : X ′ → X be a T -equivariant morphism of pure
n-dimensional projective schemes and L be a T -equivariant Q-line bundle on
X.

1. If β is an isomorphism away from a codimension one subscheme of the
target X, then we have

Evξ(e
β∗L) = Evξ(e

L), Evξ(β
∗L.eβ

∗L) = Evξ(L.e
L)

2. If moreover β is finite away from a codimension two subscheme of the
target X & L is semi-ample and big (resp. if moreover β is an isomor-
phism away from a codimension two subscheme of the target X), then
we have

Evξ(κX′ .eβ
∗L) ≤ Evξ(κX .e

L) (resp. Evξ(κX′ .eβ
∗L) = Evξ(κX .e

L))

Proof. The first claim follows by β∗[X
′]T = [X]T and the equivariant projec-

tion formula∫
X′
[X ′]T ⌢ (β∗L)⌣(n+k) =

∫
X

β∗[X
′]T ⌢ L⌣(n+k) =

∫
X

[X]T ⌢ L⌣(n+k) ∈ Skt∨.
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By the equivariant Grothendieck–Riemann–Roch theorem, we have β∗τ
T
X′(OX′) =

τTX(β!OX′). Since β is finite away from a codimension two subscheme of X,
the supports of the higher direct images of OX′ is contained in the codimen-
sion two subscheme. So we have

(τTX(β!OX′))⟨n−1⟩ = (τTX(β∗OX′))⟨n−1⟩ = (τTX(β∗OX′/OX) + τTX(OX))⟨n−1⟩.

Since β is isomorphism away from a codimension one subscheme of X, we
have

(τTX(β∗OX′/OX))⟨n−1⟩ =
∑
i

mi[Di]
T ,

where mi ≥ 0 are the multiplicities of β∗OX′/OX along T -invariant prime
divisors Di contained in the codimension one subscheme. It follows that we
have

β∗κ
T
X′ = κTX − 2

∑
i

mi[Di]
T .

By the equivariant projection formula, we have∫
X′
κTX′ ⌢ (β∗L)⌣(n+k−1) =

∫
X

β∗κ
T
X′ ⌢ L⌣(n+k−1)

=

∫
X

κTX ⌢ L⌣(n+k−1) − 2
∑
i

mi

∫
X

[Di]
T ⌢ L⌣(n+k−1) ∈ Skt∨.

So we have

Evξ(κX′ .eβ
∗L) = Evξ(κX .e

L)− 2
∑
i

miEvξ(e
L|Di ).

Take a resolution of singularities δi : D̃i → Di. Since δ∗iL|Di is semi-ample
and big, we can pick an equivariant 2-form ω + µ so that ωn−1 ≥ 0 with
ωn−1(p) > 0 at some point p ∈ Di. Applying the first claim, we obtain

Evξ

∫
Di

[Di]
T ⌢ eL =

1

(n− 1)!

∫
D̃i

eµ−2ξωn−1 > 0

as the function eµ−2ξ is positive.
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The relative equivariant intersection (α.eL)B is of class ε∞

Now we study the relative case. Let G be an algebraic group, T be an
algebraic torus. Let X be a pure dimensional T ×G-scheme, B be a smooth
G-variety with the trivial T -action, π : X → B be a T×G-equivariant proper
morphism. Let L be a T ×G-equivariant second cohomology class on X .

Theorem 2.3.4. If α ∈ Halg,T×G
2 dimX (X ,R) or α ∈ Halg,T×G

2 dimX−2(X ,R), then (α.eL)B ∈
Ĥ lf,T×G(B,R) is of class ε∞ on t.

Proof. We put n := dimX − dimB. As in the proof of Proposition 2.3.2, we
may assume that X is smooth. Let K be a maximal compact subgroup of G.
Pick an equivariant 2-from Ω+ µ = Ω+ (µT + µK) in L. We firstly compute

(L⌣j)
⟨i,k⟩
B . Comparing the degree, we have (L⌣j)

⟨i,k⟩
B = 0 when j−n ̸= i+ k.

For j = n+ i+ k, we compute

(L⌣n+i+k)
⟨i,k⟩
B = (PDT×K [π∗(Ω + µ)n+i+k])⟨i,k⟩

=
n+i+k∑
p=n

(
n+ i+ k

p

)
(PDT×K [π∗(µ

n+i+k−pΩp)])⟨i,k⟩

=
n+k∑
p=n

(
n+ i+ k

n+ i+ k − p

)
PDT×K

[(
n+ i+ k − p

i

)
π∗((µ

T )i(µK)n+k−pΩp)

]

= PDT×K

[(
n+ i+ k

n+ k

)
π∗((µ

T )i
n+k∑
p=n

(
n+ k

p

)
(µK)n+k−pΩp)

]

=

(
n+ i+ k

n+ k

)
PDT×K [π∗((µ

T )i(Ω + µK)n+k)],

so that we obtain

Evξ(e
L)

⟨i,k⟩
B =

1

(n+ i+ k)!
Evξ(L⌣n+i+k)

⟨i,k⟩
B =

1

(n+ k)!
PDK [π∗(

1

i!
(µT

−2ξ)
i(Ω+µK)n+k)].

We pick a collection of semi-norms {∥ · ∥l}l∈Z≥0
on Ω

2(n+k)
K (X ) so that

it defines the Fréchet structure of Ω
2(n+k)
K (X ). For instance, we may put

∥φ∥l := ∥φ|Dl∥Cl using an exhaustion {Dl ⊂ X}l∈Z≥0
by compact sets. Now

we easily see the infinite series of K-equivariant forms

∞∑
i=0

1

i!
(µT

−2ξ)
i(Ω + µK)n+k
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is locally uniformly absolutely-convergent on t with respect to the semi-norm
∥ · ∥l for each l ∈ Z≥0, to the limit K-equivariant form

eµ
T
−2ξ(Ω + µK)n+k.

Since π∗(
1
i!
(µT

−2ξ)
i(Ω+µK)n+k) are K-equivariantly closed forms, the infinite

series of 2k-th K-equivariant cohomology classes on B

∞∑
i=0

Evξ(e
L)

⟨i,k⟩
B =

1

(n+ k)!

∞∑
i=0

PDK [π∗(
1

i!
(µT

−2ξ)
i(Ω + µK)n+k)]

is locally uniformly absolutely-convergent on t by Corollary 2.4.12 and Lemma
2.4.13. The limit is given by

1

(n+ k)!
PDK [π∗(e

µT−2ξ(Ω + µK)n+k)].

Similarly, for α ∈ H lf,T×G
2 dimX−2(X ,R), we pick an equivariant 2-form A+ν =

A + (νT + νK) in the second equivariant cohomology class PDT×K(α). We
compute

(α.eL)
⟨i,k⟩
B =

1

(n+ i+ k − 1)!
(PDT×K

[
π∗
(
(A+ ν)(Ω + µ)n+i+k−1

)]
)⟨i,k⟩

=


1

(n+k)!
PDK [π∗

(
(n+ k)(A+ νK)(Ω + µK)n+k−1

)
] i = 0

1
(n+k)!

PDK [π∗
(
νT 1

(i−1)!
(µT )i−1(Ω + µK)n+k

+(n+ k) 1
i!
(µT )i(A+ νK)(Ω + µK)n+k−1

)
] i ≥ 1.

By the same argument as above, we obtain that the infinite series

∞∑
i=0

Evξ(α.e
LT×G)i,kB =

PDK

(n+ k)!

∞∑
i=0

[π∗(ν
T
−2ξ

1

i!
(µT

−2ξ)
i(Ω + µK)n+k

+ (n+ k)
1

i!
(µT

−2ξ)
i(A+ νK)(Ω + µK)n+k−1)]

is locally uniformly absolutely-convergent on t to

1

(n+ k)!
PDK [π∗(ν

T
−2ξe

µT−2ξ(Ω+µK)n+k+(n+k)eµ
T
−2ξ(A+νK)(Ω+µK)n+k−1)].
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Thus we obtain

Dk
ξ (e

L) =
(−2)k

(n+ k)!
PDK [π∗(e

µT−2ξ(Ω + µK)n+k)] (2.25)

Dk
ξ (α.e

L) =
(−2)k

(n+ k)!
PDK [π∗(ν

T
−2ξe

µT−2ξ(Ω + µK)n+k) (2.26)

+ (n+ k)eµ
T
−2ξ(A+ νK)(Ω + µK)n+k−1]

Lemma 2.3.5. Suppose π : X → B is moreover flat and L is in the equivari-
ant Neron–Severi group NST×G(X ,R). Let Lb ∈ H2

T (Xb,R) be the restriction
to the fibre of a point b ∈ B. Then we have

D0
ξ(e

L)B = Evξ(e
Lb) ∈ R, (2.27)

D0
ξ(κX/B.e

L)B = Evξ(κXb .e
Lb) ∈ R. (2.28)

In particular, D0
ξ(e

L)B is positive when L is relatively semi-ample and big.

Proof. The claim on D0
ξ(κX/B.e

L)B is nothing but Corollary 2.4.16. The case
D0

ξ(e
L)B follows similarly from the equivariant Grothendieck–Riemann–Roch

theorem.

2.3.2 µ-character, µ-Futaki invariant and µK-stability

Now, our main theorems are just the application of the equivariant calculus
we developed in the previous sections.

µ-character and its derivative

We introduce a relative version of the µ-entropy (2.8), imitating its equivari-
ant intersection formula.

Definition 2.3.6 (µ-character). When L ∈ NSG(X ,R) is relatively semi-

ample and big, (eL)
⟨0⟩
B = (L·n

b ) ∈ R is positive. In this case, we can define

the following equivariant cohomology class in Ĥeven
G (B,R):

µλ
G(X/B,L) := 2π(κGX/B.e

L)B ·(eL)−1
B +λ(L.eL)B ·(eL)−1

B −λ log(e
L)B. (2.29)

We call this the µ-character of the G-equivariant family (X/B,L).
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By Theorem 2.3.4 and the basic properties of the differential operation,
we obtain the following.

Theorem 2.3.7. The element µλ
T×G(X/B,L) is of class ε∞ around the ori-

gin. The derivative Dξµ
λ
T×G(X/B,L) extends to the following analytic pro-

longation on t:

2π
Dξ(κ

T×G
X/B .e

LT×G)B · Evξ(eLb)− Evξ(κ
T
Xb .e

Lb) · Dξ(e
LT×G)B

(Evξ(eLb))2

+ λ

[
Dξ(LT×G.e

LT×G)B · Evξ(eLb)− Evξ(Lb.e
Lb) · Dξ(e

LT×G)B
(Evξ(eLb))2

− Dξ(e
LT×G)B

Evξ(eLb)

]
for ξ close to 0.

We define the second cohomology class Dξµ
λ
T×G(X/B,L) for ξ ∈ t away

from the origin by the above analytic prolongation.

Remark 2.3.8. In the construction of the characteristic classDξµ
λ
T×G(X/B,L),

we assume the smoothness of the base B in order to ensure the Poincaré dual-
ity between the equivariant cohomologyH2

G(B,R) and the equivariant locally
finite homology H lf,G

2 dimB−2(B,R). So there is a room for extending our result
to some singular bases, or perhaps to general singular bases by using other
cohomology theory, if we can establish equivariant calculus for such coho-
mology theory as we did it for singular/deRham equivariant cohomology.

As another viewpoint, our construction works even for families of almost
complex manifolds. (In this case, L is just a T ×G-equivariant cohomology
class. ) As a consequence, we can define Dξµ

λ
T×G(X/B,L) for a Kuranishi

family of T -polarized manifold with a singular base B by pulling back the
equivariant cohomology class Dξµ

λ
T×G(X̃/B̃, L̃) ∈ H2(B̃,R) associated to

the Kuranishi slice B̃ → J which we take when constructing the Kuranishi
family. The author suspects this idea allows us to constructDξµ

λ
T×G(X/B,L)

for a global base B by gluing these characteristic classes in some canonical
way.

It is preferable for gluing that we realize the characteristic classDξµ
λ
T×G(X/B,L)

as a geometric object whose category forms a stack (namely, has a natural
criterion for the descent of objects), as an analogy of the CM line bundle.
Such a geometric realization is also important when descending it to a co-
homology class on the moduli space. Indeed, since in general we a priori
know the moduli space does not admit a universal family, our Theorem B
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constructs nothing on the moduli space, at present. Since the cohomology
class Dξµ

λ
T×G(X/B,L) continuously deforms in H2

G(B,R) as ξ varies, it does
not make sense to realize it as a complex line bundle on B, imitating the
CM line bundle. On the other hand, real line bundle on B endowed with
pluri-harmonic transition functions may serve as such geometric object, but
the actual construction is out of the author’s consideration at the moment.

Test configuration

By a G-equivariant Q-line bundle on a scheme X, we mean a G-equivariant
Neron–Severi class L ∈ NSG(X,Q) ⊂ H2

G(X,Q). We call a G-equivariant
Q-line bundle L ample (resp. semi-ample, big) if some multiple of the corre-
sponding Neron–Severi class L ∈ NS(X,Q) is the first Chern class of some
ample (resp. semi-ample, big) line bundle. Here the bigness means that the
volume (L|Z)·dimZ is strictly positive on each irreducible component Z of X.
We call a pair (X,L) of pure dimensional projective G-scheme (resp. variety,
normal variety) X and a semi-ample and big G-equivariant Q-line bundle
L a semi-polarized G-scheme (resp. variety, normal variety). When L is
ample, we call it polarized G-scheme.

A (T -equivariant) test configuration (X ,L) of a semi-polarized T -scheme
(X,L) consists of the following data:

• A T ×C∗-scheme X with a T ×C∗-equivariant projective flat morphism
π : X → C, where we define the T × C∗-action on the base C by
z.(t, u) = zu for z ∈ C and (t, u) ∈ T × C∗.

• A T ×C∗-equivariant Q-line bundle L ∈ NST×C∗(X ,Q) on X which is
(relatively) semi-ample and relatively big.

• A T × C∗-equivariant isomorphism φ : X × (C \ {0}) ∼−→ X \ X0 over
the base with φ∗L = p∗XL ∈ NST×C∗(X× (C\{0}),Q), which we often
reduce from our notation.

We call a test configuration (X ,L) ample if L is (relatively) ample. In this
case, the compactification (X̄ , L̄) possesses relatively ample L̄.

As in section 2.2.1, we can construct a test configuration XΛ from a one
parameter subgroup Λ : C∗ → AutT (X).

When X is normal (hence X is normal) and is isomorphic in codimension
one to some product configuration XΛ, then the isomorphism automatically
extends to the whole space.
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µ-Futaki invariant

To compare Dξµ
λ
T×C∗(X/C,L) of T -equivariant test configuration with the

µ-Futaki invariant Futλξ (L,L), we show the following.

Proposition 2.3.9. For any test configuration (X/C,L), we have

Dξ(e
LT×C∗ )C = 2Evξ(e

L̄T ).η∨,

Dξ(LT×C∗ .eLT×C∗ )C = 2Evξ(L̄T .e
L̄T ).η∨,

Dξ(κ
T×C∗

X/C .eLT×C∗ )C = 2Evξ(κ
T
X̄/CP 1 .e

L̄T ).η∨,

where we identify ĤC∗(C,R) with RJη∨K.
Proof. Since j∗∞L̄T×C∗ = LT ∈ NST×C∗(X,R), we have

i∗∞π∗L̄
⌣(n+i+1)
T×C∗ = (π∞)∗j

∗
∞L̄

⌣(n+i+1)
T×C∗ = (L

⌣(n+i+1)
T ) ∈ H2i+2

T×C∗(pt,R)

and
i∗∞π⋆(κ

T×C∗

X/C ⌢ L̄⌣(n+i)
T×C∗ ) = (κTX .L

⌣(n+i)
T ) ∈ H2i+2

T×C∗(pt,R)

by Corollary 2.4.16. In particular, we have (i∗∞π∗L̄
⌣(n+i+1)
T×C∗ )⟨i,1⟩ = 0 and

(i∗∞π⋆(κ
T×C∗

X/C ⌢ L̄⌣(n+i)
T×C∗ ))⟨i,1⟩ = 0. So we compute

(π∗L⌣(n+i+1)
T×C∗ )⟨i,1⟩ = (i∗0π∗L

⌣(n+i+1)
T×C∗ )⟨i,1⟩ = −(i∗∞π∗L̄

⌣(n+i+1)
T×C∗ − i∗0π∗L̄

⌣(n+i+1)
T×C∗ )⟨i,1⟩

= −((L̄⌣(n+i+1)
T×C∗ ).η∨)⟨i,1⟩ = −(L̄⌣(n+i+1)

T )⟨i,0⟩.η∨

and

(π⋆(κ
T×C∗

X/C ⌢ L⌣(n+i)
T×C∗ ))⟨i,1⟩ = (i∗0π⋆(κ

T×C∗

X/C ⌢ L⌣(n+i)
T×C∗ ))⟨i,1⟩

= −(i∗∞π⋆(κT×C∗

X/C ⌢ L̄⌣(n+i)
T×C∗ )− i∗0π⋆(κT×C∗

X/C ⌢ L̄⌣(n+i)
T×C∗ ))⟨i,1⟩

= −((κT×C∗

X/C .L̄⌣(n+i)
T×C∗ ).η∨)⟨i,1⟩ = −(κTX/C.L̄

⌣(n+i)
T )⟨i,0⟩.η∨

by the localization formula. Thus we obtain

Dξ(L⌣(n+i+1)
T×C∗ )C = 2Evξ(L̄⌣(n+i+1)

T )

and
Dξ(κ

T×C∗

X/C .L⌣(n+i+1)
T×C∗ )C = 2Evξ(κ

T
X/C.L̄

⌣(n+i)
T ),

which proves the claim as all the cohomology classes we treat here are of
class ε∞.
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As corollaries, we get the following.

Corollary 2.3.10.

Dξµ
λ(X/C,L) = Futλξ (X ,L).η∨

Corollary 2.3.11. For the product configuration (XΛ,LΛ) associated to a
one parameter subgroup Λ : C∗ → Aut(X,L), we have

Futλξ (XΛ,LΛ) = Futλξ (ηX).

Proof. As both Dξµ
λ(XΛ/C,LΛ) and Futλξ (ηX) are real analytic with respect

to ξ, the claim follows from the construction of Dξµ
λ. (See also seciton 2.1

and 2.3. )

Now we prove the rest claim of Theorem G.

Proof of Theorem G. The property (1) is a consequence of Corollary 2.4.16
and our construction of Dξµ

λ
T×G(X/B,L). From the expression (2.25) and

(2.26), the maps D·(e
L),D·(α.e

L) : t → H2
G(B,R) extend to holomorphic

maps between the complexification t ⊗ C and H2
G(B,C). Hence the map

D·µ
λ
T×G(X/B,L) : t→ H2

G(B,R) is real analytic.
Recall the definition of the CM line bundle CM(X/B,L): we put

CM(X/B,L) := λ
⊗ n
n+1

(−KX.L
·(n−1))

(L·n)

n+1 ⊗ (λ⊗n
n+1 ⊗ λ⊗(−2)

n )

where λi are line bundles on B in the Knudsen–Mumford expansion

det(π∗(L
⊗k)) ∼= λ

( k
n+1)

n+1 ⊗ λ
(kn)
n ⊗ · · · ⊗ λ0

for k ≫ 0. So we have

cG1 (det(π∗(L
⊗k))) =

(
k

n+ 1

)
cG1 (λn+1) +

(
k

n

)
cG1 (λn) + · · ·+ cG1 (λ0)

=
kn+1

(n+ 1)!
cG1 (λn+1)−

1

2

kn

n!
(ncG1 (λn+1)− 2cG1 (λn)) + · · · .

On the other hand, the equivariant Grothendieck–Riemann–Roch shows

cG1 (det(π∗(L
⊗k))) = kn+1

( 1

−2
D0(e

L)B
)
− 1

2
kn
( 1

−2
D0(κX/B.e

L)B
)
+ · · ·

=
kn+1

(n+ 1)!

( 1

−2
D0(L·(n+1))B

)
− 1

2

kn

n!

( 1

−2
D0(κX/B.L·n)B

)
+ · · · .
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Thus we get

cG1 (CM(X/B,L)) = n

n+ 1

(−KX .L
·(n−1))

(L·n)
(n+ 1)!

( 1

−2
D0(e

L)B
)
+ n!

( 1

−2
D0(κX/B.e

L)B
)

= −1

2
(L·n)

D0(κX/B.e
L)B · Ev0(eLb)− Ev0(κ

T
Xb .e

Lb) · D0(e
L)B

(Ev0(eLb))2

= −(L·n)

4π
D0µ

0
G(X/B,L)

by Ev0(e
Lb) = 1

n!
(L·n) and Ev0(κ

T
Xb .e

Lb) = 1
(n−1)!

(KX .L
·(n−1)). The inde-

pendence of λ follows from D0(LG.e
LG)B = 1

n!
D0(L⌣(n+1)

G )B, D0(e
LG)B =

1
(n+1)!

D0(L⌣(n+1)
G )B and Ev0(Lb.e

Lb) = 1
(n−1)!

(L·n):

D0µ
λ −D0µ

0 = λ

[
D0(LT×G.e

LT×G)B · Ev0(eLb)− Ev0(Lb.e
Lb) · D0(e

LT×G)B
(Ev0(eLb))2

− D0(e
LT×G)B

Ev0(eLb)

]
=

λ

(L·n)

(
D0(L⌣(n+1)

G )B −
n

n+ 1
D0(L⌣(n+1)

G )− 1

n+ 1
D0(L⌣(n+1)

G )
)

= 0.

Relation with established Futaki invariants

Here we check that our definition of µ-Futaki invariant is compatible with
the following established notions.

Definition 2.3.12. Let (X,L) be a (semi-)polarized scheme and (X ,L) be
a test configuration of (X,L). The following Futaki invariants are studied in
the literatures.

1. Donaldson–Futaki invariant for the usual K-stability (cf. ): We put

DF(X ,L) := (KX̄/CP 1 .L̄·n)− n

n+ 1

(KX .L
·(n−1))

(L·n)
(L̄·(n+1)). (2.30)

2. Modified Futaki invariant for the modified K-stability of Q-Fano variety
(cf. [Xio, BW]): Let (X,L) = (X,−KX) be a Q-Fano variety with a
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torus T action and (X ,L) be a T -equivariant test configuration with
Q-Gorenstein X and L = −KX/C. For ξ ∈ t, we put

Futξ(X ,L) := −
∫
t∨×R

(−2t)e⟨x,−2ξ⟩DH(X ,L)(x, t), (2.31)

where the Duistermaat–Heckman measure DH(X ,L) on t∨ × R is given
by

DH(X ,L) := lim
k→∞

n!k−n
∑

(m,l)∈M×Z

dimH0(X0,L|X0)(m,l)δk−1(m,l).

When the central fibre X0 is a Q-Fano variety, we may express it as

Futξ(X ,L) = −
∫
X0

θηe
θξωn =

∫
X0

ηJ(h− θξ)eθξωn,

which is the expression in [Xio, BW]. Here the ∂̄-Hamiltonian potential

θ is normalized as [β∗ω − 1
2
β∗θ] = −β∗K

T×U(1)
X0

∈ H2
T×U(1)(X̃0,R) for

some/any resolution β : X̃0 → X0. This normalization is equivalent
to the equation □̄θη − ηJh = θη for the Ricci potential h:

√
−1∂∂̄h =

Ricω − ω.

3. Weighted Futaki invariant of smooth test configuration (cf. [Lah]) for
weighted K-stability: Let v and w be smooth positive functions on the
moment polytope P := µω(X) ⊂ t∨. For a T -equivariant smooth test
configuration (X ,L) with ample L̄, we pick a Kähler form Ω in L̄ and
the moment map µΩ with [Ω + µΩ] = L̄T and put

Fv,w(X ,L) = −
2

n+ 1

∫
X̄

(
sv(Ω)−

∫
X
sv(ω)ω

n∫
X
(w ◦ µω)ωn

(w ◦ µΩ)
)
Ωn+1

(2.32)

+ 8π

∫
X

(v ◦ µω)ωn.

We consider the following variant of weighted Futaki invariant for T -
equivariant smooth test configuration with ample L̄:

Fλ
e⟨x,−2ξ⟩(X ,L) := Fe⟨x,−2ξ⟩,e⟨x,−2ξ⟩(X ,L) +

2λ

n+ 1

∫
X̄

(
µΩ
−2ξ −

∫
X
µω
−2ξe

µω−2ξωn∫
X
eµ

ω
−2ξωn

)
eµ

Ω
−2ξΩn+1

(2.33)

= − 2

n+ 1

∫
X̄

(
sλξ (Ω)− s̄λξ (ω)

)
eθ

Ω
ξ Ωn+1 + 8π

∫
X

eθ
ω
ξ ωn.
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Though it seems not explicitly claimed in [Lah] for this variant case, we easily
see that the above invariant is the slope of µλ

ξ -Mabuchi functional along a
smooth subgeodesic of a test configuration, using computations in [Lah]. As a
µλ
ξ -cscK metric is a (proportionally) extremal weighted cscK metric, we have

the boundedness of µλ
ξ -Mabuchi functional if there exists a µλ

ξ -cscK metric

by [Lah]. As a consequence, a polarized manifold is µλ
ξK-semistable with

resepct to smooth test configurations with ample L if there exists a µλ
ξ -cscK

metric.
Now we compare them with our µ-Futaki invariant.

Proposition 2.3.13. We can compare the µ-Futaki invariant with these
established Futaki invariants as follows.

1. When (X,L) is a normal polarized variety, Futλ0(X/C,L) = 4π(L·n)−1DF(X ,L)
for every normal test configuration (X ,L) of (X,L).

2. When X is a Q-Fano variety and L = −λ−1KX for λ > 0, we have
Fut2πλξ (X ,L) = 2πλn!(Evξ(e

L̄))−1Futξ(X ,L) for every test configura-
tion (X ,L) of (X,L) with L = −λ−1KX/C.

3. Let (X ,L) be a T -equivariant smooth test configuration with ample
L̄. We pick a Kähler form Ω in L̄. Then we have Futλξ (X ,L) =

(
∫
X
eθ
ω
ξ ωn)−1Fλ

e⟨x,−2ξ⟩(X ,L).

Proof.
(1) We compute Futλ0(X/C,L) as

4π
Ev0

(
(κX̄/CP 1 .eL̄) · (eL)− (κX .e

L) · (eL̄)
)

(Ev0(eL))2
+ 2λ

Ev0
(
(L̄.eL̄) · (eL)− (L.eL) · (eL̄)

)
(Ev0(eL))2

− Ev0(e
L̄)

Ev0(eL)


= 4π

(
n!

(L·n)

)2(
1

n!
(KX̄/CP 1 .L̄·n) · 1

n!
(L·n)− 1

(n− 1)!
(KX .L

·(n−1)) · 1

(n+ 1)!
(L̄·(n+1))

)
+ 2λ

(
n!

(L·n)

)2(
(L̄·(n+1))

n!
· (L

·n)

n!
− (L·n)

(n− 1)!
· (L̄

·(n+1))

(n+ 1)!
− (L·n)

n!

(L̄·(n+1))

(n+ 1)!

)
=

4π

(L·n)

(
(KX̄/CP 1 .L̄·n)− n

n+ 1

(KX .L
·(n−1))

(L·n)
(L̄·(n+1))

)
.
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(2) We compute Fut2πλξ (X/C,L) as

4π
Evξ

(
(κX̄/CP 1 .eL̄) · (eL)− (κX .e

L) · (eL̄)
)

(Evξ(eL))2
+ 4πλ

Evξ
(
(L̄.eL̄) · (eL)− (L.eL) · (eL̄)

)
(Evξ(eL))2

− Evξ(e
L̄)

Evξ(eL)


= −4πλEvξ(e

L̄)

Evξ(eL)
= 4πλ

∫
t∨×R

te⟨x,−2ξ⟩DH(X ,L)(x, t)
/∫

t∨
e⟨x,−2ξ⟩DH(X,L)(x).

(3) Since

Evξ
(
2π(κTX .e

LT ) + λ(LT .e
LT )
)

Evξ(eLT )
= −s̄λξ (ω) + λn,

we can express Futλξ (X ,L) as

2Evξ
(
2π(κTX̄ .e

L̄T ) + λ(L̄.eL̄)
)
+ 2
(
s̄λξ (ω)− λ(n+ 1)

)
Evξ(e

L̄T )− 4πEvξ(π
∗KT

CP 1 .eL̄T )

Evξ(eLT )
.

Then the claim is a consequence of the following calculations:

Evξ

(
2π(κTX̄ .e

L̄T ) + λ(L̄.eL̄)
)
= − 1

(n+ 1)!

∫
X̄
sλξ (Ω)e

θΩξ Ωn+1 + λ(n+ 1)Evξ(e
L̄T ),

Evξ(e
L̄) =

1

(n+ 1)!

∫
X̄
eθ

Ω
ξ Ωn+1,

4πEvξ(π
∗KCP 1 .eL̄T ) = 4π

∫
CP 1

KCP 1 · D0
ξ(e

L̄T )CP 1

= −8πEvξ(eLT ) = −
8π

n!

∫
X

eθ
ω
ξ ωn.

µK-stability

Now we define the µK-stability of a T -polarized scheme in the usual way.

Definition 2.3.14 (µK-stability). We call a T -(semi-)polarized scheme (X,L)

• µλ
ξK-semistable if Futλξ (X ,L) ≥ 0 for every test configuration (X ,L) of

(X,L).
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• µλ
ξK-polystable if it is µλ

ξK-semistable and we have Futλξ (X ,L) = 0 for
big test configurations (X ,L) only when (X ,L) is C∗×T -equivariantly
isomorphic in codimension one to some product configuration over the
base C. Namely, there is a one parameter subgroup Λ : C∗ → AutT (X)
such that the C∗-equivariant isomorphism X \X0 → XΛ\XΛ

0 away from
the central fibre extends to an isomorphism X \ Z → X Λ \ ZΛ away
from T -invariant subschemes Z ⊂ X and ZΛ ⊂ XΛ of codimension
≥ 2, respectively.

• µλ
ξK-stable if it is µλ

ξK-polystable and Aut0(X/Alb) = T .

Remark 2.3.15. The µ-Futaki invariant Futλξ (X ,L) is invariant under the
addition of a T × C∗-equivariant cohomology class c ∈ H2

T×C∗(C,R) of the
base: Futλξ (X ,L+ π∗c) = Futλξ (X ,L).

Now it is the turn to apply the results in section 2.3.1.

Theorem 2.3.16.

1. A T -polarized normal variety (X,L) is µλ
ξK-semistable (resp. µλ

ξK-

polystable, µλ
ξK-stable) with respect to general test configurations iff it

is µλ
ξK-semistable (resp. µλ

ξK-polystable, µλ
ξK-stable) with respect to

normal test configurations.

2. A T -polarized manifold (X,L) is µλ
ξK-semistable with respect to gen-

eral test configurations iff it is µλ
ξK-semistable with respect to smooth

test configurations with reduced centrals fibre and ample L.

Proof. Pick a semi-ample test configuration (X ,L) of (X,L). As L is ample
and L is relatively semi-ample, we have a unique ample test configuration
(X amp,Lamp) of the same (X,L) associated to (X ,L) as in [?, Definition
2.16]. The associated morphism µ : X → X amp is an isomorphism away from
a codimension one subscheme of the central fibre, which is a codimension two
subscheme of the total space. It follows that Futλξ (X amp,Lamp) = Futλξ (X ,L)
by Proposition 2.3.3. Thus we may assume L is relatively ample. By the
above remark, we may further assume that L is ample. We apply Proposition
2.3.3 (2) to the normalization ν : X̃ → X and obtain the first claim.

Now, we may assume (X ,L) is a normal ample test configuration to
prove the second claim. Since X is normal, there is a T × C∗-equivariant
resolution β : X̃ → X of singularities which is isomorphism away from a
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codimension two subscheme in X . Then we have Futλξ (X̃ , β∗L) = Futλξ (X ,L)
by Proposition 2.3.3.

By the reduced fibre theorem, there is a positive integer d such that the
normalized base-change f̂ν : X̃ ν

d → X̃ along the morphism f(z) = zd : C→ C
has the reduced central fibre. Let f̂ : X̃d → X̃ be the base change morphism
along f . Since Dξµ

λ
T×C∗(Xd/C, f̂ ∗β∗L) = f ∗Dξµ

λ
T×C∗(X/C, β∗L) and f ∗η∨ =

d.η∨, we get

Futλξ (Xd, f̂
∗β∗L) = Dξµ

λ
T×C∗(Xd/C, f̂ ∗β∗L)/η∨

= d.f ∗(Dξµ
λ
T×C∗(X/C, β∗L)/η∨) = d.Futλξ (X , β∗L) ∈ H0

C∗(C,R).

Thus we get Futλξ (X̃ ν
d , f̂

∗
νβ

∗L) ≤ d.Futλξ (X̃ , β∗L) by Proposition 2.3.3 (2).

Put L̃ϵ := f̂ ∗
νβ

∗L − ϵ
∑

E∈Exc(β)[E]
T×C∗

for ϵ > 0. Then (X̃d, L̃ϵ) is a

smooth test configuration with reduced central fibre and ample L̃ϵ. We have
Futλξ (X̃ , L̃ϵ)→ Futλξ (X ,L) as ϵ→ 0 from the proof of Proposition 2.3.3. Now
suppose (X,L) is µK-semistable with respect to smooth test configurations
with reduced central fibre and ample L. Then since Futλξ (X̃ , L̃ϵ) ≥ 0, we get

Futλξ (X ,L) ≥ 0. Thus (X,L) is µK-semistable with respect to general test
configurations. The converse claim is obvious.

The above theorem reduces Theorem A to Lahdili’s result [Lah, Theorem
2]. Thus we obtain the following.

Corollary 2.3.17. If a smooth Kähler manifold (X,L) admits a µλ
ξ -cscK

metric, then (X,L) is µλ
ξK-semistable.

Remark 2.3.18. By [Lah, Proposition 4], we can express µλ
ξ -Futaki invariant

of toric test configurations of a toric polarized manifold as an integration on
polytope, similarly to the usual Futaki invariant. For the toric test config-
uration (Xf ,Lf ) associated to a convex piecewise linear function f on the
polytope P , we have

c.Futλξ (Xf ,Lf ) =

∫
∂P

fe⟨x,−2ξ⟩dσ −
∫
P

(λ⟨x,−2ξ⟩+ s̄λξ )fe
⟨x,−2ξ⟩dµ

for some uniform positive constant c. We may also have such expression
even for singular (X,L) as µλ

ξ -Futaki invariant is expressed via an equivariant
intersection formula.
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2.4 Appendix: Preliminaries for equivariant

calculus

Here we (re)arrange background materials on equivariant cohomology and
equivariant locally finite homology to fix our notations and sign conventions
in equivariant cohomology. The sign arrangement is crucial when computing
the right sign of (µ-)Futaki invariant via equivariant cohomology.

We also briefly explain some advantage of Cartan model, which employs
differential forms as its chains. While there is an analogous equivariant the-
ory for Chow group, which works also for schemes not even over arbitrary
characteristic field but also over Z, we prefer to use the singular/de Rham co-
homology with R-coefficient to benefit from the Cartan model when proving
the convergence of some sequences in equivariant cohomology.

2.4.1 Equivariant cohomology & locally finite homol-
ogy

Singular equivariant cohomology & locally finite homology

We firstly review singular equivariant cohomology and locally finite homology
as these work also for singular spaces. Let X be a topological space with a
continuous action of a topological group G from the right. Using a classifying
bundle EG → BG of G, which can be constructed for instance by Milnor
construction, the singular G-equivariant cohomology H∗

G(X,Z) is defined to
be the singular cohomology of the Borel space EG×GX := (EG×X)/G =
{[p, x] | [p, x] = [pg, xg], ∀g ∈ G} :

H∗
G(X,Z) := H∗(EG×G X,Z). (2.34)

Let Y be another topological space with a continuous action of a topological
group H, φ : G → H be a topological group morphism and f : X → Y
be a continuous map satisfying f(x.g) = f(x).φ(g) for g ∈ G. Then we
have a pulling-back map f ∗ : Hp

H(Y,Z) → Hp
G(X,Z). We usually define

the equivariant cohomology in this way among another possible candidate
named as ‘equivariant cohomology’ so that it enjoys the homotopy invariance.
Considering the case H = G and Y = X with different choices of classifying
bundles EG → BG and E ′G → B′G, we find that (2.34) gives a well-
defined contravariant functor independent of the choice of the classifying
bundle EG→ BG.
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Since EG is infinite dimensional in general, it is possible that Hp
G(X,Z) ̸=

0 for infinitely many p ≥ 0 even ifX is finite dimensional. We put Ĥeven
G (X,Z) :=∏∞

p=0H
2p
G (X,Z) and denote by α⟨p⟩ ∈ H2p

G (X,Z) the degree 2p-part for an

element α ∈ Ĥeven
G (X,Z). When the action is free, we have a natural isomor-

phism H∗
G(X,Z) ∼= H∗(X/G,Z), so that H∗

G(X,Z) = 0 for ∗ ≥ dim(X/G) in
this case.

For an almost connected locally compact group G (i.e. the quotient G/G0

by the identity component is compact), we have a maximal compact sub-
group φ : K ↪→ G by Iwasawa’s theorem. It admits a K-equivariant defor-
mation retract Ht : G → K. Thus the induced natural map φ# : EK →
EK ×K G → EG coming from the homotopical universality of BG is a
K-equivariant homotopy equivalence, so that we obtain the induced isomor-
phism H∗

G(X,Z)
∼−→ H∗

K(X,Z). Since φ# : EK → EG is a K-equivariant
homotopy equivalence for any inclusion φ : K ↪→ G, the above isomorphism
is independent of the choice of the inclusion φ. We often identify these two
equivariant cohomologies.

For a G-equivariant complex vector bundle E → X, we have the as-
sociated vector bundle EG ×G E → EG ×G X. We define the equivariant
Chern class cG∗ (E) ∈ H∗

G(X,Z) to be the Chern class of the associated bundle
c∗(EG×G E) ∈ H∗(EG×GX,Z) = H∗

G(X,Z). The equivariant Chern char-
acter chG(L) ∈ Ĥeven

G (X,Z) :=
∏∞

p=0H
2p
G (X,Z) of a G-equivariant complex

line bundle L is defined as

chG(L) := ec
G
1 (L) =

∞∑
p=0

1

p!
(cG1 (L))

⌣p ∈ Ĥeven
G (X,Z) :=

∞∏
p=0

H2p
G (X,Z).

Note the highest degree of chG(L) is not bounded in general as it is possible
that H2p

G (X,Z) are non-zero for infinitely many p.
We denote by the element η∨ ∈ H2

C∗(pt,Z) corresponding to the class
c1(O(1)) ∈ H2(CP∞,Z) via the canonical isomorphismH2

C∗(pt,Z) ∼= H2(CP∞,Z)
and call it the positive generator.

Example 2.4.1 (Weight and positive generator). Here we compare the sign
of the weight of C∗-action and the generator of H2

C∗(pt,Z). Let X be a
point and denote by L1 the trivial line bundle C on X endowed with the
nontrivial C∗-action z.t = zt. The classifying bundle EC∗ → BC∗ is nothing
but C∞ \ {0} → CP∞. In this case, the associated bundle EC∗ ×C∗ L1 on
BC∗ × X = CP∞ is the tautological line bundle O(−1), so that cC

∗
1 (L1) ∈

H2
C∗(X) is identified with the negative generator c1(O(−1)) ∈ H2(CP∞).
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For m ∈ Z, the trivial line bundle Lm = C with the C∗-action z.t = ztm is
the m-tensor product of L1, so that we have

cC
∗

1 (Lm) = −mη∨ ∈ H2
C∗(pt,Z). (2.35)

If we employ the left G-action on EG in the definition of the equivariant
cohomology, the sign reverses. Indeed, the Borel space is given by X ×G

EG = {[x, p] | [x, p] = [xg, g−1p], ∀g ∈ G}, so L−1 ×C∗
EC∗ = O(−1) on

EC∗ = CP∞.

When T acts onX trivially, we have a canonical isomorphismHk
T×G(X,R) ∼=⊕

p+q=k S
pt∨ ⊗Hq−p

G (X,R). For ξ ∈ t, we define the evaluation map

evξ : H
k
T×G(X,R)→

⊕
0≤l≤k

H l
G(X,R) (2.36)

via this isomorphism as

evξ : S
pt∨ ⊗Hq−p

G (X,R)→ Hq−p
G (X,R) : ρ⊗ c 7→ ρ(ξ).c. (2.37)

For a locally compact Hausdorff space X, the locally finite homology
H lf

∗ (X,Z) is defined to be the homology of the chain complex C lf
∗ of the

locally finite chains, i.e.

C lf
p :=

{
σ : Map(∆p, X)→ Z

∣∣∣ ∀K ⊂ X : compact set
#{c ∈ σ−1(Z \ {0}) | c−1(K) ̸= ∅} <∞

}
,

where Map(∆p, X) denotes the set of continuous maps. We usually denote
its chain by a formal expression

∑
c∈Map(∆p,X) σ(c).c. The boundary map

∂ : C lf
p → C lf

p−1 is given similarly as the usual homology. The locally finite
homology H lf

∗ (·,Z) gives a covariant functor from the category of locally
compact Hausdorff spaces with proper continuous maps to the category of
Z-modules. The functor is not a homotopy functor, but only invariant under
proper homotopy. For example, H lf

p (X,Z) ≇ H lf
p (X × Rq,Z) while we have

H lf
p (X,Z) ∼= H lf

p+q(X × Rq,Z).
We have the following cap product:

⌢: H lf
p (X,Z)⊗Hq(X,Z)→ H lf

p−q(X,Z), (2.38)
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which makes the anti-graded moduleH lf
−∗(X,Z) into a (H∗(X,Z),⌣)-module

and enjoys the projection formula:

f∗(σ ⌢ f ∗ϕ) = f∗σ ⌢ ϕ (2.39)

for every proper continuous map f : X → Y and σ ∈ H lf
p (X,Z), ϕ ∈

Hq(Y,Z).
When X is a connected n-dimensional oriented manifold, we have an

orientation preserving triangulation
∑

α∈A ∆n
α of X and obtain a generator

[X] ∈ H lf
n (X,Z) called the fundamental class of X, independent of the choice

of the triangulation. The map ([X] ⌢ ·) : Hq(X,Z)→ H lf
n−q(X,Z) gives an

isomorphism of Z-modules for each q ∈ Z. We denote its inverse ([X]⌢ ·)−1

by PD : H lf
p (X,Z)→ Hn−p(X,Z).

The following are key properties for the well-definedness of the equivariant
version of locally finte homology:

• For any closed subset Y ⊂ X, we have a long exact sequence

· · · → H lf
p (Y,Z)→ H lf

p (X,Z)→ H lf
p (X \ Y,Z)→ H lf

p−1(Y,Z)→ · · · .
(2.40)

In particular, when dimY < l, we have the isomorphism H lf
p (X,Z) ∼=

H lf
p (X \ Y,Z) for p > l.

• For a vector bundle π : E → X of rank r, we have an isomorphism

π∗ : H lf
p (X,Z)

∼−→ H lf
p+r(E,Z) (2.41)

for each p ∈ Z.

Now we explain the equivariant version of locally finite homology. Let
X be an n-dimensional locally compact space with a continuous action of
an almost connected Lie group G. For an almost connected Lie group G,
we have a ‘finite dimensional approximation’ {ElG→ BlG}l∈N of classifying
bundle EG→ BG of G which enjoys the following properties:

1. For each l ∈ N, ElG is a G-invariant Zariski open set of the subset
{v ∈ Vl | v.g = v ⇐⇒ g = 1} of a (complex) G-representation Vl with
dimR(V \ ElG) > l + 1.

2. G acts on ElG freely and ElG→ BlG is the quotient.
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For example when G = C∗, ElC∗ := Cl+1 \ {0} with the diagonal C∗-action
on Cl+1 gives such a finite dimensional approximation. In this case, we have
BlG = CP l.

Using such a finite dimensional approximation, we define theG-equivariant
locally finite homology H lf,G

p (X,Z) of degree p ∈ Z (negative degree allowed)
by

H lf,G
p (X,Z) := H lf

p+dimR Bn−pG(En−pG×G X,Z). (2.42)

For example, we have

H lf,C∗

p (pt,Z) = H lf
p+2(−p)(CP−p,Z) =

{
0 p > 0 or p odd

Z p ≤ 0 and p even .

By the key properties of locally finite homology, we can show the above
construction is independent of the choice of a finite dimensional approxima-
tion of classifying space by the similar argument as in [EG1] for equivariant
Chow group. For a G-equivariant proper continuous map f : X → Y , we
have the proper push-forward f∗ : H lf,G

p (X) → H lf,G
p (Y ) induced from the

map f : En−pG×G X → En−pG×G Y with n = max{dimX, dimY }.
When X is a smooth oriented manifold and the action of G on X is

orientation preserving, X×GEn−pG is again a smooth oriented manifold and
its fundamental class ofX×GEn−pG defines a homology class [X×GEn−pG] ∈
H lf,G

n (X,Z). Along the above proof, we can easily check that this homology
class is independent of the choice of the finite dimensional approximation,
thus we get the equivariant fundamental class [X]G ∈ H lf,G

n (X,Z).

Definition 2.4.2 (Equivariant fundamental class of complex analytic space
and the equivariant cycle map). Let X be a pure n-dimensional complex an-
alytic space with an orientation preserving action of an almost connected Lie
group G (not necessarily holomorphic). Along the irreducible decomposition
X =

∪
i∈I Xi, the exact sequence (2.40) induces the canonical isomorphism

H lf,G
2n (X,Z) ∼= H lf,G

2n (X\Xred,sing,Z) ∼=
⊕

i∈I H
lf,G
2n (Xi\Xred,sing

i ,Z). We define

the equivariant fundamental class [X]G ∈ H lf,G
2n (X,Z) by

[X]G :=
∑
i∈I

mi[X
red,reg
i ]G ∈ H lf,G

2n (X,Z), (2.43)

wheremi is the length of OXi/OXred
i

at a general point and [Xred,reg
i ]G denotes

the equivariant fundamental class of the oriented manifold Xi.
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Since we have Hq
G(X,Z) ∼= Hq(ElG ×G X,Z) for l ≥ q, we have the

equivariant cap product:

⌢: H lf,G
p (X,Z)⊗Hq

G(X,Z)→ H lf,G
p−q(X,Z), (2.44)

which is also independent of the choice of the finite dimensional approxima-
tion. When X is an oriented manifold with an orientation preserving action
of an almost connected Lie group G, the map ([X]G ⌢ ·) : Hq

G(X,Z) →
H lf,G

n−q(X,Z) gives an isomorphism for each q ∈ Z (as we can take ElG as
a manifold). We denote its inverse ([X]G ⌢ ·)−1 by PDG : H lf,G

p (X,Z) →
Hn−p

G (X,Z).
Using the equivariant fundamental class, we can define the homology-to-

cohomology push-forward map f⋆ : H
lf,G
p (X,Z) → HdimY−p

G (Y,Z) (resp. the

cohomology-to-homology push-forward map f⋆ : H
p
G(X,Z)→ H lf,G

p−dimX(Y,Z),
the cohomology-to-cohomology push-forward map f∗ : H

p
G(X,Z)→ H

p−dim(X/Y )
G (Y,Z))

for a G-equivariant proper continuous map f : X → Y to an oriented mani-
fold Y (resp. from a pure dimensional complex analytic space X, from a pure
dimensional complex analytic space X to an oriented manifold Y ). When X
is compact, we denote by

∫
X
the (co)homology-to-cohomology push-forward

map to the point, using the equivariant fundamental class [X]G defined in
(2.43).

Let π : X → B be a G-equivariant proper continuous map to a manifold
B and L ∈ H2

G(X ,R) be a G-equivariant cohomology class on X . For a
G-equivariant locally finite cohomology class α ∈ H lf,G

even(X ,R), we denote by
(α.eL)B the G-equivariant cohomological formal series

∞∑
k=0

1

k!
π⋆(α ⌢ L⌣k) ∈ Ĥeven

G (B,R)

onB, which we call relative equivariant intersection. We abbreviate ([X ]G.eL)B
as (eL)B and ([X ]G.L ⌣ eL)B = ([X ]G ⌢ L.eL)B as (L.eL)B. When B
is a point, we usually abbreviate (α.eL)B as (α.eL) and (eL)B, (L.eL)B as
(eL), (L.eL) respectively, which we usually identify as elements of Ŝ(g∨)G

and call absolute equivariant intersection. We also abbreviate (α.ec
G
1 (L))B as

(α.eL)B for a G-equivariant line bundle L on X .

Cartan model of equivariant cohomology & locally finite homology

Now we turn to the Cartan model. The Cartan model of equivariant coho-
mology behaves well when the action is proper. Let X be a smooth manifold
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with a smooth action of a compact Lie groupK and k be the Lie algebra ofK.
Put Cp,q := Spk∨ ⊗Ωq−p(X). Identifying elements of the symmetric product
Spk∨ with the degree p-homogeneous polynomial maps on k, we regard Cp,q

the space of p-homogeneous polynomial maps from k to Ωq−p(X). Consider
the subspace of K-equivariant maps:

Cp,q
K := (Spk∨ ⊗ Ωq−p(X))K . (2.45)

Then Cp,q
K becomes a double complex by giving the differentials d : Cp,q →

Cp,q+1, δ : Cp,q → Cp+1,q by (dϕρ)(ξ) = d(ϕρ(ξ)) and

(δϕρ)(ξ) = iξ(ϕρ(ξ))

for ϕρ = ρ⊗ϕ ∈ Cp,q
K regarded as a map ϕρ : k→ Ωq−p(X) and ξ ∈ k. Indeed,

we have (dδ + δd)(ϕρ)(ξ) = Lξϕρ(ξ) = ϕρ([ξ,ξ]) = 0 by the K-equivariance.
The Cartan model H∗

dR,K(X,R) of equivariant cohomology is defined to be
the cohomology of the total complex (Ω∗

K(X), dK) := (
⊕

p+q=∗C
p,q
K , d+ δ) =⊕

2i+j=∗(S
ik∨ ⊗ Ωj(X))K of the double complex Cp,q

K . We call elements of

Ωk
K(X) K-equivariant k-forms.
This cohomology H∗

dR,K(X) is known to be naturally isomorphic to the
equivariant cohomology H∗

K(X,R) for any (non-compact) X and compact
Lie group K (cf. [GS, Section 2.5 and 4.2]).

We have a chain-level pulling-back map f ∗ : Ωk
K(Y ) → Ωk

K(X) along
any K-equivariant smooth map f : X → Y which induces the pulling-back
map f ∗ : Hk

K(Y ) → Hk
K(X). We also have a chain-level cup product ∧ :

Ωk
K(X) ⊗ Ωl

K(X) → Ωk+l
K (X) : (ρ1 ⊗ ϕ1) ⊗ (ρ2 ⊗ ϕ2) 7→ (ρ1 · ρ2) ⊗ (ϕ1 ∧ ϕ2)

which induces the cup product ∧ : Hk
K(X)⊗H l

K(X)→ Hk+l
K (X).

When X is a smooth n-dimensional oriented compact manifold, we have
an integration map

∫
X
: Ωp

K(X)→ S(p−n)/2k∨ for p ≥ n with even p−n given

by the integration of the component in S(p−n)/2k∨ ⊗ Ωn(X).

Example 2.4.3. A dK-closed equivariant 2-form is given by a pair (ω, µ) =
ω+µ of a K-invariant 2-form ω and a K-equivariant smooth map µ : X → k∨

satisfying the ‘moment identity’ −d⟨µ, ξ⟩ = iξω for every ξ ∈ k. On a 2n-
dimensional X, the integration

∫
X
(ω + µ)n+k of equivariant 2(n + k)-form

(ω+µ)n+k is then expressed as
(
n+k
k

) ∫
X
µkωn ∈ Skk∨. Conversely, for instance

we can regard the map k → R : ξ 7→
∫
X
e⟨µ,ξ⟩ωn as an element of some

‘completion’ of the ring of polynomials Sk∨ =
⊕∞

k=0 S
kk∨.
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For a K-equivariant complex line bundle L on X, a representative ω + µ
in the equivariant first Chern class cK1 (L) ∈ H2

dR,K(X,R) is given using a

connection form θ ∈ Ω1(P,
√
−1R) as

√
−1π∗ω = dθ and ⟨µ, ξ⟩ =

√
−1iξP θ:

the equivariant cohomology class [ω+µ] is independent of the choice of con-
nection and is identified with cK1 (L) ∈ H2

K(X,R) in the singuar equivariant
cohomology via the canonical isomorphism H2

dR,K(X,R) ∼= H2
K(X,R) to the

singular equivariant cohomology. Note that adding a constant c ∈ (k∨)K

gives another moment map µ + c for the same ω, but its equivariant coho-
mology class differs from the original one. The moment map µ is normalized
appropriately by this construction so that we have [ω + µ] ∈ cK1 (L).
Example 2.4.4 (Weight and the value of moment map). Consider the U(2)-
equivariant line bundle O(−1) = Bl0C2 → CP 1 with the U(2)-action induced
from the right action on C2 by the matrix product. We have a connection
form θ = 1

2π
∂Bl0C2 log(|z|2 + |w|2) = 1

2π
z̄dz+w̄dw
|z|2+|w|2 with the curvature ω− =

√
−1
2π
∂̄CP 1∂CP 1 log(|z|2 + |w|2).
For Λ : U(1) → U(2) : u 7→ diag(0, u−1), the associated U(1)-action

on O(−1) is given by (z, w).u = (z, wu−1) and the fundamental vector

field ηBl0C2 = d
dt

∣∣∣
t=0

(z, w)etη for η = 2π
√
−1 ∈ u(1) =

√
−1R is given by

2π(Imw)∂Rew− 2π(Rew)∂Imw. Then the moment map µ : CP 1 → u(1)∨ with

ω− + µ ∈ cU(1)
1 (O(−1)) is given by µ(z : w) = |w|2

|z|2+|w|2η
∨ with the dual basis

η∨ ∈ u(1)∨ of η ∈ u(1).
Pulling it back along the map i0 : {0} → CP 1 : i0(0) = (0 : 1), we

obtain i∗0(ω + µ) = µ(0 : 1) = η∨, which represents the equivariant Chern

class c
U(1)
1 (i∗0O(−1)) ∈ H2

dR,U(1)({0},R). On the other hand, the pulled back

equivariant line bundle i∗0O(−1) is nothing but L−1 in Example 2.4.1, so

that we have c
U(1)
1 (i∗0O(−1)) = η∨ ∈ H2

U(1)({0},Z), which is the positive
generator. Our conventions for η∨ are compatible in this sense.

We in particular obtain that the value of the moment map µη associated
to Lm is the minus of the weight m.

Example 2.4.5 (Equivariant Chern class of canonical bundle). Let ω be a
K-invariant Kähler metric on a Kähler manifold X and µ : X → k∨ be a
moment map with respect to ω. Then the equivariant first Chern class of
the canonical bundle KX is represented by − 1

2π
(Ric(ω) + □̄µ).

Example 2.4.6 (Localization formula). Consider the U(1)-action on CP 1 de-
fined by (z : w).t = (z.t : w). There are two fixed points: i0(0) = (0 :
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1), ı̌0(0) = (1 : 0) ∈ CP 1. For every u ∈ H2
dR,U(1)(CP 1,R), we have the

following localization formula:∫
CP 1

u = (̌ı∗0u− i∗0u)/η∨. (2.46)

Here the division /η∨ shifts the degree of equivariant cohomology:

/η∨ : H2
U(1)(pt,R)

∼−→ H0
U(1)(pt,R) = R.

The localization formula is just a paraphrase of Stokes theorem in this
setup. Pick an equivariant 2-form ω + µ in the cohomology class u. Us-
ing the coordinate z = eρ+

√
−1θ on C∗ = CP 1 \ {i0(0), ı̌0(0)}, we may write

ω|CP 1\{i0(0),̌ı0(0)} = f(ρ)dρ∧dθ = d(
∫ ρ

−∞ f(t)dt.dθ). On the other hand, as we

have dµη = −iηω = 2πf(ρ)dρ with η = 2π ∂
∂θ
, we can express the function µη

as

µη(z) = 2π

∫ log |z|

−∞
f(ρ)dρ+ µη(i0(0)).

Using Stokes theorem, we compute∫
CP 1

ω = lim
ρ→∞

(∫
|z|=eρ

∫ ρ

−∞
f(t)dt.dθ −

∫
|z|=e−ρ

∫ −ρ

−∞
f(t)dt.dθ

)
= 2π

∫ ∞

−∞
f(t)dt

= µη (̌ı0(0))− µη(i0(0)).

The sign can be checked with the above example:
∫
CP 1(ω−+µ) = −1, i∗0µ = 1,

ı̌∗µ = 0. See [GGK, Appendix C. 7] for a general localization formula.

The advantage of the Cartan model for our purpose is that when we
consider an action by a product group T ×K, we have the following chain-
level evaluation map

evξ : S
p(t× k)∨ ⊗ Ωq−p(X)→

⊕
0≤r≤p

Srk∨ ⊗ Ωq−p(X) (2.47)∑
0≤r≤p

ρ
(p−r)
t · ρ(r)k ⊗ ϕ 7→

∑
0≤r≤p

ρ
(p−r)
t (ξ).ρ

(r)
k ⊗ ϕ

for each vector ξ ∈ t, which we can treat on the fixed finite dimensional
space X. This map is T ×K-equivariant and compatible with the chain-level
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proper push-forward map which we will define for equivariant currents. The
map evξ in general does not preserve the dK-closedness of equivariant forms,
however, it holds when T acts on X trivially. In this case, the evaluation
map descends to the evaluation map on the equivariant cohomology evξ :
Hk

T×K(X,R) →
⊕

0≤l≤kH
l
K(X,R) defined in (2.36). We will use this to

show the convergence of a sequence in the K-equivariant cohomology of a
base B of a T × K-equivariant map π : X → B with the trivial T -action
on B. The sequence is constructed as the evaluation of the integration of a
sequence of T ×K-equivariant cohomology classes on X.

Next we consider the dual construction, which corresponds to the equiv-
ariant locally finite homology. Firstly we review the current homology. LetX
be a connected n-dimensional smooth manifold. For a compact set B ⊂ X,
let Ωp

B denote the space of smooth p-forms supported on B with the C∞-
topology. We denote by Dp(X) the space of compactly supported smooth
p-forms on X endowed with the weakest topology which makes the natural
inclusions Ωp

B(X) ↪→ Dp(X) continuous for all compact sets B ⊂ X. Then
Dp(X) is an LF-space. Let D′

p(X) denote the space of continuous linear
functionals on Dp(X). We have a boundary map ∂ : D′

p(X) → D′
p−1(X)

adjoint to the differential map d : Dp−1(X) → Dp(X) (with an appropriate
sign) and get the homology group HdR

∗ (X,R) of this complex (D′
∗(X), ∂).

A smooth p-chain c : ∆p → X defines an element of D′
p(X) by the

integration ϕ 7→
∫
∆p
c∗ϕ and this gives a linear map C lf

p → D′
p(X). It is

known by [deR] that the homology HdR
∗ (X,R) is isomorphic to the locally

finite homology H lf
∗ (X,R) via the map C lf

p → D′
p(X) given as above.

For a proper smooth map f : X → Y , we have a chain-level push-forward
map f∗ : D′

p(X) → D′
p(Y ) adjoint to the proper pull-back f ∗ : Dp(Y ) →

Dp(X). This induces the push-forward map f∗ : HdR
p (X,R) → HdR

p (Y,R).
The cap product

⌢: HdR
p (X,R)⊗Hq

dR(X,R)→ HdR
p−q(X,R)

is induced from the chain-level map

D′
p(X)⊗ Ωq(X)→ D′

p−q(X) : σ ⊗ ϕ 7→ σ(ϕ ∧ ·).

When X is oriented and the action is orientation preserving, the closed cur-
rent

∫
X

: Dn(X) → R gives the fundamental class [X] ∈ HdR
n (X,R). All
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of these constructions are compatible with those counterpart of the locally
finite homology H lf

∗ (X,R).
In the equivariant setup, we consider the double complex

CK
p,q := (S−pk∨ ⊗D′

q−p(X))K (2.48)

with the differentials ∂ : CK
p,q → CK

p,q−1, δ : CK
p,q → CK

p−1,q defined by

(∂σρ)(ϕ) := (−1)n−(q−p)σρ(dϕ) and (δσρ)(ϕ)(ξ) := (−1)n−(q−p)σρ(ξ)(iξϕ), which
are compatible with (Cp,q

K , δ, d) under the inclusion Cp,q
K ↪→ CK

−p,n−q for ori-
ented X. Here we put S−pk∨ = 0 for p > 0. We define the Cartan model
HdR,K

∗ (X,R) of equivariant current homology to be the homology of the to-
tal complex (D′)K∗ (X) :=

⊕
p+q=∗C

K
p,q =

⊕
j−2i=∗(S

ik∨ ⊗ D′
j(X))K . For a

K-equivariant proper smooth map f : X → Y , we have a chain-level push-
forward map f∗ : (D′)Kk (X)→ (D′)Kk (Y ) induced from f∗ : D′

i(X)→ D′
i(Y ),

which induces the push-forward map f∗ : H
dR,K
i (X,R)→ HdR,K

i (Y,R).
The equivariant cap product⌢: HdR,K

k (X,R)⊗H l
dR,K(X,R)→ HdR,K

k−l (X,R)
and the equivariant fundamental class [X]K ∈ HdR,K

n (X,R) are given simi-
larly as the non-equivariant case and are compatible with those of locally fi-
nite homology. We also have the evaluation map evξ : S

p(t×k)∨⊗D′
q+p(X)→⊕

0≤r≤p S
rk∨ ⊗D′

q+p(X).

When X is oriented, the inclusion Cp,q
K ↪→ CK

−p,n−q gives the isomorphism

([X]K ⌢ ·) : Hk
dR,K(X,R)→ HdR,K

n−k (X,R). We can check this using the spec-

tral sequence associated to the double complexes Cp,q
K and Čp,q

K := CK
−p,n−q

(cf. [GS, Section 10.10 and 6.5]).

2.4.2 Equivariant proper push-forward

Topology on HdR,K
q (B,R)

We consider the following topology on the space (D′)Kk (B) = (
⊕

j−2i=k S
ik∨⊗

D′
j(B))K . We can naturally regard each element of (D′)Kk (B) as a sum of

K-equivariant i-homogeneous polynomial maps ρi : k →
⊕
D′

k+2i(B) for

i = ⌈−k/2⌉, . . . , ⌊(dimB− k)/2⌋. We say a sequence {
∑⌊(dimB−k)/2⌋

i=⌈−k/2⌉ ρim}m∈N

converges to
∑⌊(dimB−k)/2⌋

i=⌈−k/2⌉ ρi∞ iff ρim(ξ)(ϕ) → ρi∞(ξ)(ϕ) ∈ R for every ξ ∈ k,

ϕ ∈ Dk+2i(B) and each i.
We show that the quotient topology on the current homologyHdR,K

p (B,R)
induced from the topology on (D′)Kp (B) is Hausdorff, even for non-compact
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B. We in particular show that the following form-to-homology push-forward
map is continuous for every K-equivariant proper C∞-map f : X → B:

f∗ : Ω
n+p
K (X) ∩ (f∗)

−1
(
Ker[∂K : (D′)Kb−p(B)→ (D′)Kb−p+1(B)]

)
→ HK

b−p(B)

(2.49)
with respect to the unique Hausdorff topology on Hp

K(X,R). Here we put
b := dimB and n := dimX − dimB. Note the space HdR,K

p (X,R) has a
unique Hausdorff topology defined by a norm since it is finite dimensional
for each p ∈ Z, however, the quotient topology is a priori unrelated to the
norm topology. (Indeed, there is a non-Hausdorff cohomology theory such as
∂̄-cohomology since Hodge decomposition does not work in the non-compact
case. )

We apply the following de Rham’s theorem and the spectral sequence of
topological vector spaces associated with the double complex of the Cartan
model.

Proposition 2.4.7. [deR, Chapter IV, Theorem 17’] A p-current σ ∈ D′
p(B)

is exact if and only if σ(ϕ) = 0 for every closed compactly supported C∞-form
ϕ ∈ Dp(B).

Corollary 2.4.8. The induced topology on the current homology HdR
p (B,R)

is Hausdorff.

Proof. The space of exact p-currents ∂D′
p+1(B) ⊂ Dp(B) is a closed subset

of Dp(B) since we have σm(ϕ)→ σ∞(ϕ) for every convergent sequence σm →
σ∞.

We use the following easy lemma in our spectral sequence argument.

Lemma 2.4.9. Let V1 be a topological vector space and V2 be a Hausdorff
topological vector space. Suppose there is a continuous map p : V1 → V2
such that the induced topology on the subspace V0 := p−1(0) is Hausdorff,
then V1 is also Hausdorff.

Proof. The topological vector space V1 is Hausdorff iff {0} ∈ V1 is closed.
The closure W := {0} in V1 is a linear subspace of V1 and W ∩ V0 = {0}
as V0 is Hausdorff. The closure of {0} in the quotient space V1/V0 is given
by (W + V0)/V0. On the other hand, as V2 is Hausdorff and p is continuous,
V0 = p−1(0) is a closed subspace of V1. It follows that the quotient V1/V0
is Hausdorff, so that we have {0} = {0} = (W + V0)/V0. This proves W =
{0}.
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Proposition 2.4.10. Let ({Cp,q}p≥0,q≥0, δ, d) be a first quadrant double com-
plex of (Hausdorff) topological vector spaces with continuous derivatives δ, d
whose E1-page is a finite dimensional Hausdorff topological vector space with
respect to the quotient topology induced from Cp,q. Then the cohomology
Hk(

∏
p+q=•C

p,q, δ+ d) of the total complex is a finite dimensional Hausdorff
topological vector space with respect to the quotient topology induced from∏

p+q=k C
p,q.

Proof. Let us recall the argument of spectral sequence. Put Ck
l :=

∏
p+q=k,p≥l C

p,q.
There is a decreasing filtration

Hk(
∏

p+q=•

Cp,q, δ + d) = Hk
0 ⊃ · · · ⊃ Hk

1 ⊃ · · · ⊃ Hk
k ⊃ 0

on the cohomology Hk(
∏

p+q=•C
p,q, δ+ d) of the total complex derived from

the decreasing filtration {Ck
l ∩Ker(δ + d)}kl=0 of Ker(δ + d).

Now we consider the quotient topology on each Hk
l induced from the sub-

space Ck
l ∩Ker(δ+d) of the product

∏
p+q=k C

p,q (endowed with the product
topology). From the above lemma, it suffices to show the quotient topology
on El,k−l

∞ := Hk
l /H

k
l+1 induced from Hk

l is Hausdorff. By the usual lemma of
spectral sequence, we can (algebraically) compute the quotient vector space
El,k−l

∞ by computing the cohomologies of Er-pages E
l,k−l
r successively. We

must see the successive computation of Er-page also detects the Hausdorff-
ness. It is a general lemma that if we have a topological vector space V
and its subspaces W and V ′,W ′ with W ′ ⊂ V ′, then there is a natural lin-
ear bijective homeomorphism (V/W )/(V ′/W ′)→ V/(W +V ′) of topological
vector spaces, where we take the usual algebraic quotient and sum. It follows
that we have a linear bijective homeomorphism

El,k−l
∞ → Ck

l ∩Ker(δ + d)(
Ck

l ∩ Im(δ + d)
)
+
(
Ck

l+1 ∩Ker(δ + d)
) , (2.50)

so that it suffices to show that the right hand side is Hausdorff.
Recall the definition of the Er-page:

El,k−l
r :=

(
Ck

l ∩ (δ + d)−1Ck+1
l+r

)
(
Ck

l ∩ (δ + d)Ck−1
l+1−r

)
+
(
Ck

l+1 ∩ (δ + d)−1Ck+1
l+r

) .
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We consider the quotient topology on El,k−l
r induced from Ck

l ∩(δ+d)−1Ck+1
l+r .

Then since El,k−l
r for r > max(l, k − l) coincides with the right hand side in

(2.50) as topological vector spaces, the Hausdorffness of El,k−l
∞ follows from

that of El,k−l
r for r > max(l, k − l).

Remember from the usual lemma on spectral sequence, we have a linear
map dp,qr : Ep,q

r → Ep+r,q−r+1
r such that dp+r,q−r+1

r ◦ dp,qr = 0 and a linear
bijection Ep,q

r+1 → Ker(dp,qr )/Im(dp−r,q+r−1). The linear map dl,k−l
r : El,k−l

r →
E

l+r,(k−l)−r+1
r is induced from the continuous map δ+d : Ck

l ∩(δ+d)−1Ck+1
l+r →

Ck+1
l+r ∩(δ+d)−1Ck+2

l+2r and the linear bijection Ep,q
r+1 → Ker(dp,qr )/Im(dp−r,q+r−1)

is induced from the continuous inclusion Ck
l ∩ (δ + d)−1Ck

l+r+1 ↪→ Ck
l ∩ (δ +

d)−1Ck
l+r, so that these maps are continuous linear bijection, while we do not

state here the continuity of the inverse map as there is no open mapping
theorem for general topological vector spaces. Thanks to the direction of
the continuous bijection Ep,q

r+1 → Ker(dp,qr )/Im(dp−r,q+r−1), Ep,q
r+1 is Hausdorff

when the quotient topology on Ker(dp,qr )/Im(dp−r,q−1+r) induced from Ep,q
r is

Hausdorff.
Now our assumption that Ep,q

1 are finite dimensional Hausdorff spaces im-
plies every subspace of Ep,q

1 is closed, so that Ep,q
2 are again finite dimensional

Hausdorff spaces by the above general argument. Running the induction, we
conclude that Ep,q

r are finite dimensional Hausdorff spaces for every r ≥ 1,
and so are the spaces Ep,q

∞ .

Proposition 2.4.11. The quotient topology on HdR,K
p (B,R) induced from

the weak topology on (D′)Kp (B) is Hausdorff for every p ∈ Z.

Proof. This follows by applying the above proposition to the double complex
of Cartan model with reversed index Ep,q

0 = (Spk∨ ⊗ D′
n−(p+q)(B))K , whose

assumption is confirmed by Proposition 2.4.7 and the computation of E1-
term:

Ep,q
1 =

(
Sp(k∨)⊗HdR

n−(p+q)(B,R)
)K

as topological vector spaces.

Corollary 2.4.12. The push-forward map (2.49) is continuous with respect
to the Fréchet topology on Ωn+p

K (X) and the Hausdorff topology on HK
b−p(B).

We apply this continuity result to the key construction in section 2.3.1,
together with the following lemma.
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Lemma 2.4.13. Let V be a Fréchet space and {∥ · ∥l}l∈Z≥0
be a collection of

seminorms on V defining its Fréchet structure. LetW be a Banach space and
F : V → W be a continuous linear map. Let {vi}∞i=0 ∈ V be a sequence such
that

∑∞
i=0 ∥vi∥l < ∞ for every l ≥ 0. Then the infinite series

∑∞
i=0 F (vi) is

absolutely convergent with respect to the norm of W .

Proof. Remember that a linear map F : V → W from Fréchet space to
Banach space is continuous if and only if there exists a constant C > 0 and
N ∈ Z≥0 such that

∥F (v)∥W ≤ C(∥v∥0 + · · · ∥v∥N)

for every v ∈ V . So the claim follows by

∞∑
i=0

∥F (vi)∥W ≤ C
N∑
l=0

∞∑
i=0

∥vi∥l <∞.

Equivariant homology todd class and equivariant Grothendieck–
Riemann–Roch theorem

Here we recall the equivariant Grothendieck–Riemann–Roch theorem for al-
gebraic schemes established by Edidin–Graham [EG2] as equivariant version
of [Ful]. The equivariant Chow group AG

p (X) is studied in [EG1] which is
defined in the same way as the equivariant locally finite homology. The
statement is as follows.

Theorem 2.4.14. Let G be an algebraic group. For each algebraic G-
schemes X over C (i.e. schemes locally of finite type over C), we can assign
a homomorphism

τGX : K(CohG(X))→ ÂG
Q(X)

from the K-group K(CohG(X)) of G-equivariant algebraic coherent sheaves
on X to the G-equivariant Chow group ÂG

Q(X) =
∏

p∈ZA
G
p (X) ⊗ Q of Q-

coefficient enjoying the following properties.

1. (Grothendieck–Riemann–Roch) For anyG-equivariant proper morphism
f : X → Y of algebraic schemes, we have f∗τ

G
X (α) = τGY (f!α) for every

α ∈ K(CohG(X)). Here f!α for an element α = [F ] represented by a
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G-equivariant coherent sheaf F denotes the element
∑

i(−1)i[Rif∗F ]
in K(CohG(Y )), where the higher direct image sheaves Rif∗F are G-
linearized in a natural way.

2. For every α ∈ K(CohG(X)) and β ∈ K(VectG(X)), we have τGX (α ⊗
β) = τGX (α)⌢ chG(β).

3. For closed subscheme Z ⊂ X of pure dimension p, we have τGX (OZ)⟨p⟩ =
[Z]G ∈ AG

n (X).

4. When X is smooth, we have PDG((τ
G
X (OX))⟨p⟩) = Tdn−p

G (X).

Definition 2.4.15. For a pure n-dimensional algebraic G-scheme X over C,
we define the equivariant canonical class κGX ∈ H

lf,G
2n−2(X,Q) by

κGX := −2clG(τGX (OX))⟨n−1⟩ (2.51)

under the equivariant cycle map clG : AG
p (X)→ H lf,G

2p (X).
For a relatively pure dimensional G-equivariant proper flat morphism

π : X → B from an algebraic G-scheme X to a smooth G-variety B, we
define the relative equivariant canonical class κGX/B ∈ H

lf,G
2 dimX−2(X ,Q) by

κGX/B := −2clG(τGX (OX )⌢ π⋆τGB (OB))⟨dimX−1⟩ = κGX − [X ]G ⌢ π⋆(κGB),
(2.52)

where we put π⋆ := π∗ ◦ PDG,B : H lf,G
l (B)→ H2 dimX−l

G (X ).

Let f : X̃ → X be a G-equivariant proper morphism of pure dimensional
G-schemes which is isomorphic away from a codimension k + 1 subscheme
of the target X. (Namely, there is a subscheme Z ⊂ X of codimension
k + 1 such that the restriction f−1(X \ Z) → X \ Z gives an isomorphism.
) Then we have f∗(τ

G
X̃
(OX̃))⟨dim X̃−i⟩ = τGX (OX)⟨dimX−i⟩ for i ≤ k as we

have f!(τ
G
X̃
(OX̃)) = τGX (f∗[OX̃ ]) by the equivariant Grothendieck–Riemann–

Roch and f![OX̃ ] − [OX ] = [f∗OX̃/OX ] +
∑

i≥1(−1)i[Rif∗OX̃ ] is supported

on Z. In particular, we have κGX = KG
X for any normal variety X, where

KG
X denote the locally finite homology class corresponding to the equivariant

frist Chern class cG1 (ωXreg) = −cG1 (Xreg) ∈ H2
G(X

reg,Z) via the isomorphism
H2

G(X
reg) ∼= H lf,G

2n−2(X
reg) ∼= H lf,G

2n−2(X). If X has only rational singularities,

we have f!OX̃ = OX for any equivariant resolution f : X̃ → X, so that
f∗τ

G
X̃
(OX̃) = τGX (OX).
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Corollary 2.4.16. Let π : X → B be a relatively pure n-dimensional G-
equivariant proper flat morphism from an algebraic G-scheme X to a smooth
G-variety B, f : B′ → B be a G-equivariant morphism from another smooth
G-variety B′. Put X ′ := X×BB

′ and denote by f̂ : X ′ → X and π′ : X ′ → B′

the projection to the first factor and the second factor, respectively.
For each G-equivariant line bundle L on X , we have

f ∗
(
π⋆
(
κGX/B ⌢ cG1 (L)⌣(n+p−1)

))
= π′

⋆

(
κGX ′/B′ ⌢ cG1 (f̂

∗L)⌣(n+p−1)
)

in H2p
G (B,Q).
In other words, the assignment

L 7→ (κGX/B.e
L)B ∈ Ĥeven

G (B,Q) (2.53)

is base change stable.

Proof. By the equivariant Grothendieck–Riemann–Roch theorem, we have

π⋆τ
G
X (L⊗k) = PDG

Bτ
G(π∗[L⊗k]) = τGB (OB)⌢ chG(π∗[L⊗k])

in Ĥ lf,G(B,Q). Since τGB (OB) = [B]G ⌢ TdG(B) and TdG(B) has the inverse
element TdG(−TB) with respect to the cup product, we obtain

chG(π∗[L⊗k]) = PDG
B(π⋆τ

G
X (L⊗k)⌢ TdG(−TB)).

We compute

π⋆τ
G
X (L⊗k) = π⋆(τ

G
X (OX )⌢ chG(L⊗k)) = π⋆(τ

G
X (OX )⌢ ekc

G
1 (L))

and obtain(
chG(π∗[L⊗k])

)⟨dimB−q⟩
=

∞∑
i=0

ki

i!

(
π⋆(τ

G
X (OX )⌢ π∗TdG(−TB))⌢ cG1 (L)⌣i

)⟨dimB−q⟩

=

dimX−p∑
i=0

ki

i!
π⋆((τ

G
X (OX )⌢ π∗TdG(−TB))⟨i+q⟩ ⌢ cG1 (L)⌣i).

It follows that
π⋆(κ

G
X/B ⌢ cG1 (L)⌣(n+p−1))

is the coefficient of degree n+p−1 of the polynomial map (chG(π∗[L⊗•]))⟨p⟩ :
Z→ H2p

G (B,Q). Now the claim follows from

f ∗(chG(π∗[L⊗k])) = chG(f ∗π∗[L⊗k]) = chG(π′
∗[(f̂

∗L)⊗k]).
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We denote byNSG(X ,R) ⊂ H2
G(X ,R) the subspace spanned by {cG1 (L) | L ∈

PicG(X )}. Since the map H2
G(X ,R) → H2p

G (B,R) : c 7→ π⋆(κ
G
X/B ⌢

c⌣(n+p−1)) is continuous, the assignment c 7→ π⋆
(
κGX/B ⌢ ec

)
is also base

change stable for c ∈ NSG(X ,R).
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Part II

Moduli space of Fano manifolds
with Kähler–Ricci solitons
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Introduction for Part II

In this part II, we give a theoretical framework and methods for construction
of moduli space of Fano manifolds with Kähler–Ricci solitons. We begin with
backgrounds and motivations for this new-type moduli space.

In the celebrated paper [FS2], Fujiki and Schumacher constructed the
complex analytic moduli spaces of all compact smooth (polarized) Calabi–
Yau (KX ≡ 0) and canonically polarized manifolds (KX > 0), as a higher
dimensional analogue of the moduli spaces of Riemann surfaces of genus
g = 1 and g ≥ 2, respectively.

In contrast to these cases, it is known that ‘the moduli space of all Fano
manifolds’ in a primitive sense behaves pathologically; it does not enjoy the
T1-separation axiom, in particular, it does not admit any nice geometric
structure like a complex analytic structure. Indeed, the separation is ob-
structed by the existence of iso-trivial degenerations of Fano manifolds: there
are (many) families X → ∆ of Fano manifolds which is biholomorphically
trivial over ∆∗ = ∆ \ {0} and whose central fibre X0 is not biholomorphic to
the general fibres; for example, small deformations of the Mukai–Umemura
threefold (cf. [Tian-book, Chapter 7]) and the unique G2-horospherical Fano
manifold with Picard number one (cf. [PP] and Example 3.5.4) give such
examples. In other words, the moduli space of all Fano manifolds does not
even exist in the complex analytic framework.

Still, in view of the work of [FS2], one can imagine or hope that the exis-
tence of some ‘canonical metrics’ on Fano manifolds may play a role to ensure
the separation property of the moduli space or stack. For Fano manifolds,
Kähler–Einstein metric is a candidate for such ‘canonical metrics’. How-
ever, it is known that Fano manifolds do not always admit Kähler–Einstein
metrics, while Calabi–Yau and canonically polarized manifolds always ad-
mit Kähler–Einstein metrics, as observed in [Mat1, Fut]. We must exclude
‘unstable’ Fano manifolds in some sense.
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Detecting a geometric condition of Fano manifolds equivalent to the exis-
tence of Kähler–Einstein metrics was a long standing problem and a conjec-
ture on this concern was settled as the Yau–Tian–Donaldson conjecture for
these two decades. Recently, Chen–Donaldson–Sun and Tian [CDS, Tian2]
broke through this problem (for Fano manifolds): the existence of Kähler–
Einstein metrics on a Fano manifold is equivalent to the K-stability of the
Fano manifold, which is a pure algebro-geometric condition for polarized
variety.

After this breakthrough, in the spirit that the existence of canonical met-
rics plays a role for the separation, the (algebro-geometric) moduli space
of Fano manifolds with Kähler–Einstein metrics was constructed in [OSS,
Oda2, Oda3, LWX1] as an algebraic space within a unified theoretical frame-
work (not defeating one by one). Different from the case of [FS2], even the
dimension of the automorphism groups of Fano manifolds may jump along
deformation of complex structures. So they constructed the moduli space
of Kähler-Einstein Fano manifolds by rather different new technologies from
[FS2], while sharing the same spirit with [FS2] on the philosophical reason
for the separation. After the construction of the moduli space, Li–Wang–Xu
[LWX2] proves the quasi-projectivity of the moduli space. There are also
more intensive studies as [SS, LiuXu] on the relation with a literal GIT con-
struction, which a priori depends on some ad hoc data such as an embedding
of varieties into a fixed projective space, for some special cases.

This additional stability assumption ‘with Kähler–Einstein metrics ’ is
enjoyable for interest in particular examples: there are various important
examples of Fano manifolds admitting Kähler–Einstein metrics. However,
on the other hand, it is also known that there are many examples of Fano
manifolds who do not admit any Kähler–Einstein metrics; even the one point
blowing up of CP n.

Philosophically, constructing moduli spaces of varieties in the schematic
or complex analytic category within a unified theoretical framework can be
regard as giving a (schematic/complex analytic method for) classification of
them. From a viewpoint of MMP, Odaka and Okada conjectured in [OO]
that every smooth Fano manifold with Picard number one, which is one of
the final outcome of the MMP, is K-semistable, so that they are members of
the moduli space of Kähler–Einstein Fano manifolds and hence are classified.
However, (infinitely) many counter-examples of this conjecture are discovered
by Fujita [Fuj] and Delcroix [T. Del]. We face that the assumption ‘with
Kähler–Einstein metrics’ is restrictive for our interest on this classification
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concern.
In this part II, we extend the moduli space of Fano manifolds with Kähler–

Einstein metrics to the moduli space of Fano manifolds with Kähler–Ricci
solitons. Kähler–Ricci soliton, which consists of a Kähler metric and a holo-
morphic vector field, is a natural generalization of Kähler–Einstein metrics
from the viewpoint of Kähler–Ricci flow. The uniqueness of Kähler–Ricci soli-
ton modulo the identity component of the biholomorphism group is known
by [TZ2] as in the case of Kähler–Einstein metrics [BM], so that we can
regard Kähler–Ricci soliton as a kind of ‘canonical metrics’ on Fano man-
ifolds. The equivalence with K-stability as developed in [DT, Tian1, Ber]
and [CDS, Tian2] for Kähler-Einstein metrics are also covered for the case
of Kähler–Ricci soliton in [Xio, BW] and [DaSz]. There are large amount
of known examples of Fano manifolds admitting Kähler–Ricci solitons; Del-
croix’s infinite series of counter-examples of Odaka–Okada conjecture admit
Kähler–Ricci solitons, while they do not admit Kähler–Einstein metrics.

We usually characterize moduli spaces in the schematic/complex ana-
lytic framework by a universal property. A category consisting of families of
which we intend to construct the moduli space, which is usually called the
moduli stack, is a convenient and essential tool for describing the universal
property. In our moduli problem, we do not work with the usual moduli
stack consisting of the usual families of Fano manifolds. In order to ensure
the separation, and technically in order to apply GIT method, we instead
consider another new moduli stack K(n) consisting of some families of pairs
(X, ξ′) of n-dimensional Fano manifolds and holomorphic vector fields, which
is natural in view of the theory of Kähler–Ricci soliton. The moduli stack
K(n) is furthermore divided into clopen (closed and open, but not necessarily
connected) sub-stacks KT,χ, where the associated holomorphic vector fields
are deformed holomorphically. As we must review the theory of Kähler–Ricci
soliton (in section 3.2) before explaining this unfamiliar moduli stack, here
we do not explain the detail and postpone the precise description/definition
until section 3.2 and Definition 3.4.1. The author hopes that Appendix in
this chapter helps the readers unfamiliar to stacks to grasp some fundamen-
tal generalities on stacks over the category of complex spaces. Example 3.5.4
explains that this formulation of the moduli stack is essential and the rea-
son why the usual stack does not serve our purpose. The readers will see
in Remark 3.2.8 that the change of our moduli stacks does not affect the
sets of what we intend to parametrize (X or (X, ξ′)) and these are naturally
identified to each other (only) as sets.
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Chapter 3

The moduli space of Fano
manifolds with KRs

We construct a canonical Hausdorff complex analytic moduli space of Fano
manifolds with Kähler–Ricci solitons. This enlarges the moduli space of Fano
manifolds with Kähler–Einstein metrics. We discover a moment map picture
for Kähler–Ricci solitons, and give complex analytic charts on the topological
space consisting of Kähler–Ricci solitons, by studying differential geometric
aspects of this moment map. Some stacky words and arguments on Gromov–
Hausdorff convergence help to glue them together in the holomorphic manner.

The content corresponds to the paper [Ino1].

3.1 Introduction

Let KRGH(n) be the set of biholomorphism classes of n-dimensional Fano
manifolds admitting Kähler–Ricci solitons. We can endow KRGH(n) with
a natural topology induced by the ‘complexified’ Gromov–Hausdorff conver-
gence (cf. [PSS]). Note that the set K0,GH(n) of biholomorphism classes
of n-dimensional Fano manifolds admitting Kähler–Einstein metrics forms a
clopen subset of KRGH(n). Our main theorem is the following.

Theorem H (Theorem 3.4.8 + Proposition 3.4.11). The Hausdorff topo-
logical space KRGH(n) admits a natural complex analytic structure which
is uniquely characterized by the following universal property of a natu-
ral morphism K(n) → KRGH(n) from the moduli stack: any morphism
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K(n) → B to any complex space B holomorphically and uniquely factors
through KRGH(n).

In contrast to the current known construction ([Oda2, Oda3, LWX1])
of the moduli space of Fano manifolds with Kähler–Einstein metrics, our
method for construction actually does not depend on the result in [DaSz],
where they proved modified K-polystable Fano manifolds admit Kähler–Ricci
solitons. Although, as some of the readers might prefer algebro-geometric
formulation, we formulate things in terms of modified K-stability, which can
be translated into the existence of Kähler–Ricci solitons via [DaSz].

Our main tool for the construction of complex analytic charts onKRGH(n)
is the following moment map.

Key Observation (Proposition 3.3.1 + Proposition 3.3.2). Let (M,ω) be a
2n-dimensional C∞-symplectic manifold underlying a Fano manifold with a
Hamiltonian action of a closed real torus T . For any ξ ∈ t, there is a moment
map

Sξ : JT (M,ω)→ Lie(HamT (M,ω))∨

on the space JT (M,ω) of T -invariant almost complex structures with re-
spect to the modified symplectic structure Ωξ (see subsection 3.3.1) and the
action of HamT (M,ω). Moreover, integrable complex structures in S−1

ξ (0)
correspond to Kähler–Ricci solitons.

We firstly construct charts on the quotient space (S int
ξ )−1(0)/HamT (M,ω),

where S int
ξ denotes the restriction of the moment map Sξ to the subspace

J int
T (M,ω) ⊂ JT (M,ω) consisting of integrable almost complex structures.

The quotient space reveals to be identified with a clopen subspace ofKRGH(n).
To compare our constructions with [Oda2, Oda3, LWX1], we briefly re-

view their methods here. They firstly prove the Zariski openness of the set
of the K-(semi)stable points in any family of Fano manifolds. It follows that
the usual moduli stack is Artin algebraic, so that they can apply the es-
tablished theory of good moduli spaces of Artin algebraic stacks. Secondly
they construct étale local charts on this stack of the form [V/G], where each
V is an affine scheme and G is a reductive algebraic group. Each quotient
stack [V/G] has the good moduli space V �G. We can glue them together,
just applying the gluing theory of good moduli spaces developed in [Alp2].
Technically, the proofs of the Zariski openness and the existence of the étale
local charts rely on the argument showing that the set of K-(semi/poly)stable
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points forms a constructible set of the parameter space in the Zariski topol-
ogy. The CM line bundle, whose GIT weight equals to the Donaldson–Futaki
invariant ([PT]), is used to prove the constructibility. (Compare [Don2] for
another proof of the Zariski openness. )

However, in the case of Kähler–Ricci soliton, as there is no candidate for
the CM-line bundle because of the irrationality of the modified Donaldson–
Futaki invariant, we face a problem with the constructibility. So we will
work with the real topology, in other words, with Artin analytic stacks. We
can still construct local charts on this Artin analytic stack with good moduli
spaces, however, the second nuisance appears when gluing the good moduli
spaces together: there is no well-established theory of good moduli spaces
for Artin analytic stacks so far. (At least to the author, it seems not so
easy to show the uniqueness (universal) property of good moduli spaces of
Artin analytic stacks, if it exists, which is obviously a key property for the
good gluing theory (cf. [Alp1, Alp2]). The lack of nice counterpart of ‘quasi-
coherent sheaves’ on complex analytic spaces seems critical. (cf. [EP-book,
Section 4])

Alternatively, we glue our charts by a ‘cooperation of virtual and real’.
We construct analytic charts not only on the stack K(n), but also on the
topological spaces (S int

ξ )−1(0)/HamT (M,ω), which are related in a canon-
ical way. The latter ‘real side’ is studied in section 3.3 and is used to
show that the charts are actually homeomorphisms onto open subsets of
(S int

ξ )−1(0)/HamT (M,ω). This is not treated in [Oda2, Oda3, LWX1] as
they could apply Alper’s gluing work of good moduli spaces, which works
‘without reality’. The former ‘virtual side’ is studied in section 3.4 and is
used to show that the coordinate changes are holomorphic. Finding holo-
morphic relations between the analytic charts are easier on the stack K(n)
than on the topological spaces (S int

ξ )−1(0)/HamT (M,ω). These holomorphic
relations of stacks descend to the actual holomorphic relations between the
analytic charts on (S int

ξ )−1(0)/HamT (M,ω) thanks to the universality of the
local moduli spaces and the fundamental (2-categorical version of) Yoneda’s
lemma: the natural fully faithful embedding of the category Can of complex
analytic spaces to the 2-category of complex analytic stacks.

Organization

The remainder of this chapter is organized as follows. In section 3.2, we
review some known results on Kähler–Ricci soliton and rearrange K-stability
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notion modified to the soliton setting so that it fits into our moduli problem.
It is explained that the pair (X, ξ′) can be converted into the action X ↶
T , where T is the torus generated by the holomorphic vector field ξ′. We
introduce gentle Fano T -manifolds as Fano T -manifolds inseparable from
smooth Fano T -manifolds with Kähler–Ricci solitons, which are expected
to be K-semistable. They form an adequate moduli stack in our moduli
problem. Finally, we propose Proposition 3.2.18, which states the uniqueness
of the central fiber of gentle degenerations. It will be proved after we complete
Proposition 3.4.7, and play an essential role in the proof of Theorem 3.4.8 in
subsection 3.4.2.

In section 3.3, we construct and study an infinite dimensional moment
map Sξ whose integrable zero points correspond to Kähler–Ricci solitons. We
describe that local slices ν : B → k of the moment map actually give charts
ν−1(0)/K ≈ BKc � Kc on the topological space consisting of Kähler–Ricci
solitons. To achieve this, we need to study Banach completions of Fréchet
manifolds, where we must pay attention to the treatment of the completions
of HamT (M,ω) as they are never Banach Lie groups. We also prove that, in
any family of Fano T -manifolds, the set of gentle Fano T -manifolds forms an
open subset in the parameter space of the family.

In section 3.4, the main theorem is proved. We introduce the stack KT,χ

of gentle Fano T -manifolds and show that it is an Artin analytic stack. We
prove Proposition 3.2.18 in subsection 3.4.4, using the results in the former
half of subsection 3.4.2. We use this proposition in the proof of the main
theorem. In subsection 3.4.3, we show that our moduli space is related to
the topological space KRGH(n) endowed with the ‘complexified’ Gromov–
Hausdorff topology, which is studied in [PSS].

In section 3.5, we review some examples of Fano manifolds with Kähler–
Ricci solitons and propose some future studies. In particular, we find an
iso-trivial degeneration of a Kähler–Einstein Fano manifold to another Fano
manifold with non-Einstein Kähler–Ricci soliton, which implies that the usual
moduli stack is not sufficiently separated and hence our new formulation of
moduli stacks K(n) and KT,χ is essential.
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3.2 Kähler–Ricci soliton and K-stability

3.2.1 Kähler–Ricci soliton

A Kähler metric g on a Fano manifold X is called a Kähler–Ricci soliton if
it satisfies the following equation:

Ric(g)− Lξ′g = g

for some holomorphic vector field ξ′. The same term sometimes refers the
pair (g, ξ′).

A fundamental feature of a Kähler–Ricci soliton (g, ξ′) is that it gives an
eternal solution of the normalized Kähler–Ricci flow:

∂tg(t) = −Ric(g(t)) + g(t).

Namely, for the 1-parameter smooth family ϕt : X
∼−→ X generated by Re(ξ′),

the following holds:
∂t(ϕ

∗
tg) = −Ric(ϕ∗

tg) + ϕ∗
tg.

On a Fano manifold admitting Kähler–Ricci soliton, it is shown in [TZ3,
TZZZ, DeSz] that the normalized Kähler–Ricci flow converges to a Kähler–
Ricci soliton, starting from any Kähler metric in 2πc1(M).

It is shown in [Zhu] that there is a solution g of the equation

Ric(g)− Lξ′g = g0

for any initial Kähler metric g0. Let us consider the following smooth conti-
nuity path for Kähler–Ricci soliton:

Ric(gt)− Lξ′gt = tgt + (1− t)g0. (3.1)

One can prove that

Rξ′(X) := sup{t ∈ [0, 1] | a solution gt of (3.1) exists. }

is independent of the choice of the initial metrics g0 and has the equality

Rξ′(X) = sup{t ∈ [0, 1] | ∃g s.t. Ric(g)− Lξ′g > tg}. (3.2)

The proof of this equality is in [Szé3] for ξ′ = 0 and in Kazuma Hashimoto’s
master thesis [Has] for the general case (ξ′ ̸= 0). A related invariant is also
mentioned in [DGSW].
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Remark 3.2.1. Kazuma Hashimoto was a master student of University of
Tokyo supervised by Prof. Akito Futaki. He did not proceed to doctoral
course and quit his research position. The proof of the equality (2) in his
thesis is an analogy of [Szé3], using the functionals Mξ := µω originally
defined in [TZ2] and the following Jα,ξ instead ofM,Jα in [Szé3]:

Mξ(ϕ) := −
∫ 1

0

dt

∫
X

ϕ̇t

(
s(gϕt)− n− tr(∇gϕt

ξ′) + ξ′(hgϕt − θ
′
ξ(ϕt))

)
eθ

′
ξ(ϕt)ωn

phit ,

Jα,ξ(ϕ) :=

∫ 1

0

dt

∫
X

ϕ̇t(trωϕtα− n+ ξ′φα)e
θ′ξ(ϕt)ωn

ϕt ,

where φα is a function with α− ω =
√
−1∂∂̄φα.

The uniqueness and the existence results analogous to those of the Kähler–
Einstein metrics [BM, CDS, Tian2] (and ) hold also for Kähler–Ricci solitons.

Theorem 3.2.2 (Uniqueness, [TZ1, TZ2] (and [BW] for Q-Fano variety
with t = 1)). If (g1, ξ

′
1) and (g2, ξ

′
2) are two Kähler–Ricci solitons on a Fano

manifold X, then there is an element ϕ ∈ Aut0(X) such that

g2 = ϕ∗g1, ξ′2 = ϕ−1
∗ ξ′1,

where Aut0(X) is the identity component of the group Aut(X) of biholo-
morphisms of X. Moreover, a solution gt of the equation (3.1) is absolutely
unique for any initial metric g0 and t ∈ [0, 1).

Theorem 3.2.3 (Existence, [DaSz, CSW]). Rξ′(X) = 1 for any K-semistable
pair (X, ξ′). If in addition (X, ξ′) is K-polystable, there is a Kähler–Ricci
soliton on X with respect to ξ′.

We will see the definition of the K-stability of pairs (X, ξ′) in the next
subsection. The above claim on K-semistability is also covered in [C. Li] for
the Kähler–Einstein case, using [CDS, Tian2]. The opposite implication for
K-polystablity is proved in [Ber, BW] including the Q-Fano case as follows.

Theorem 3.2.4 ([Ber, BW]). Let X be a Q-Fano variety. If X admits a
Kähler–Ricci soliton (g, ξ′), then (X, ξ′) is K-polystable.

In the Kähler–Einstein case (i.e. ξ′ = 0), [Der, C. Li] shows that X is
K-semistable if R(X) = 1. So we can summarize as follows.

126



• X is K-polystable ⇐⇒ X admits a Kähler–Einstein metric.

• X is K-semistable ⇐⇒ R(X) = 1.

Only the implication from the right to the left-hand side of the second item
is still open for general (X, ξ′).

There is a version of Futaki invariant suitable for Kähler–Ricci soliton
defined in [TZ2]. Let H0(X,ΘX) denote the space of holomorphic vector
fields on X. Define a linear map Futξ′ : H

0(X,ΘX)→ C by

Futξ′(v
′) :=

∫
X

v′(h− θξ′)eθξ′ωn,

where ω ∈ 2πc1(M) is a Kähler form, h is a real valued function satisfying√
−1∂∂̄h = Ric(ω)−ω and θξ′ is a complex-valued function characterized by{

Lξ′ω =
√
−1∂∂̄θξ′∫

X
eθξ′ωn =

∫
X
ωn.

The function θξ′ becomes real-valued when ξ := Imξ′ is a Killing vector. This
linear function is independent of the choice of ω, so it gives an invariant de-
pending only on X and ξ′, which is now called the modified Futaki invariant.
This invariant obviously vanishes when X admits a Kähler–Ricci soliton with
respect to the vector field ξ′.

The following is a crucial fact in order to properly formulate our moduli
problem.

Proposition 3.2.5 ([TZ2]). Let X be a Fano manifold, which does not
necessarily have a Kähler–Ricci soliton, and K ⊂ Aut(X) be a compact
subgroup. Then there is a unique holomorphic vector field ξ′ with Im(ξ′) ∈
Lie(K) such that

Futξ′(v
′) = 0, ∀v′ ∈ Lie(Kc),

where Kc ⊂ Aut(X) is the complexification of the group K.

Remark 3.2.6. In general, a reductive algebraic group Kc does not uniquely
determine its maximal compact subgroupK, but only up to conjugate. When
Kc is an algebraic torus, which is isomorphic to (C∗)k, its maximal compact
subgroup (U(1))k is uniquely determined. This fact allows us to get away
from a formulation relying on structures over the field R as we see in the next
subsection and to formulate things over even a field of positive characteristic,
which should be preferred by algebraic geometers.
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The total biholomorphism group of a Fano manifoldX admitting a Kähler–
Ricci soliton (g, ξ′) is not necessarily reductive. Instead, we have the follow-
ing.

Theorem 3.2.7 ([TZ2] ([BW] for the Q-Fano case)). Suppose a Q-Fano va-
riety X has a Kähler–Ricci soliton (g, ξ′), then the subgroup Aut0(X, ξ′) ⊂
Aut0(X) consisting of ξ′-preserving biholomorphisms is a maximal reductive
subgroup of Aut0(X). Moreover, the complexification of the identity compo-
nent Isom0(X, ξ′) of the group of isometries preserving ξ′ coincides with the
group Aut0(X, ξ′).

Remark 3.2.8. The reductivity of the automorphism groups of geometric
structures of which we intend to construct a geometric moduli space, is crucial
if one expect to apply local or global GIT to its construction and indeed
indispensable in the doctrine of Alper’s good moduli space (cf. [Alp1, Alp2]).

The uniqueness of Kähler–Ricci soliton implies that the set consisting of
the isomorphism classes of the pairs (X, ξ′) with Kähler–Ricci solitons can
be naturally identified with the set consisting of the biholomorphism classes
of Fano manifolds X with Kähler–Ricci solitons. So there is no change in
the support sets of ‘the moduli spaces’ of the following two moduli stacks:
one is the usual moduli stack associated with Fano manifolds X admitting
Kähler–Ricci solitons, and the other is the moduli stack associated with Fano
pairs (X, ξ′) admitting Kähler–Ricci solitons.

However, there are nice geometric features in the latter stack compared to
the former stack, such as the separation property and the reductivity of the
stabilizer groups at K-polystable points, which is appropriate for the local
GIT construction of the good moduli space.

So we will work with the latter stack, and precisely define it in sub-
section 3.4.1, replacing the pairs (X, ξ′) with the Tξ′-action on X. This may
change the topology of the moduli space, but it turns out that the latter stack
is correct with regard to the ‘complexified’ Gromov–Hausdorff convergence
considered in [PSS].

3.2.2 K-stability

Here we review the definition of K-stability and formulate it as the stability
notion of a Fano manifold with an algebraic torus action. This enables us
to introduce an adequate notion of ‘deformations of Fano manifolds with
Kähler–Ricci solitons’ and leads us to the proper definition of the stackK(n).
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Recall that a Q-Fano variety X is a reduced irreducible normal complex
space X with the following property: there is a positive integer ℓ such that
the sheaf i∗((detΘXreg)⊗ℓ), which is denoted by O(−ℓKX), is isomorphic to
the sheaf of sections of an ample line bundle on X, and X has only log
terminal singularities (see [EGZ]). The minimum ℓ satisfying this property
is called the Q-Gorenstein index of X. Obviously, Q-Fano varieties can be
embedded into some CPN , hence they are also considered as schemes, but
we treat them in the category of complex spaces.

A Q-Fano T -variety is a Q-Fano variety X with a holomorphic action
α : X×T → X, where we only consider an algebraic torus T ∼= (C∗)k. When
X has no singularities, we call it Fano T -manifold. We denote by AutT (X)
the centralizer of T ⊂ Aut(X):

AutT (X) := {g ∈ Aut(X) | gt = tg for ∀t ∈ T}.

Let T be an algebraic torus. We denote the character lattice of T by
M := Hom(T,C∗) and its dual (1-psg) lattice by N := Hom(C∗, T ). Let X
be a Q-Fano T -variety. Its T -action canonically lifts to the sheaf O(−mℓKX)
and hence there is an action of T on the cohomologies of O(−mℓKX). For a
character u ∈M , put

H0
u(X,O(−mℓKX)) := {σ ∈ H0(X,O(−mℓKX)) | t.σ = u(t)σ ∀t ∈ T}

and set

hiX(m) := dimH i(X,O(−mℓKX)),

hiX,u(m) := dimH i
u(X,O(−mℓKX)).

We adopt the following pure algebraic definition of modified Futaki in-
variant exhibited in [BW], which is shown to coincide with Futξ′ in the pre-
vious section, up to a uniform positive factor. Note that the modified Futaki
invariant for special degenerations is firstly introduced in [Xio] and reformu-
lated in [WZZ]. (The author thanks the referees for telling the author these
important references. )

Definition 3.2.9 (modified algebraic Futaki invariant). For a Q-Fano T -
variety X and an element ξ ∈ NR, we define the modified (sometimes we
omit this word in our T -equivariant setup) algebraic Futaki invariant FX,ξ :
N → R by

FX,ξ(λ) := − lim
m→∞

wX,ξ(m;λ)

mh0X(m)
,
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where
wX,ξ(m;λ) :=

∑
u∈M

e⟨u,ξ⟩/mh0X,u(m)⟨u, λ⟩.

We define the Hilbert character χ : Z → Z[M ] of a Fano T -manifold X
by

χm :=
dimX∑
i=0

(−1)i
∑
u∈M

hiX,u(m)u ∈ Z[M ]. (3.3)

We call a function χ : Z → Z[M ] a Fano character if there exists a Fano
T -manifold whose Hilbert character given in (3.3) is the given χ.

Proposition 3.2.10 ([TZ2]). For every Fano T -manifold X, there exists
a unique vector ξ ∈ NR such that the modified algebraic Futaki invariant
FX,ξ(λ) in the above sense vanishes on the 1-psg lattice N of T (equivalently,
the modified Futaki invariant Futξ′|t restricted to the Lie algebra t of T
vanishes). We call this vector ξ the K-optimal vector of (X,T ).

Obviously from the definition of the modified algebraic Futaki invariant,
the K-optimal vector ξ of a Fano T -manifold X depends only on the Hilbert
character (T, χ). So it also makes sense to say that ξ ∈ NR is the K-optimal
vector of a Fano character (T, χ), which is a T -equivariant deformation in-
variant.

Proposition 3.2.11 ([TZ2]). If a Fano manifold X has a Kähler–Ricci soli-
ton (g, ξ′), then the ξ′ is the K-optimal vector with respect to any algebraic
torus containing the algebraic torus generated by ξ′. (Note that the closure
of the exponential of the imaginary part of the holomorphic vector ξ′ asso-
ciated to soliton gives a closed real torus, and the algebraic torus generated
by ξ′ is just the complexification of this closed real torus. )

We define the K-optimality of Fano character (and in particular the K-
optimality of a Fano T -manifold), not of vector, as follows.

Definition 3.2.12 (K-optimal character). We call a Fano character (T, χ)
K-optimal if there is no proper sub-lattice Ñ ⊂ N with ξ ∈ ÑR for the
K-optimal vector ξ ∈ NR of (T, χ).

For a Fano manifold X, we call an algebraic action of an algebraic torus
T on X is K-optimal if it is maximal (as actions on X) among all K-optimal
characters (T̃ , χ̃) obtained from T̃ -actions on X.
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Remark 3.2.13. It is possible that both characters (T1, χ1) ⊂ (T2, χ2) are
K-optimal, where χi are related by the projection Z[M2]→ Z[M1]. Not only
that, there is an example of a Fano manifold X1 with a Kähler–Einstein
metric (g1, ξ

′
1 = 0) admitting a deformation to a Fano manifold X2 with a

Kähler–Ricci soliton (g2, ξ
′
2) (Example 3.5.4), which shows that both actions

X1 ↶ T1 = 0 and X2 ↶ T2 = T (ξ′2) ̸= 0 are K-optimal with (T1, χX1) ⊂
(T2, χX2). This example illustrates that the torus equivariant formulation
is essential for the separation of the moduli space of Fano manifolds with
Kähler–Ricci solitons.

For a fixed Fano manifold X, K-optimal action T ⊂ Aut(X) is unique up
to adjoint thanks to the uniqueness in Proposition 3.2.5.

Let X be a Q-Fano T -variety. A pair (π : X → C, θ) consisting of the
following data is called a special degeneration of X.

1. X is a normal complex space with an action of T × C∗ and π : X→ C
is a T × C∗-equivariant proper flat Q-Gorenstein surjective morphism
whose central fiber X0 is a Q-Fano variety, where T ×C∗ acts on C by
z.(t, s) = sz.

2. θ is a T × C∗-equivariant isomorphism θ : X × C∗ ∼−→ π−1(C∗).

We also assume that there is a holomorphic line bundle L on X with an
isomorphism θ∗L|π−1(C∗)

∼= p∗1O(−ℓKX) for some ℓ. It is shown in [Ber,
Lemma 2.2] that if such L exists, then −ℓKX becomes Q-Cartier and the
tensor bundle L⊗m is actually isomorphic to O(−mℓKX/C) for some m. So
we exclude the datum L from the data of special degeneration.

Definition 3.2.14 (K-stability). Let ξ ∈ NR be the K-optimal vector of
a Q-Fano T -variety X. Denote the vector (ξ, 0) ∈ (N × Z)R by the same
symbol ξ. We call the Q-Fano T -variety X

• K-semistable if for any special degeneration (π : X → C, θ) of X, the
modified algebraic Futaki invariant FX,ξ(π, θ) := FX0,ξ(λ) of the central
fiber X0 is nonnegative, where λ is the one parameter subgroup defined
by λ : C∗ → T × C∗ : s 7→ (1, s).

• K-polystable if X is K-semistable and FX,ξ(π, θ) = 0 if and only if
there exists a one parameter subgroup λ : C∗ → AutT (X) such that
θ(xλ(t)−1, t) extends to an isomorphism of the total space X×C ∼−→ X.
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• K-stable if the Fano T -variety X is K-polystable and Aut0T (X) = T .

Remark 3.2.15. A pair (X, ξ′) of a Q-Fano variety X and a holomorphic vec-
tor field ξ′ is called K-(semi/poly)stable if ξ := Imξ′ generates a closed real
torus TR and (X,T ) is K-(semi/poly)stable where T denotes the complexifi-
cation of the closed real torus TR. In this case, the vector ξ ∈ Lie(TR) = NR
is of course K-optimal.

We call X modified K-(semi/poly)stable if there exists a torus action
X ↶ T which makes X K-(semi/poly)stable with respect to the action.

Remark 3.2.16. Note that a K-(semi/poly)stable Fano T -manifold is not nec-
essarily a K-(semi/poly)stable Fano manifold (with respect to the trivial
torus action), but only a modified K-(semi/poly)stable Fano manifold. How-
ever, suppose X is a Fano T -manifold, T̃ ⊂ T is a sub-torus and the K-
optimal vector ξ̃ with respect to the T̃ -action coincides with the K-optimal
vector ξ with respect to the T -action (i.e. ξ ∈ Lie(T̃ )), then the Fano T -
manifold X is K-(semi/poly)stable if and only if the Fano T̃ -manifold X is.
This is proved in [DaSz] and recently proved by purely algebraic method in
[?, LWX3] for the KE case (ξ = 0, T = 0).

We introduce a gentle Fano T -manifold as a Fano T -manifold inseparable
from a smooth Fano T -manifold admitting Kähler–Ricci soliton.

Definition 3.2.17 (gentle Fano). A Fano T -manifold X is called gentle if
there is a T -equivariant deformation X → ∆ with an isomorphism X|∆∗ ∼=
X × ∆∗ such that its central fiber X0 is a smooth K-polystable Fano T -
manifold. We call X → ∆ a gentle degeneration.

From GIT viewpoint, it is naturally expected that any gentle Fano T -
manifold is K-semistable. In this section, we do not pursue this expectation
as it is not essential for the construction of our moduli space, while their
K-semistability might be philosophically important. (This turns out to be
true in the next section. ) Note that we always have Rξ′(X) = 1 for a gentle
Fano T -manifold X with the K-optimal vector ξ, thanks to the equality (3.2).
This fact helps us to prove the following proposition.

Proposition 3.2.18. Let X be a gentle Fano T -manifold whose torus action
is K-optimal. Then any two gentle degenerations ofX have the T -equivariant
biholomorphic central fibers.
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The proposition will be proved at the end of section 3.4, using Proposition
3.4.7 and a version of Donaldson-Sun’s technology on Gromov–Hausdorff
limit, and will be applied to the proof of Theorem 3.4.8. The logical order of
our argument is “Proposition 3.4.7⇒ Proposition 3.2.18⇒ Theorem 3.4.8”.
It seems also possible to show this proposition without using a finiteness from
Proposition 3.4.7 as in [LWX1]. However, the author thinks the finiteness
simplifies our argument.

3.3 Local charts

We call a closed C∞-symplectic manifold (M,ω) symplectic Fano if its co-
homology class [ω] is equal to 2π times the first Chern class c1(M,ω) and
there exists an ω-compatible almost complex structure J with positive Ricci
curvature. Note that we have b1(M) = 0 from familiar Bochner’s theorem or
Myers’ theorem as we have a metric with Ric > 0. Throughout this section,
T stands for a closed real torus and (M,ω) for a symplectic Fano manifold
with a Hamiltonian effective action by T .

We denote by Symp(M,ω) the group of symplectic diffeomorphisms and
Ham0(M,ω) its subgroup generated by Hamiltonian diffeomorphisms. Thanks
to Banyaga’s theorem, in the case b1(M) = 0, Ham0(M,ω) actually coincides
with Symp0(M,ω), the identity connected component of Symp(M,ω). (Even
though it is easy to see that both groups have a natural Fréchet Lie group
structures and their Lie algebras coincide, the coincidence at the level of
Fréchet Lie group is not trivial because the Fréchet Lie group structures are
not locally exponential. See [Neeb] for the generalities on Fréchet Lie groups.
) We must work with the group Symp(M,ω) (resp. SympT (M,ω)) so that the
complexification of the stabilizer group of cscK structure J ∈ J (M,ω) (resp.
Kähler–Ricci soliton structure J ∈ JT (M,ω)) coincides with the biholo-
morphism group Aut(M,J) of (M,J) (resp. AutT (M,J)), not only it just
includes the identity component Aut0(M,J) (resp. Aut0T (M,J)). Keeping
Banyaga’s theorem in our mind, we prefer using the notation Ham(M,ω) :=
Symp(M,ω), which is not necessarily connected, as we always identify its Lie
algebra with C∞(M)/R.

We consider the space JT (M,ω) of T -invariant ω-compatible almost com-
plex structures and denote by J int

T (M,ω) the subspace of integrable complex
structures. It is well known that JT (M,ω) admits a natural Fréchet smooth
manifold structure, which is identified with the space of T -equivariant sec-
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tions of an associated Sp(2n)/U(n)-fibre bundle (see [Pal] for instance). The
tangent space at J ∈ JT (M,ω) can be written as follows.

TJJT (M,ω) = {A ∈ Γ∞
T (EndTM) | AJ + JA = 0, ω(A·, ·) + ω(·, A·) = 0}.

Similarly, the group HamT (M,ω) of T -compatible symplectic diffeomor-
phisms can be endowed with a Fréchet smooth Lie group structure, whose
Lie algebra can be identified with C∞

T (M)/R. The left adjoint action is given
by

HamT (M,ω)× C∞
T (M)/R→ C∞

T (M)/R : (ϕ, f) 7→ f ◦ ϕ−1.

The following right action

JT (M,ω)× HamT (M,ω)→ JT (M,ω) : (J, ϕ) 7→ ϕ∗J

is also smooth and its derivative is given by

C∞
T (M)/R→ TJJT (M,ω) : f 7→ LXfJ,

where Xf is the Hamiltonian vector field of f : −df = i(Xf )ω.

3.3.1 The moment map

For a given ξ ∈ t = Lie(T ), we let µξ be a real valued function on M given
by

−dµξ = iξω

with the prescribed normalization∫
M

µξe
−2µξωn = 0.

This function is invariant under the action of HamT (M,ω).
Set θξ := −2µξ. For each J ∈ JT (M,ω),

ξ′J := Jξ +
√
−1ξ ∈ X 1,0(M,J)

satisfies

√
−1∂̄θξ =

√
−1(d(−2µξ) +

√
−1Jd(−2µξ))/2 = iξ′Jω.
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We consider the following Riemannian metric on JT (M,ω), modified by
ξ from the usual one ([Don1]), defined as

(A,B)ξ :=

∫
M

gijJ gJ,klA
k
iB

l
j e

−2µξωn

for tangent vectors A,B ∈ TJJT (M,ω) and set

Ωξ(A,B) := (JA,B)ξ.

It is easy to see that Ωξ defines a non-degenerate closed 2-form on JT (M,ω).
We also consider

(f, g)ξ :=

∫
M

fg e−2µξωn

for f, g ∈ C∞
T (M), which defines an inner product on the subspace

C∞
T,ξ(M,ω) := {f ∈ C∞

T (M) |
∫
M

f e−2µξωn = 0} ∼= C∞
T (M)/R.

Finally, we denote by s(J) the Hermitian scalar curvature of J , defined
by Donaldson [Don1]. We normalize s(J) by a factor so that it is equal to the

Kähler scalar curvature −gij̄J ∂J,i∂J,j̄(log det gJ) for any integrable J , which is
the half of the Riemannian scalar curvature. We denote by ∆gJ the usual
Riemannian Laplacian with positive eigenvalue, which is the twice of the ∂̄-
Laplacian □̄J = −gij̄J ∂J,i∂J,j̄ when J is integrable. Here is the moment map
for our modified symplectic structure Ωξ.

Proposition 3.3.1. Fix ξ, ζ ∈ t. For each J ∈ JT (M,ω), we consider the
modified Hermitian scalar curvature defined as

sξ,ζ(J) := (s(J)− n) + ∆gJθξ − ξ′Jθξ − θξ − θζ ,

where θζ is normalized as
∫
M
θζe

θξωn = 0. Then the map

Sξ,ζ : JT (M,ω)→ C∞
T,ξ(M,ω)∨ : J 7→ (4sξ,ζ , ·)ξ

satisfies the property of the moment map with respect to the symplectic
structure Ωξ and the action of HamT (M,ω) on JT (M,ω). That is, Sξ,ζ is a
HamT (M,ω)-equivariant smooth map satisfying

− d

dt

∣∣∣
t=0
⟨Sξ,ζ(Jt), f⟩ = Ωξ(LXfJ0, J̇0)

for any smooth curve Jt ∈ JT (M,ω) and f ∈ C∞(M).
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Proof. The equivariance of the map readily follows because the coadjoint
right action is given by (s, ·)ξ · ϕ = (ϕ∗s, ·)ξ and µ′

ξ and µ
′
ζ are HamT (M,ω)-

invariant.
The modified Hermitian scalar curvature can be divided in two parts as

follows.

d

dt

∣∣∣
t=0

(4sξ,ζ(Jt), f)ξ =

∫
M

d

dt

∣∣∣
t=0

4sξ,ζ(Jt)f e
−2µξωn

=

∫
M

d

dt

∣∣∣
t=0

4s(Jt)fe
−2µξ ωn − d

dt

∣∣∣
t=0

∫
M

((−4∆t + 4ξ′t)θξ)f e
−2µξωn

=
d

dt

∣∣∣
t=0

(4s(Jt), fe
−2µξ)− d

dt

∣∣∣
t=0

∫
M

((8∆t − 8Jtξ)µξ)f e
−2µξωn

(3.4)

Now we use the following Donaldson’s famous calculation [Don1] on the Her-
mitian scalar curvature with respect to the usual symplectic structure:

d

dt

∣∣∣
t=0

(4s(Jt), f) = (LXfJ, JA)

for A = J̇0. The factor 4 comes from our convention of the metric (·, ·)ξ (com-
pare [Szé1, Proposition 2.2.1.]). Combined with the following basic identities:
(a) Xfg = fXg+ gXf , (b) LfXJ = fLXJ −Jdf ⊗X+df ⊗JX, (c) LξJ = 0,
the first term of (3.4) can be arranged as follows.

d

dt

∣∣∣
t=0

(4s(Jt), fe
−2µξ) = (LXf exp(−2µξ)

J, JA)

= (Lexp(−2µξ)XfJ, JA) + (−2)(L(f exp(−2µξ))ξJ, JA)

= (e−2µξLXfJ − Jd(e−2µξ)⊗Xf + d(e−2µξ)⊗ JXf , JA)

+ (−2)((fe−2µξ)LξJ − Jd(fe−2µξ)⊗ ξ + d(fe−2µξ)⊗ Jξ, JA)
= (LXfJ, JA)ξ

− (−2)(Jdµξ ⊗Xf , JA)ξ + (−2)(dµξ ⊗ JXf , JA)ξ

− (−2)(Jdf ⊗ ξ, JA)ξ + (−2)(df ⊗ Jξ, JA)ξ
− 4(fJdµξ ⊗ ξ, JA)ξ + 4(fdµξ ⊗ Jξ, JA)ξ.
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Now it suffices to show the following equalities.

d

dt

∣∣∣
t=0

((∆t + (−2)Jtξ)µξ, f)ξ = (Jdµξ ⊗Xf , JA)ξ (3.5)

= −(dµξ ⊗ JXf , JA)ξ (3.6)

= (Jdf ⊗ ξ, JA)ξ (3.7)

= −(df ⊗ Jξ, JA)ξ (3.8)

and

d

dt

∣∣∣
t=0

(−(Jtξ)µξ, f)ξ = (fJdµξ ⊗ ξ, JA)ξ (3.9)

= −(fdµξ ⊗ Jξ, JA)ξ. (3.10)

As for (3.5),

(Jdµξ ⊗Xf , JA)ξ =

∫
M

gijgkl(Jdµξ ⊗Xf )
k
i (JA)

l
j e

−2µξωn

=

∫
M

(Jdµξ ⊗Xf )
k
i (JA)

i
k e

−2µξωn

=

∫
M

−µξ,p(fjω
jk)Ap

k e
−2µξωn

=

∫
M

−µξ,pfjω
pkAj

k e
−2µξωn

=
d

dt

∣∣∣
t=0

∫
M

g∗t (dµξ, df) e
−2µξωn

=
d

dt

∣∣∣
t=0

((∆t + (−2)Jtξ)µξ, f)ξ.

We obtain (3.9) as follows.

(fJdµξ ⊗ ξ, JA)ξ =
∫
M

gijgkl(Jdµξ ⊗ ξ)ki (JA)lj fe−2µξωn

=

∫
M

(Jdµξ ⊗ ξ)ki (JA)ik fe−2µξωn

=

∫
M

−µξ,pξ
kAp

k fe
−2µξωn

=
d

dt

∣∣∣
t=0

(−(Jtξ)µξ, f)ξ.
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We can similarly compute the rest of them, using the following basic
formulas: Let A be an endomorphism of the tangent bundle TM satisfying
JA+ AJ = 0 and ω(AX, Y ) = ω(AY,X). On a local coordinate, we denote
by ωkj the matrix valued function satisfying ωkjωij = δki and by gkj that
satisfying gkjgij = δki . Then we have the following.

A. (a) ωij = −ωji, (b) J
j
i J

k
j = −δki , (c) gij = gji.

B. (a) ωij = gpjJ
p
i = −gipJp

j , (b) gij = ωiqJ
q
j = −ωqjJ

q
i .

C. (a) ωkj = −gqjJk
q = gkqJ j

q = −ωjk, (b) gkj = ωpjJk
p = −ωkpJ j

p = gjk.

D. (a) ωkjωij = ωjkωji = δki , (b) g
kjgij = gjkgji = δki .

E. fj = −X i
fωij = X i

fgpiJ
p
j = −X i

fJ
p
i gpj.

F. Xk
f = −fjωkj = fjg

qjJk
q = −fjJ j

q g
qk.

G. (a) (JA)ki = Jk
pA

p
i = −J

p
i A

k
p, (b) ωkjA

k
i = ωkiA

k
j .

H. gijgkl(JA)
l
j = (JA)ik.

Now we observe that our moment map actually corresponds to Kähler–
Ricci solitons.

Proposition 3.3.2. For simplicity, we let sξ,Sξ stand for sξ,0,Sξ,0, respec-
tively. The following (1)-(3) are equivalent for any integrable J ∈ J int

T (M,ω).

1. (gJ , ξ
′
J) is a Kähler–Ricci soliton on (M,J).

2. sξ(J) = 0.

3. Sξ(J) = 0.

Proof. Provided that gJ satisfies the Kähler–Ricci soliton equation Ric(gJ)−
Lξ′J

gJ = gJ . The trace of this formula gives

s(J) + □̄θξ = n. (3.11)

Since ξ′J is holomorphic, the Lie derivative by ξ′J can be arranged as follows.

√
−1∂∂̄(□̄θξ − ξ′Jθξ) =

√
−1∂∂̄θξ,
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and hence □̄θξ − ξ′Jθξ − θξ is constant. Recall that the operator (□̄− ξ′J) is a
formally self-adjoint elliptic operator with respect to the inner product (·, ·)θξ
(see for example [Fut-book, Section 2.4], it is also shown in our Appendix
B). It follows that the equation (□̄− ξ′J)u = f has a solution u if and only if∫
M
feθξωn = 0. This shows

□̄θξ − ξ′Jθξ = θξ (3.12)

under the normalization condition
∫
M
θξe

θξωn = 0. Substituting (3.12), the
equation (3.11) can be reformulated as

(s(J)− n) + 2□̄θξ − (ξ′Jθξ + θξ) = 0.

The left hand side of the equation is nothing but sξ(J), and we obtain sξ(J) =
0.

Conversely, assume Sξ(J) = 0. Take a function h so that
√
−1∂∂̄h =

Ric(ω)−ω. Since Lξ′J
ω =
√
−1∂∂̄θξ, it is enough to show that h−θξ is actually

constant. Similarly as before, the Lie derivative of
√
−1∂∂̄h = Ric(ω) − ω

gives √
−1∂∂̄ξ′Jh =

√
−1∂∂̄(□̄θξ − θξ)

and hence
c1 := □̄θξ − θξ − ξ′Jh

is constant. We can rearrange the modified Hermitian scalar curvature as

sξ(J) = −□̄h+ 2□̄θξ − ξ′Jθξ − θξ
= −□̄h+ 2□̄θξ − ξ′Jθξ − (□̄θξ − ξ′Jh− c1)
= −□̄(h− θξ) + ξ′J(h− θξ) + c1. (3.13)

Now the assumption Sξ(J) = 0 implies that c2 := sξ(J) is a constant. Since
((□̄− ξ′J)(h− θξ), 1)θξ = 0, the constant c1− c2 = (□̄− ξ′J)(h− θξ) has to be
zero and we have shown that h− θξ is constant.

Remark 3.3.3. As noted in [Don1] for the cscK (or Kähler–Einstein) case, our
moment map picture enables us to interpret or even reproduce the following
known results from more geometric viewpoint, which were originally proved
in [TZ2]. (See also [Wang1]. )

• The invariance of the modified Futaki invariant.
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• The reductiveness of Aut(X, ξ′). (cf. [FO])

• The uniqueness of Kähler–Ricci soliton. (cf. [BB])

For instance, substituting (3.13), we obtain

⟨Sξ(J), f⟩ =
∫
M

sξ(J)f e
θξωn

=

∫
M

4(−(□̄− ξ′)(h− θξ) + c1)f e
θξωn

= −4
∫
M

(∂̄(h− θξ), ∂̄f) eθξωn

= −4
∫
M

X ′
f (h− θξ) eθξωn

= −4cFutξ′(X ′
f )

for X ′
f ∈ Lie(Stab(J)), where c =

∫
eθξωn/

∫
ωn is independent of J . Its

invariance can be interpreted as coming from a general fact on moment maps:
for any x ∈M and v ∈ Lie(Kc

x), ⟨µ(xg), g−1v⟩ is invariant for g ∈ Kc, where
µ :M → k∗ is a moment map.

Proposition 3.3.1 in particular shows that Futξ′|t is invariant under T -
equivariant complex deformation: it only depends on the T -equivariant sym-
plectic structure.

We call a symplectic Fano T -manifold (M,ω, T ) K-optimal if there is a T -
invariant ω-compatible integrable complex structure J0 (in this case, (M,J0)
is a Fano manifold) and whose Hilbert character (TC, χ(M,J0)) is K-optimal.
Its Hilbert character χm, seen as a (real analytic) function t → R by ξ 7→∑

i

∑
u∈M hiX,u(m)⟨u, ξ⟩, can be computed by the equivariant Hirzebruch–

Riemann–Roch formula ([Mei]):

χm(ξ) =

∫
M

Ch t(−K(M,ω), ξ)Td t(M,ω, ξ)

near ξ = 0. Here the equivariant Chern character Ch t(−K(M,ω), ·) and Todd
character Td t(M,ω, ·) is defined as the equivariant cohomology classes of the
following T -equivariant forms, which is independent of the choice of J ∈
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JT (M,ω):

Ch t(−K(M,ω), ·) := etr(
√
−1
2π

Ft(gJ ,·)) = eω+⟨µ,·⟩,

Td t(M,ω, ·) := det
( √

−1
2π
Ft(gJ , ·)

1− e−
√
−1
2π

Ft(gJ ,·)

)
,

where Td t(M,ω, ξ) is defined near ξ = 0. Here the equivariant curvature
Ft(gJ , ξ) is given by

Ft(gJ , ξ) := FgJ + 2π
√
−1(Lξ −∇gJ

ξ ).

Although we firstly use the integrable complex structure J0 to define
the Hilbert character, its Hilbert character can be computed by the T -
equivariant characteristic classes associated to the symplectic T -manifold
(M,ω, T ), which makes sense at least near ξ = 0 even when there is no
T -invariant integrable complex structures. In particular, the Fano character
(TC, χ(M,J)) is independent of the choice of integrable J ∈ JT (M,ω) (in
other words, it is well-defined for (M,ω, T )) and is K-optimal for every J
if (M,ω, T ) is K-optimal (i.e. if (TC, χ(M,J0)) is K-optimal for some J0).
Beware that even when (M,ω, T ) is K-optimal and the action (M,J0) ↶ T
is K-optimal for some J0, the action (M,J) ↶ T might be not K-optimal for
other integrable complex structure J ∈ JT (M,ω) as the action might be not
maximal among actions with K-optimal characters.

We denote by S int
ξ the restriction of the moment map Sξ : JT (M,ω) →

C∞
T,ξ(M,ω)∗ to the subspace J int

T (M,ω), which consists of integrable complex
structures.

Proposition 3.3.4. Assume the action of T on (M,ω) is K-optimal. Then
the following two statements are equivalent for any integrable J, J ′ ∈ (S int

ξ )−1(0).

1. There is a T -equivariant C∞-diffeomorphism ϕ : M
∼−→ M such that

J = ϕ∗J ′.

2. [J ] = [J ′] ∈ (S int
ξ )−1(0)/HamT (M,ω).

Proof. It follows from the uniqueness of Kähler–Ricci soliton and AutT (X) =
Aut(X, ξ) from the K-optimal action.

Remark 3.3.5. The above proposition would hold without K-optimal assump-
tion. To see this, it suffices to prove the following uniqueness claim.
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Claim: If g1, g2 are two T -invariant Kähler–Ricci solitons on a Fano T -
manifold X (in this case, we have the same soliton vectors ξ1 = ξ2 ∈ t), then
there is an element ϕ ∈ Aut0T (X) such that g2 = ϕ∗g1.

In general, it seems not so easy to verify the K-optimality of a given torus
action on a Fano manifold, especially when the dimension of the center of
its maximal reductive subgroup is greater than one. From this point, it may
be better to consider non K-optimal actions for studying explicit description
of the moduli space of Fano manifolds with Kähler–Ricci solitons in some
special cases. Indeed, for instance, the claim holds at least for a maximal
torus, as the Weyl group NT/T can be represented by the elements of any
maximal compact K including the maximal compact torus TR ⊂ T .

It follows that the quotient (S int
ξ )−1(0)/HamT (M,ω) can be identified

with the set of biholomorphism classes of Fano manifolds admitting Kähler–
Ricci solitons with the fixed underlying symplectic structure (M,ω), as sets.
Therefore, this quotient space must be the support set of our moduli space.
The quotient topology on this set is Hausdorff (cf. [FS1]). We exhibit the
proof for the readers’ convenience.

Proposition 3.3.6. The action of HamT (M,ω) on JT (M,ω) is proper. In
particular, the quotient topological space (S int

ξ )−1(0)/HamT (M,ω) is Haus-
dorff.

Proof. We must show that the map

a : JT (M,ω)× HamT (M,ω)→ JT (M,ω)× JT (M,ω) : (J, ϕ) 7→ (J, ϕ∗J)

is proper. Take a sequence (Jn, ϕn) so that Jn, ϕ
∗
nJn converge to some J∞, J

′
∞ ∈

JT (M,ω) in the given order. It suffices to show that a subsequence of ϕn

converges to some ϕ∞ ∈ HamT (M,ω) satisfying ϕ∗
∞J∞ = J ′

∞. Let g∞, g
′
∞

denote the Riemannian metrics associated to J∞, J
′
∞, respectively.

Let us take a dense countable subset S of M . The diagonal argument
shows that we have a subsequence of ϕn so that ϕn(x) converges for any x ∈ S.
We continue to write ϕn for this subsequence. We obtain a distance preserv-
ing map ϕS,∞ : (S, dg′∞|S) → (M,dg∞) by putting ϕS,∞(x) := limn→∞ ϕn(x).
Then this map can be uniquely extended to a distance preserving map
ϕ∞ : (M,dg′∞) → (M,dg∞). Similarly we obtain a distance preserving map
ψ∞ : (M,dg∞) → (M,dg′∞) as a limit of ϕ−1

n . It follows from [BBI-book,
Theorem 1.6.14] that the distance preserving endomorphism ϕ∞ ◦ψ∞ is sur-
jective, and we conclude ϕ∞ is a continuous bijective map.
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Thanks to Myers-Steenrod theorem, we see that ϕ∞ is a C∞-diffeomorphism
with ϕ∗

∞g∞ = g′∞. Moreover, since gn = gn,ijdx
idxj, ϕ∗

ngn = gn,pq(dϕn)
p
i (dϕn)

q
jdx

idxj

respectively converge to g∞, ϕ
∗
∞g∞ in C∞-topology, we see the C∞-convergence

of the coefficients (dϕn)
p
i (dϕn)

q
j to (dϕ∞)pi (dϕ∞)qj with respect to a fixed C∞-

coordinate. In particular, we have

(∂k(dϕn)
p
i )(dϕn)

p
i

C∞
−−→ (∂k(dϕ∞)pi )(dϕ∞)pi (3.14)

and (dϕn)
p
i =

√
((dϕn)

p
i )

2 convereges to (dϕ∞)pi in C0-topology. It follows
from (3.14) that the Ck-convergence of dϕn induces the Ck+1-convergence
of them. This shows that ϕn converges to ϕ∞ ∈ HamT (M,ω) in the C∞-
topology and ϕ∗

∞J∞ = J ′
∞.

3.3.2 Local slice

The materials in this subsection are parallel to [Szé2], where the cscK case
is treated.

Let X be a Fano T -manifold with a Kähler–Ricci soliton (g, ξ′), ϕ :
(M,J0)

∼−→ X be a biholomorphism, where M is a C∞-manifold and J0 is a
complex structure onM . Put ω := (ϕ∗g)(J0·, ·),K := {h ∈ Ham(M,ω) | h∗J0 =
J0}, which is a compact Lie group, and k := {f ∈ C∞

T (M) | LXfJ0 =
0,
∫
M
feθξωn = 0}, which can be identified with the Lie algebra of K. Con-

sider the following L2
k-completion of the moment map in the last subsection

Sξ : JT (M,ω)2k → L2
k−2,T (M,ω)∨.

We denote by Θ the holomorphic tangent sheaf of X and by H i
T (X,Θ) the

T -invariant subspace of the i-th cohomology H i(X,Θ). Note that we have
H i(X,Θ) = 0 for every i ≥ 2 and a smooth Fano manifold X, thanks to
Serre duality and Kodaira vanishing.

Proposition 3.3.7. There are an open ball B ⊂ H1
T (X,Θ) centered at the

origin, a K-equivariant holomorphic deformation ϖ : X → B of X with
a holomorphic morphism ι : X ↪→ X0 inducing a biholomorphism to the
central fiber, a K-equivariant C∞-smooth map J : B → JT (M,ω)2k and a
TR-equivariant L

2
k-regular diffeomorphism Φ : B×M ∼−→ X with the following

properties.

1. The holomorphic family X ↪
ι−→ X ϖ−→ (B, 0) is a semi-universal family

of X.
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2. For each b ∈ B, J(b) is an L2
k-regular integrable complex structure

satisfying sξ(J(b)) ∈ k and J(0) = J0.

3. The diffeomorphism Φ satisfies ϖ ◦ Φ−1 = pB and Φ(0, ·) = ϕ, where
pB : B × M → B is the projection. The restricted map Φ(b, ·) :
(M, J(b))→ Xb is a biholomorphism for each b ∈ B.

Proof. Let ϖ : X → B be the Kuranishi family of T -equivariant deformation
of X (see [Kur1, Kur2, Dou1] for its construction). From its construction, we
have a holomorphic K-action on X and B so that ϖ is K-equivariant and a
holomorphic map µ : B → JT (M)2k whose image µ(b) is a real analytic (with
respect to the real analytic structure on X) integrable complex structure for
each b ∈ B with a biholomorphism Xb

∼= (M,µ(b)). As −ℓKX/B is relatively
very ample for large ℓ ∈ N, all the higher direct images of O(−ℓKX/B)
vanishes and thus ϖ∗O(−ℓKX/B) is a K-equivariant vector bundle on B.
Taking smaller B and using a K-equivariant isomorphism ϖ∗O(−ℓKX/B) ∼=
H0(X,O(−ℓKX/B))

B,K
= B × H0(X,O(−ℓKX/B)) of vector bundles on B

(see Lemma 3.4.6 for the K-action), we can embed these Fano manifolds into
a uniform projective space CPN = P(H0(X,O(−ℓKX/B))

∨) so that Xs.g =
Xs.g, where in the latter we consider the K-action on CPN induced from
the action on H0(X,O(−ℓKX/B)). Pulling back the Fubini-Study metric,
we obtain a K-equivariant smooth family of Kähler metrics {ωb}b∈B, where
each ωb can be identified with a Kähler metric on (M,µ(b)). Taking smaller
B again, we can assume that closed forms ωb,t := ω0 + t(ωb − ω0) are non-
degenerate for each b ∈ B and t ∈ [0, 1]. Then we can find a K-equivariant
family of diffeomorphisms {fb}b∈B so that f ∗

b ωb = ω0. Putting J′(b) :=
f ∗
b µ(b), we obtain a K-equivariant smooth map J′ : B → JT (M,ω)2k, whose
image J′(b) is a smooth complex structure for each b ∈ B.

It suffices to show that we can find an equivariant perturbation J of J′

so that J(b) = g∗bJ
′(b) for each b and sξ(J(b)) ∈ k. Let U2

k+2 ⊂ L2
T,k+2(M,ω)

be a small ball of the origin. For each ϕ ∈ U2
k+2 and an almost complex

structure J ∈ JT (M,ω), we can find an L2
k-regular vector field X

ϕ,J
t onM so

that i(Xϕ,J
t )(ω0− tdJdϕ) = −Jdϕ. This vector field is actually L2

k+1-regular.

In fact, it is sufficient to show that [Xf , X
ϕ,J
t ] is L2

k-regular for any smooth
function f . For any smooth vector field Z, we have

i([Xf , X
ϕ,J
t ])ωt(Z) = −(LXfω)(Xϕ,J,t, Z) +Xf (ω(X

ϕ,J
t , Z))− ω(Xϕ,J

t , [Xf , Z])

= Xf (−Jdϕ(Z)) + Jdϕ([Xf , Z]) ∈ L2
k.
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Thus [Xf , X
ϕ,J
t ] is L2

k, as we expected. The flow fϕ,J
t of this time-dependent

vector fields is L2
k+1-regular and satisfy (fϕ,J

t )∗(ω0− tdJdϕ) = ω0. To see the

regularity, it is sufficient to show that (fϕ,J
t )∗Y is a L2

k-regular vector field
for each smooth vector field Y on M . Note that (d/dt)(fϕ,J

t )∗Y = [Xϕ,J
t , Y ]

is L2
k-regular and (fϕ,J

t )∗Y can be written as
∫ t

0
[Xϕ,J

s , Y ]ds. Then for each

l ≤ k, we obtain the following estimate, so fϕ,J
t is L2

k+1-regular.∫
M

|∇l(fϕ,J
t )∗Y |2ωn =

∫
M

∣∣∣∣∫ t

0

∇l[Xϕ,J
s , Y ]ds

∣∣∣∣2 ωn

≤
∫
M

t

∫ t

0

|∇l[Xϕ,J
s , Y ]|2ds ωn

≤ t

∫ t

0

∥[Xϕ,J
s , Y ]∥2L2

k
ds <∞.

It follows that (fϕ,J
1 )∗J ∈ JT (M,ω)2k. Consider the orthogonal decomposition

L2 = k ⊕ k⊥ with respect to L2-norm (·, ·)ξ. Put k2k,⊥ := L2
k ∩ k⊥ and let

Π⊥ : L2
k−2 → k2k−2,⊥ be the L2-projection. Note that

(D(ϕ 7→ (fϕ,J0
1 )∗J0))0(ψ) =

d

dt
f ∗
t J0 = J0P (ψ),

where P denotes the linear differential operator P : L2
T,k+2 → TJJT (M,ω)2k :

ψ 7→ LXψJ0, and (Dsξ)J(A) = P ∗JA, where P ∗ is the formal adjoint of P
with respect to the norm (−,−)ξ. It follows that

G : B × U → k2k−2,⊥ : (b, ϕ) 7→ Π⊥sξ((f
ϕ,J′(b)
1 )∗J′(b))

is a K-equivariant smooth map with the derivative

DG(0,0)(0, ψ) = −P ∗P (ψ).

Since P ∗P is a self-adjoint fourth order elliptic differential operator, it gives
the isomorphism P ∗P : k2k+2,⊥ → k2k−2,⊥. Applying the implicit function
theorem, we can find a new K-equivariant smooth map J : B → JT (M,ω)2k
so that Π⊥sξ(J(b)) = 0, hence sξ(J(b)) ∈ k, taking smaller B if necessary.

Pulling back the symplectic structure Ωξ on JT (M,ω)2k by theK-equivariant
smooth map J : B → JT (M,ω)2k, we obtain a K-equivariant smooth sym-
plectic structure (by taking smaller B if necessary), which we denote by the
same notation. Then ν : B → k∗ : b 7→ Sξ(J(b)) is a moment map with
respect to this symplectic structure.
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Proposition 3.3.8 (See Postscript Remark below.). If B ⊂ H1
T (X,Θ) in

the Proposition 3.3.7 is sufficiently small, then the following two statements
are equivalent for any b ∈ B.

1. The fiber Xb of the family ϖ : X → B has a Kähler–Ricci soliton.

2. The orbit b · AutT (X) ⊂ H1
T (X,Θ) is closed. That is, b is polystable

with respect to the AutT (X)-action.

Remark 3.3.9. While discussing with R. Dervan and P. Naumann, the author
realized that there was a gap in the following proof with regards to the
implication “the existence of Kähler–Ricci soliton⇒ GIT-polystability”. To
be precise, what we prove here is that the following are equivalent for b ∈ B:

1. ν−1(0) ∩B ∩ b ·G ̸= ∅.

2. ν−1
0 (0) ∩B ∩ b ·G ̸= ∅.

3. The point b ∈ H1
T (X,Θ) is polystable with respect the AutT (X)-action.

Of course, this (1) implies the existence of Kähler–Ricci soliton on Xb.
On the other hand, however, the existence of Kähler–Ricci soliton on Xb only
implies that there is a unique orbit B∩b0 ·G in the closure B∩b ·G such that
ν−1(0)∩B∩b0·G ̸= ∅ and Xb′ is isomorphic to Xb for any b

′ ∈ B∩b0·G (thanks
to K-polystability). This in particular implies that ν−1(0)/K ≈ BKc � Kc

(Corollary 3.3.15 below) can be naturally identified with the isomorphism
classes of Fano manifolds admitting Kähler–Ricci solitons who appear in the
family ϖ : X → B (thanks to Corollary 3.3.14 below).

The author emphasizes that we do not use the original statement of
Proposition 3.3.8 to prove all the statements in the rest of this chapter and
we only use the equivalence stated in this remark. The original proof is still
fine to show this equivalence.

Remark 3.3.10. After the publication of [Ino1], Yue Fan kindly informed me
that the following proof has a trouble. We propose an alternative proof
in chapter 4, which makes use of Theorem G. See the explanation between
Theorem 4.1.5 and Proposition 4.1.6.

Proof of Proposition 3.3.8. Let Ω0 be the linearization of Ωξ at 0 ∈ B, i.e.,
Ω0 = (d0J·, J0d0J·)ξ under the identification TbB = H1

T = T0B. Consider the
map ν0 : H1

T → k∗ defined by

⟨f, ν0(b)⟩ = Ω0(LXf b, b) = (LXfdJ0b, J0dJ0b)ξ.
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Then ν0 is a moment map with respect to the symplectic structure Ω0. The
Kempf-Ness theorem says that b ∈ H1

T is polystable with respect to Kc =
AutT (X) if and only if bKc ∩ ν−1

0 (0) ̸= ∅.
Since

d2

dt2

∣∣∣
t=0
⟨f, ν(tb)⟩ = d2

dt2

∣∣∣
t=0

(f, sξ(J(tb)))ξ

=
d

dt

∣∣∣
t=0

(LXfJ(tb), J(tb)J̇(tb))ξ

= ⟨f, ν0(b)⟩,

the moment map ν : B → k∗ can be expanded as

ν(tb) = ν(0) + td0ν(b) + t2ν0(b)/2 +O(t3).

Since 0 ∈ B corresponds to Fano manifolds with Kähler–Ricci soliton (M,J0, ω),
ν(0) = Sξ(J0) = 0 from Proposition 3.3.2. Moreover, since 0 is a fixed point
of the K-action, we have d0ν = 0. Therefore we get

ν(tb) = t2ν0(b)/2 +O(t3).

Since the action of K on H1
T is linear, the stabilizer group Kb ⊂ K of b

satisfies Ktb = Kb. So we have

d

dt
⟨f, ν(tb)⟩ = Ωtb(b, σtb(f)) = 0

for any f ∈ kb, where σb : k → TxB is the differential of the action. Then it
follows that ν(b) ∈ k⊥b and ν0(b) ∈ k⊥b .

Now we cite the following general lemma from [Szé2, Proposition 9] and
[Don3, Proposition 17. ].

Lemma 3.3.11. Let (B,Ω) be a symplectic manifolds with a K-action,
ν : B → k be a moment map with respect to the K-aciton (k is endowed
with a inner product). Suppose b ∈ B satisfies ν(b) ∈ k⊥b and λ, δ > 0 with
λ∥ν(b)∥ < δ satisfies ∥(σ∗

eivbσeivb)
−1∥ ≤ λ for any v ∈ k with ∥v∥ < δ. Then

there is vb ∈ k such that ν(eivbb) = 0 and ∥vb∥ ≤ λ∥ν(b)∥.

Fix a small δ > 0 so that there is C > 0 such that for any v ∈ k with
∥v∥ < δ and any f ∈ k⊥eivb

∥σeivb(f)∥2Ω0
≥ C∥f∥2

147



holds. Take smaller B so that Ωξ ≥ 1
2
Ω0. Since σtx(f) = tσx(f) and

(σ∗
txσtx(f), f)ξ = ∥σtx(f)∥2Ω ≥

1

2
Ct2∥f∥2,

we obtain ∥(σ∗
txσtx)

−1∥ ≤ C ′t−2. Replacing Ω with Ω0, we obtain the similar
estimate for the adjoint of σ with respect to Ω0.

Suppose b ∈ B is polystable. Then there exists a point b′ ∈ bKc∩ ν−1
0 (0).

In regards of the linear symplectic form, b′ is given by minimizing the norm of
b′ in the Kc-orbit of b, so b′ is also in B. Since the points in the same Kc-orbit
give the isomorphic complex structures, we can assume ν0(b) = 0. It follows
that ν(tb) = O(t3). Then we can take t small so that C ′t−2∥ν(tb)∥ < δ.
Applying the above lemma, we find a point tb′ ∈ B in the Kc-orbit of tb
satisfying ν(tb′) = 0. It follows that (M, J(tb)) ∼= (M, J(tb′)) admits Kähler–
Ricci soliton. Note the polystability of b and tb is equivalent as we consider
a linear action.

Conversely, suppose (M, J(b)) admits Kähler–Ricci soliton. Then simi-
larly we can show that there is a point b′ ∈ bKc satisfying ν0(b

′) = 0. This
shows b is polystable.

The following corollary exhibits one of good features of our T -equivariant
formulation. We use this to show the Artinianity of our moduli stack in the
next section.

Corollary 3.3.12. Any T -equivariant small deformation of Fano T -manifold
with Kähler–Ricci soliton is gentle. In particular, for any T -equivariant fam-
ilyM→ S of complex manifolds, the following subset

S◦ := {s ∈ S | Ms is a gentle Fano manifold }

is an open subset of S (with respect to the real topology).

Proof. Suppose the Fano manifold (M, J(b)) does not admit Kähler–Ricci
soliton for the point b ∈ B. From the above proposition, b ∈ B is not
polystable. Then we can find a polystable point b0 ∈ B in the closure of the
orbit bKc by minimizing the norm Ω0(−, J0−). Since Kc is reductive, we can
find a regular morphism λ : C∗ → H1

T so that λ(t)→ b0. We can extend this
to a regular morphism λ̃ : C → H1

T . Pulling back the family ϖ : X → B,
we obtain a T -equivariant holomorphic family M → ∆ whose central fiber
(M, J(b0)) has Kähler–Ricci soliton because there is some b′0 ∈ b0Kc such that

148



ν(b0) = Sξ(J(b′0)) = 0. SoM→ ∆ gives a gentle degeneration of Xb, hence
Xb is gentle. Since the family ϖ : X → B parametrizes all isomorphism
classes of complex structures near Xb for any b ∈ B, we have shown the
assertion.

3.3.3 Completion

The topological space HamT (M,ω)2k+1 of L
2
k+1-regular symplectic diffeomor-

phisms admits a natural Banach smooth manifold structure (cf. [IKT, KM]).
The compositions and the inverses of morphisms in HamT (M,ω)2k+1 are again
in HamT (M,ω)2k+1. However, the following maps

HamT (M,ω)2k+1 × HamT (M,ω)2k+1 → HamT (M,ω)2k+1 : (ϕ, ψ) 7→ ϕ ◦ ψ
HamT (M,ω)2k+1 → HamT (M,ω)2k+1 : ϕ 7→ ϕ−1

are not differentiable with respect to the Banach smooth manifold structure,
but are just continuous (see [IKT]). Therefore we can not treat HamT (M,ω)2k+1

as a Banach Lie group.
Nevertheless, we can consider the following C1-smooth map

H : B ×K HamT (M,ω)2k+1 → JT (M,ω)2k : [b, ϕ] 7→ ϕ∗J(b)

by working with a slightly regular target of J in Proposition 3.3.7, say, by
working with J : B → JT (M,ω)2k+2. Note, first of all, the quotient B ×K

HamT (M,ω)2k+1 := B × HamT (M,ω)2k+1/K is endowed with a unique Ba-
nach smooth manifold structure whose quotient map is a submersion, as the
finite dimensional compact Lie group K acts freely on B ×HamT (M,ω)2k+1.
The C1-smoothness of H follows from the C∞-smoothness of J : B →
JT (M,ω)2k+2 and the C1-smoothness of

JT (M,ω)2k+2 × HamT (M,ω)2k+1 → JT (M,ω)2k
(J , ϕ) 7→ ϕ∗J,

which follows from the main theorem of [IKT].
As Proposition 3.3.6, the map

a2k : JT (M,ω)2k × HamT (M,ω)2k+1 → JT (M,ω)2k × JT (M,ω)2k
(J , ϕ) 7−→ (J , ϕ∗J),
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is proper for any large k (L2
k ⊂ C2 is sufficient). To see this, take a sequence

(Jn, ϕn) ∈ JT (M,ω)2k × HamT (M,ω)2k+1 so that gn, ϕ
∗
ngn converge to g∞, g

′
∞

in L2
k-topology. Construct ϕ∞ as in the proof of Proposition 3.3.6. Again,

thanks to Myers-Steenrod theorem, ϕ∞ is C2-smooth and satisfies ϕ∗
∞g∞ =

g′∞. Then ϕ∞ is a harmonic map between (M, g∞) and (M, g′∞). Hence it
satisfies the elliptic equation

∆g′∞ϕ
α
∞ − Γα

βγ

∂ϕβ
∞

∂xi
∂ϕγ

∞
∂xj

g′
ij
∞ = 0,

where the coefficients of the Laplacian ∆g′∞ and the Levi-Civita connection
Γα
βγ are L2

k−1-regular. It follows that ϕ∞ is L2
k+1-regular.

Let us see that ϕn converges to ϕ∞ in L2
k+1-topology. Since gn → g∞ and

g′n := ϕ∗
ngn → g′∞ in L2

k-topology, we have Γα
βγ,n → Γα

βγ and ∆g′n → ∆g′∞ in
L2
k−1-topology. Now we use the following uniform elliptic estimates for the

elliptic operators ∆g′n (n = 1, 2, . . . ,∞) with L2
k−1-bounded coefficients and

0 ≤ ℓ ≤ k − 1.

∥u∥L2
ℓ+2(g0)

≤ Ck−1(∥∆g′nu∥L2
ℓ (g0)

+ ∥u∥L2
ℓ (g0)

),

where Ck−1 is independent of n = 1, 2, . . . ,∞ and g0 is a fixed reference
smooth metric. (Note L2

k−1 ⊂ C1. We used this to the above uniform
elliptic estimates. See for instance the proof of the elliptic estimates in
the Appendix of [Kod-book]. Note also Sobolev multiplication works. )
First, the C1-convergence of ϕn → ϕ∞ follows by the same argument as be-
fore. Then we know that ∆g′nϕ

α
∞ = Γα

βγ,n∂iϕ
β
n∂jϕ

γ
ng

ij
n converges to ∆g′∞ϕ

α
∞ =

Γα
βγ∂iϕ

β
∞∂jϕ

γ
∞g

ij
∞ in L2-topology (actually in C0-topology). Combined with

the L2
k−1-convergence of ∆g′nϕ

α
∞ → ∆g′∞ϕ

α
∞, we obtain ∥∆g′n(ϕ

α
n−ϕα

∞)∥L2(g0) →
0. It follows from the above uniform elliptic estimate that

∥ϕα
n − ϕα

∞∥L2
2(g0)
≤ Ck−1(∥∆g′n(ϕ

α
n − ϕα

∞)∥L2(g0) + ∥ϕα
n − ϕα

∞∥L2(g0))→ 0,

and we obtain ϕn → ϕ∞ in L2
2-topology. We can repeat this process until we

conclude the L2
k+1-convergence of ϕn → ϕ∞.

Now we can prove the following.

Proposition 3.3.13. The C1-smooth map

H : B ×K HamT (M,ω)2k+1 → JT (M,ω)2k

is injective for any sufficiently small neighbourhood B ⊂ H1
T (X,Θ) of the

origin.
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Proof. The derivative of H at [0, id] is given by

H1
T × L2

T,k+2(M)0/k→ Ω0,1
T (T 1,0)2k : (ρ, f) 7→ dJ0(ρ) + ∂̄X ′

f .

It is easy to see that this map is injective and has a closed split range.
Then the implicit function theorem shows that H gives an immersion in a
neighbourhood of [0, id]. In particular, H is locally injective at [0, id].

SupposeH is not (globally) injective for any sufficiently small B. Then we
can take sequences bn, b

′
n → 0 ∈ B and ϕn, ϕ

′
n ∈ HamT (M,ω)2k+1 satisfying

[bn, ϕn] ̸= [b′n, ϕ
′
n] and H([bn, ϕn]) = H([b′n, ϕ′

n]).

In particular, we have J(bn) = (ϕ′
n◦ϕ−1

n )∗J(b′n) and both J(bn), J(b
′
n) converge

to J(0) in JT (M,ω)2k. From the properness of a2k, we have a subsequence of
ϕ′
n ◦ϕ−1

n which converges to some ϕ∞ in the stabilizer K of J(0). Hence, after
taking a subsequence, both [bn, id] and [b′n, ϕ

′
n ◦ ϕ−1

n ] converge to the same
[0, id] = [0, ϕ∞] with the same images H([bn, id]) = H([b′n, ϕ′

n ◦ ϕ−1
n ]). Since

H is injective near [0, id], we conclude [bn, id] = [b′n, ϕ
′
n ◦ ϕ−1

n ] for sufficiently
large n. This contradicts to the choice of the sequences [bn, ϕn] ̸= [b′n, ϕ

′
n]

and we have shown that H is injective for some (hence any) sufficiently small
B.

The restriction of the map J : B → JT (M,ω)2k gives a continuous map
ν−1(0)→ (S int

ξ )−1(0)2k and induces another continuous map

ν−1(0)/K → (S int
ξ )−1(0)2k/HamT (M,ω)2k+1.

The following corollaries are essential in the proof of the main theorem.

Corollary 3.3.14. The induced map ν−1(0)/K → (S int
ξ )−1(0)2k/HamT (M,ω)2k+1

is a homeomorphism onto an open subset.

Proof. The injectivity follows from the above Proposition. From the Proposi-
tion in section 2 of [Kur2], there is a point b ∈ B such that (M, J(b)) ∼= (M,J)
for any integrable L2

k-regular J sufficiently close to J0 in L2
k-topology. (Here

we can work with L2
l=k rather than L2

l=k+2 by taking smaller B if necessary,
thanks to the uniqueness of Kuranishi family independent of its construc-
tion. ) Furthermore, if J ∈ (S int

ξ )−1(0)2k we have (M, J(b′)) ∼= (M, J(b))
for any b′ ∈ bKc and bKc ∩ ν−1(0) ̸= ∅, so we can take such b from
ν−1(0) ⊂ B for any J ∈ (S int

ξ )−1(0)2k. Therefore the image of ν−1(0)/K
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covers an open neighbourhood of J0 ∈ (S int
ξ )−1(0)2k/HamT (M,ω)2k+1. Since

(S int
ξ )−1(0)2k/HamT (M,ω)2k+1 is a Hausdorff space, it follows that the map

ν−1(0)/K → (S int
ξ )−1(0)2k/HamT (M,ω)2k+1 becomes a homeomorphism onto

an open subset, by taking smaller B if necessary.

Corollary 3.3.15. Suppose the torus action on (M,ω) is K-optimal. The
inclusion map ν−1(0) ↪→ BKc induces a homeomorphism ν−1(0)/K → BKc�
Kc.

Proof. The analytic GIT quotient BKc � Kc is identified as a topological
space with the quotient space of BKc by the equivalence relation b ∼ b′ ⇐⇒
bKc ∩ b′Kc ̸= ∅. Take elements b, b′ ∈ ν−1(0) so that b ∼ b′. Since both
b, b′ are polystable with respect to the Kc-action, their Kc-orbits are closed
and hence it follows that bKc = b′Kc. As mentioned before, we obtain
(M, J(b)) ∼= (M, J(b′)). Then it follows from Proposition 3.3.4 that we get
[J(b)] = [J(b′)] ∈ (S int

ξ )−1(0)2k/HamT (M,ω)2k+1. From the above corollary,
we obtain [b] = [b′] ∈ ν−1(0)/K and we have shown the map ν−1(0)/K →
BKc �Kc is injective.

We know that BKc � Kc consists of closed Kc-orbits and closed Kc-
orbit has non-empty intersection with ν−1(0). This shows the surjectivity of
ν−1(0)/K → BKc�Kc. Since both the spaces are locally compact Hausdorff,
by taking smaller B if necessary, the map becomes a homeomorphism.

Corollary 3.3.16. For any b ∈ ν−1(0), AutT (Xb) can be identified with the
complexification of the stabilizer group Kb of the action of K.

Proof. From the proof of Theorem 3.2.7, we know that AutT (Xb) ∼= AutT (M, J(b))
is the complexification of the compact group Stab(J(b)) ⊂ HamT (M,ω)2k+1.
Since J : B → JT (M,ω)2k+2 is K ⊂ HamT (M,ω)2k+1-equivariant, there is an
inclusion Kb ⊂ Stab(J(b)). For ϕ ∈ Stab(J(b)), we have H([b, ϕ]) = ϕ∗J(b) =
J(b) = H([b, id]), then the injectivity of H shows that [b, ϕ] = [b, id], hence
ϕ ∈ Kb.

Remark 3.3.17. Corollary 3.3.16 enables us to prove Corollary 3.5.12 under
the uniqueness statement of (2) in Conjecture 3.5.11, which we do not follow
in this chapter. So the last corollary will be never used in any proofs of this
paper. Recently, R. Dervan and P. Naumann find an another pure analytic
approach to construct the moduli space of cscK manifolds that makes use of
this corollary.
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In the next section, we will construct complex structures on the following
Hausdorff topological spaces.

Definition 3.3.18. We set

L2
kK(M,ω, T ) := (S int

ξ )−1(0)2k/HamT (M,ω)2k+1,

K(M,ω, T ) := (S int
ξ )−1(0)/HamT (M,ω)

and
KT,χ :=

⨿
χ(M,ω,T )=χ

K(M,ω, T )

for a Fano character χ = {χm ∈ Z[M ]}m∈Z where (M,ω, T ) runs K-optimal
symplectic Fano T -manifolds whose Hilbert character χ(M,ω, T ) (see the
description before Proposition 3.3.4) is equal to the given Fano character χ.

Note that the homeomorphism f ∗ : K(M ′, ω′, T )
∼−→ K(M,ω, T ) induced

by a T -equivariant symplectic diffeomorphism f : (M,ω)
∼−→ (M ′, ω′) is inde-

pendent of the choice of f , so the space KT,χ is free from the choice of the
representatives (M,ω, T ) in the symplectic diffeomorphism class [M,ω, T ].

3.4 Gluing of local charts

3.4.1 The moduli stack KT,χ

In this subsection, we prepare some standard terminologies around stack
and introduce the moduli stack KT,χ and see its Artinness (Definition 3.4.2).
Though it is a simple task to check the Artinness under Corollary 3.3.12,
the author believes that knowing its proof must help the readers to properly
handle the moduli stack KT,χ in the next subsection. See Appendix A for
generalities on stacks over the category of complex spaces, which we call
Can-stacks.

We denote by Can the category of complex analytic spaces which are not
assumed to be reduced nor irreducible. The set of holomorphic morphisms
between complex spaces U and V will be denoted by Holo(U, V ). We also
denote by CanS the category of complex spaces over S and by HoloS(U, V )
its set of morphisms.

Let S be a complex space. A morphism of complex spaces π :M→ S is
called a family of complex manifolds over S if it is surjective, proper, smooth

153



(equivalent to submersive when M and S are complex manifolds) and has
connected fibers. Recall that a smooth morphism between singular complex
spaces is by definition a morphism of complex spaces f : X → Y with the
following property: There are open coverings {Vα ⊂ Y }α, {Uα ⊂ X}α of
Y and X, respectively, an indexed set of smooth complex manifolds {Wα}α
and an indexed set of biholomorphisms {ϕα : Vα ×Wα

∼−→ Uα}α satisfying
f ◦ ϕα = p1, where the morphism p1 denotes the projection Vα ×Wα → Vα.

Let T ∼= (C∗)k be an algebraic torus. A fibrewise T -action on a family
π :M→ S is a holomorphic morphism α :M× T →M which satisfies the
following conditions.

1. (Fibrewise) The morphism α is an S-morphism. Namely, π◦α = π◦p1 :
M× T → S.

2. (Group action) α◦ (α× idT ) = α◦ (idM×µ) :M×T ×T →M, where
µ : T × T → T is the multiplication.

A fibrewise T -action on a family π :M→ S is called effective if for every
s ∈ S the induced group morphism T → Aut(Ms) is injective. Finally, an S-
family of complex T -manifolds is defined to be a family of complex manifolds
over S together with an effective fibrewise T -action in the above sense.

Now we introduce the stack KT,χ. A Can-stack (Definition 3.6.9) is a cat-
egory F together with a functor F → Can satisfying some natural geometric
axioms. Here we give the category of our interest.

Definition 3.4.1 (category/stack KT,χ). Let T be an algebraic torus and
χ be a Fano character. Object in KT,χ is a family of complex T -manifolds
π :M→ S whose fibers are gentle (see Definition 3.2.17) Fano T -manifolds
whose Hilbert characters are χ.

A morphism from ξ := (π : M → S, α : M× T → M) to ξ′ := (π′ :
M′ → S ′, α′ :M′×T →M′) is a pair (f, ϕ) where f : S → S ′ is a morphism
of complex spaces and ϕ :M → M′ is a T -equivariant morphism which is
compatible with π, π′, f and induces a biholomorphism ϕ̃ : M → f ∗M′,
where f ∗M′ := S ×f,S′,π′M′ ⊂ S ×M′. Here, the morphism ϕ is said to be
T -equivariant if α′ ◦ (ϕ× idT ) = ϕ ◦ α :M× T →M′.

Note that there may be no gentle Fano manifolds whose K-optimal Hilbert
characters coincide with a given K-optimal Fano character (T, χ). In other
words, there might be no object in the category KT,χ for a K-optimal Fano
character (T, χ).
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We denote by Ks
T,χ the subcategory of KT,χ consisting of families of K-

stable Fano T -manifolds and by K(n) the disjoint union of the categories
KT,χ where (T, χ) run all the K-optimal Fano characters of n-dimensional
Fano manifolds. Both categories KT,χ and Ks

T,χ are Can-stacks with the
forgetful functors KT,χ,Ks

T,χ → Can given by (π : M → S) 7→ S. (See
Lemma 3.6.5 and 3.6.13 in Appendix A. )

We denote by KT,χ(S) the subcategory consisting of objects (π :M →
S, α) with fixed base S and whose morphisms are pairs (idS, ϕ). For any
two objects ξ = (M → S, α), η = (M′ → S, α′) ∈ KT,χ(S), we define the
contravariant functor IsomS(ξ, η) from CanS to Sets by mapping an object
f : U → S to the set HomKT,χ

(f ∗ξ, f ∗η) and a morphism h : (U, f)→ (V, g)
to the map given by the canonical identifications f ∗ξ ∼= h∗g∗ξ, f ∗η ∼= h∗g∗η.

The following definition is just an analogy of Artin algebraic stack.

Definition 3.4.2 (Artin Can-stack). A Can-stack F is called an Artin stack
if it satisfies the following two conditions.

1. The diagonal morphism ∆ : F → F ×F is representable by complex
spaces.

2. There exists a smooth surjective morphism U → F from a complex
space U .

Or equivalently,

1. For every complex space S and any ξ, η ∈ Obj(F), there exists a com-
plex space Sξ,η and an isomorphism HoloS(−, Sξ,η) ∼= IsomS(ξ, η) of
contravariant functors from CanS to Sets.

2. There exists a morphism U → F of fibred categories from a complex
space U such that the 2-fibre product U ×F V is isomorphic as stacks
to a complex space f : VU → V smooth over V with surjective f , for
any morphism V → F from any complex space V .

The 2-fibre product U ×F V of stacks is always isomorphic to some com-
plex space W over V and U from the first condition (cf. [SPA, Tag 045G]).

We frequently use the following representability result in our analytic cat-
egory in this thesis. The representability of the following moduli functor (and
analogical functor in the schematic category) in both analytic/schematic cat-
egory is well-known and the projectivity is also well-known in the schematic
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category. While the compactness of the Douady space is proved by Fujiki
for class C space, it seems we must see the equivalence of the Douady space
and the Hibert scheme, or must imitate the construction of Hilbert scheme
in the analytic category, to show the projectivity of the Douady space when
X is projective. Our concerns here are just whether the analytification of
the Hilbert scheme represents the moduli functor of the Douady space, and
if we can make things T -equivariant. Though these concerns might be exhib-
ited somewhere in literatures, we place a proof here since the author could
not find an appropriate reference and the author believes it is better for the
readers (including the author).

Proposition 3.4.3 (T -Hilbert scheme). Suppose π : X → B is a holomor-
phic morphism of complex spaces and α : X×T → X is a holomorphic action
with f ◦ α = f ◦ p1. Consider the functor HilbT,π : CanB → Sets given by

HilbT,π(S) :=
{
Z ⊂ S×B X |

Z is a T -invariant closed analytic subspace
and Z → S is a flat family

}
.

Then there exists a Hausdorff complex space HilbT,π representing the functor
HilbT,π. Moreover, suppose B = pt and X = X is projective with an ample
line bundle L, then the subfunctor HilbT,χ,X ⊂ HilbT,X consisting of families
Z → S with a fixed Hilbert polynomial χ is representable by a projective
complex space HilbT,χ,X ⊂ CPN .

Proof. When T is trivial, the existence of the Hausdorff complex space Hilbπ =
HilbT,π follows from [Dou2] for B = pt case and from [Pou] for general base
B. The projectivity follows from Grothendieck’s existence theorem of the
Hilbert scheme, which represents an analogical functor defined on the cat-
egory of schemes SchC, and the coincidence of the functors when they re-
stricted to the subcategory DefC of the spectrum of finitely generated Artin
algebras over C, which is naturally embedded into both Can and SchC. Ac-
tually, a morphism f : X → Y between complex spaces is an isomorphism if
and only if it induces an isomorphism of functors hX |DefC → hY |DefC .

When T is non-trivial, we can consider the action of T on the set Hilbπ(S)
for each S ∈ CanB, whose fixed point subset is nothing but the subset
HilbT,π(S) ⊂ Hilbπ(S). Then the existence in the category of complex spaces
follows from the following two general statements.

1. Suppose H is a (not necessarily reduced) complex space with T -action
and x ∈ H is a T -fixed point. Then there is a TR-invariant open
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neighbourhood U ⊂ H of x and a TR-equivariant closed embedding
φ : U → V into an open neighbourhood V ⊂ TxH of the origin, where
TR denotes the maximal compact subgroup of T and TxH denotes the
Zariski tangent space ([Akh-book, Subsection 2.2]).

2. Let W ⊂ TxH be the set of T -invariant points, which forms a T -
invariant linear subspace. Then the complex space UT := U ×V (W ∩
V ) ⊂ U , considered as a closed subspace of U , enjoys the following
universal property: for any holomorphic morphism f : S → H invari-
ant under the T -action on H, the restricted holomorphic morphism
f |f−1(U) : f

−1(U) → H holomorphically and uniquely factors through
UT .

On the other hand, the existence in the category of schemes follows from
[Fog]. The rest of the proof is parallel to the first paragraph.

The proof of the next proposition is a routine for the readers familiar
with Artin stack. We exhibit the proof for the others.

Proposition 3.4.4. The Can-stacks KT,χ is an Artin Can-stack. If (T, χ)
is K-optimal, then Ks

T,χ is also Artin and is an open sub-stack of KT,χ.

Proof. By considering the graphs M ×ϕ,N ,id N ⊂ M × N of morphisms
ϕ : M → N , the functor IsomS(ξ, η) is identified with a subfunctor of
HilbT,M×N/S. Then it is easy to see that IsomS(ξ, η) is representable by an
open subspace of HilbT,M×N/S (cf. [FGA-book, 5.6.2.]).

Next we construct a smooth surjective morphism U → KT,χ. Let us
consider a uniform T -equivariant embedding of Fano manifolds in KT,χ into
some fixed CPN . Then all Fano manifolds in KT,χ emerge in HilbT,CPN .
From Corollary 3.3.12, there is an open subset U of HilbT,CPN , in the real
topology, such that the restricted universal family U|U → U exactly consists
of gentle Fano manifolds in KT,χ. Note the family U|U → U naturally carries
a T -action and hence is considered as an object in KT,χ. So we have the
induced morphism U → KT,χ : (f : S → U) 7→ (f ∗U|U → S), which is
readily surjective from its construction. Consider a morphism X → KT,χ;
it is equivalent to give a family of gentle Fano T -manifoldsM→ X. For a
sufficiently largem, the direct image sheaf π∗(O(−mKM))|Uα becomes locally
free. Take a covering U = {Uα}α of X that trivializes the vector bundle
π∗(O(−mKM))|Uα so that we can consider morphisms Uα → U corresponding
to trivializations of π∗(O(−mKM))|Uα . There is a unique PGLT -equivariant
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extension Uα×PGLT → U of these morphisms. Then from the universality of
the 2-fibre product U×KT,χ

Uα , we get morphisms Uα×PGLT → U×KT,χ
Uα.

We have the inverse morphisms of these morphisms given as follows. Take an
object (S, ξ : S → U, η : S → Uα, ϕ : ξ∗U ∼−→ η∗M|Uα) of U ×KT,χ

Uα. Since
η∗M|Uα can be considered as being embedded in S×CPN , the isomorphism
ϕ corresponds to a morphism ϕ̃ : S → PGLT . Then we have a morphism
η × ϕ̃ : S → Uα × PGLT , which gives an object in CanUα×PGLT . Therefore
U ×KT,χ

X → X is locally written as Uα × PGLT → Uα. So it is a smooth
morphism.

It is shown in [H. Li, Theorem 3.4] that K-stable Fano manifolds form
an open subset in the parameter space of any family of complex manifolds,
without introducing the K-stability of Fano T -manifolds. From the exactly
same argument as above, we conclude that Ks

T,χ is Artin and is an open
sub-stack of KT,χ.

In the above proof, the only non-routine part is Corollary 3.3.12, i.e. the
openness of the subset consisting of gentle Fano manifolds in the parameter
space of a family. Our method in Corollary 3.3.12 cannot be applied to prove
the Zariski openness. This is the reason why we must work in the category
of complex spaces rather than the category of algebraic spaces, so that we
cannot apply Alper’s theory on good moduli spaces over the category of
algebraic spaces, at least so far.

3.4.2 Main construction

In this subsection, we prove our main theorem. First we prepare two general
lemmas.

Lemma 3.4.5. Let K be a compact Lie group and Kc be its complexifi-
cation, V be a representation of Kc and B ⊂ V be a K-invariant Stein
open neighbourhood of the origin. Let s × t : R → B × B be the holo-
morphic groupoid obtained by pulling back the holomorphic action groupoid
a : V ×Kc → V × V : (v, k) 7→ (v, vk) along the inclusion B × B ⊂ V × V .
Then the following holds.

1. The stack [B/R] associated to the holomorphic groupoid (B,R, s, t, c)
as in Appendix A is isomorphic, induced by the inclusion B ↪→ BKc,
to the quotient stack [BKc/Kc] as Can-stacks, where BKc denotes the
Kc-orbit {bg ∈ V | b ∈ B, g ∈ Kc} of B, which is Kc-invariant open.
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2. There is a natural morphism [BKc/Kc] → BKc � Kc of Can-stacks
to the analytic GIT quotient BKc � Kc which enjoys the following
universal property: any morphism from the quotient stack [BKc/Kc]
to any complex space X uniquely factors through BKc �Kc.

Proof. We identify [BKc/Kc] with the Can-stack JBKc/KcK in Example
3.6.3. Consider a morphism σ from the fibred category [B/R]p to [BKc/Kc]
sending an object ξ : S → X in [B/R]p to the object (S, S×Kc, a ◦ (ξ× id))
in [BKc/Kc] (cf. the description right after Example 3.6.3). Let S be a
complex space and (S, P, ξ′) be an object in [BKc/Kc](S). Take a local
trivialization {P ∼= Uα × Kc}α of the principal Kc-bundle P and consider
the associated Kc-equivariant morphisms ξ′α : Uα × Kc → BKc. After
taking smaller Uα, we can find a holomorphic morphism ξα : Uα → B
and a holomorphic morphism g : Uα → Kc so that ξα(x)g(x) = ξ′α(x, e).
It follows that the object (Uα, Uα × Kc, ξ′α) in [BKc/Kc] is isomorphic to
σ(ξα) = (Uα, Uα × Kc, a ◦ ((ξαg) × idKc)). Moreover, it is easily seen that
Isom [B/R]p,S(ξ, η)→ Isom [BKc/Kc],S(σ(ξ), σ(η)) is a sheafification of the func-
tor Isom [B/R]p,S(ξ, η) : CanS → Sets. It follows that [BKc/Kc] is a stack-
ification of the fibred category [B/R]p. Therefore, it is isomorphic to the
stackification [B/R] of [B/R]p.

Since B is a reduced Stein space, BKc is also a reduced Stein space and
there exists a categorical quotient BKc �Kc, which is also a reduced Stein
space (see [Hei], [Snow]). Take an object (S, P, ξ) in [BKc/Kc] and a local
trivialization {P ∼= Uα ×Kc}α of P . Then we have holomorphic morphisms
ξ̃α : Uα → Uα ×Kc → BKc → BKc �Kc. Since ξα : Uα ×Kc → BKc agree
on the overlaps Uα ∩ Uβ up to the action of Kc, and BKc → BKc � Kc is
Kc-invariant, holomorphic morphisms ξ̃α coincide on the overlaps Uα ∩ Uβ

and define a holomorphic morphism S → BKc � Kc, glued together. This
construction gives the morphism [BKc/Kc] → BKc � Kc. The universal
property follows from the fact that any Kc-invariant holomorphic morphism
BKc → X uniquely factors through BKc �Kc.

The complex space BKc�Kc is moreover normal as it is an open subspace
of the algebraic GIT quotient V �Kc, which is normal whenever V is normal
(cf. [MFK-book, Section 0.2]).

Lemma 3.4.6. Let K be a compact Lie group, B be a complex manifold
with holomorphic K-action and E → B be a K-equivariant holomorphic
vector bundle. Suppose 0 ∈ B is a fixed point of K-action. Since the
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fiber E0 can be considered as K-representation, we can construct a K-
equivariant holomorphic vector bundle E0B,K

:= B × E0 whose action is

given by (b, v)k := (bk, vk). Then E is K-equivariantly isomorphic to E0B,K

on some neighbourhood of 0 ∈ B.

Proof. Consider the frame bundle π : P → B of the holomorphic vector
bundle E and fix a point p0 ∈ π−1(0) ⊂ P . We have a right holomorphic
action of K on P defined by

pk : Cr p0−→ E0
k−1

−−→ E0

p−1
0−−→ Cr p−→ Eb

k−→ Ebk

for p : Cr ∼−→ Eb ∈ P and k ∈ K. The point p0 ∈ P is a fixed point of
this action and π : P → B is a K-equivariant submersion. So we have a
K-equivariant holomorphic section σ : B → P with σ(0) = p0 by taking
smaller B if necessary. Now the map B ×GL(r)→ P : (b, g) 7→ σ(b)g gives
a K-equivariant isomorphism of principal GL(r)-bundles and hence induces

a K-equivariant isomorphism of the adjoint bundles Cr
B,K

p̃0−→ E0B,K
.

Let X be a Fano manifold with a Kähler–Ricci soliton (g, ξ′), T ∼= (C∗)×k

be the algebraic torus generated by ξ′, K := Isomξ′(X, g) be the (possibly
non-connected) isometry group preserving ξ′ and H1

T (X,Θ) ⊂ H1(X,Θ) de-
note the T -invariant subspace of the first cohomology of the tangent sheaf.
Recall in Proposition 3.3.7 and in Corollary 3.3.12 we obtained a family
ϖ : X → B of gentle Fano T -manifolds over a small ball B ⊂ H1

T (X,Θ).
Moreover, X admits a holomorphic K-action so that ϖ is K-equivariant
with respect to the linear action on B, and a T -equivariant biholomorphism
X0
∼= X. This in particular defines a morphism B → KT,χ of Artin Can-

stacks. Now we prove the following.

Proposition 3.4.7. Let X be a Fano T -manifold with Kähler–Ricci soliton
and the Hilbert character (T, χ). Then by taking smaller B if necessary, the
morphism B → KT,χ factors through an étale morphism [B/R]→ KT,χ with
finite fibres, where R is defined as in Lemma 3.4.5. In other words, for any
morphism S → KT,χ of Can-stacks, there is an étale morphism S ′ → S of
complex spaces with finite fibres and an S-isomorphism of Can-stacks from
S ′ to the 2-base change S ×KT,χ

[B/R]→ S.

Proof. The family ϖ : X → B in Proposition 3.3.7 defines a morphism B →
KT,χ. Now we will show that this morphism factors through the quotient
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morphism B → [B/R]. It is equivalent to the existence of a natural T -
equivariant R-biholomorphism s∗X ∼−→ t∗X . We prove this by relating our
analytic family to an algebraic family as groupoids. As a consequence, the
induced morphism [B/R]→ KT,χ is shown to be étale with finite fibres.

Since ϖ : X → B is a K-equivariant family and O(−KX/B) is relatively
ample, we can find a large ℓ ∈ N so that the direct image sheafϖ∗O(−ℓKX/B)
isK-equivariantly isomorphic to the sheaf of sections of aK-equivariant holo-
morphic vector bundle E. Lemma 3.4.6 shows that there is a K-equivariant
isomorphism H0(X,O(−ℓKX))

B,K
∼= E, so we have a K-equivariant B-

embedding X ↪→ B × PN , where we identify PN with P(H0(X,O(−ℓKX))
∗).

From the universality of HilbT,PN , we obtain a K-equivariant holomorphic
morphism h : B → HilbT,PN together with an isomorphism h∗U ∼= X .

From the Euler sequence

0→ OPN → O(1)⊕N+1 → ΘPN → 0,

we obtain H1
T (X, i

∗ΘPN ) = 0 and H0
T (X, i

∗ΘPN ) ∼= H0
T (PN ,ΘPN ). Combining

with this with the following exact sequence

0→ H0
T (X,ΘX)→ H0

T (X, i
∗ΘPN )→ H0

T (X,NX/PN )

→ H1
T (X,ΘX)→ H1

T (X, i
∗ΘPN )→ H1

T (X,NX/PN )→ 0

shows that the sequence

0→ H0
T (X,ΘX)→ H0

T (PN ,ΘPN )→ H0
T (X,NX/PN )→ H1

T (X,ΘX)→ 0

is exact and H1
T (X,NX/PN ) vanishes. So we conclude that HilbT,PN is smooth

at [X] = h(0) ∈ HilbT,PN , whose tangent space is given by H0
T (X,NX/PN ) (cf.

[FGA-book, subsection 6.4.]).
Now we work in the category of algebraic spaces in the blink of an eye.

Since AutT (X) is reductive, we can apply the étale slice theorem [AHR, The-
orem 2.1], which generalizes the Luna’s étale slice theorem to non-affine cases,
and then obtain the following: a smooth affine AutT (X)-variety (W,w), an
AutT (X)-equivariant morphism ϕ : (W,w)→ (HilbT,PN , h(0)) which induces
a PGLT (N+1)-equivariant étale morphismW×AutT (X)PGLT → HilbT , and
a AutT (X)-equivariant étale morphism (W,w)→ (H1

T (X,Θ), 0).

W ×AutT (X) PGLT (W,w)

(HilbT , h(0)) (H1
T (X,ΘX), 0)

étale
étaleϕ
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Note that the quotient morphism W × PGLT → W ×Kc
PGLT is a Kc-

equivariant submersion, under the right action of Kc = AutT (X) on W ×
PGLT defined by (x, g0)g1 = (xg1, g

−1
1 g0g1) and on W ×Kc

PGLT defined
by [x, g0]g1 = [x, g0g1]. Since the point (w, e) ∈ W × PGLT is fixed by
this Kc-action, we obtain a K-equivariant holomorphic section σ from a
neighbourhood of [w, e] ∈ W ×Kc

PGLT with σ([w, e]) = (w, e). Therefore,
taking smaller B if necessary, we can assume that h : B → HilbT factors
through W × PGLT → HilbT . We can moreover assume that the composed
morphism (B, 0) → (W,w) of a lifting B → W × PGLT passing through
(w, e) with the projection to the first factor is K-equivariant holomorphic
open embedding. Note that we do not know whether this morphism (B, 0)→
(W,w) is a section of the étale morphism (W,w)→ (H1

T (X,ΘX), 0).
Set Hilb◦

T := h(B) · PGLT ⊂ HilbT . Since ϖ : X → B is a complete
family at any point b ∈ B, Hilb◦

T is an open subset. The restricted PGLT -
equivariant universal family U◦ → Hilb◦

T parametrizes only gentle Fano T -
manifolds and hence induces an open embedding [Hilb◦

T/PGLT ]→ KT,χ. We
fix this subset Hilb◦ while we later take smaller B.

It follows from [Snow, Proposition 5.1] that we have a Kc-invariant open
neighbourhoodW ◦ ⊂ ϕ−1(Hilb◦

T ) of w so that the restrictionW ◦ → H1
T (X,Θ)

is an Kc-invariant open embedding. Taking smaller B, we have the restricted
morphism B → W ◦×PGLT . Let g : B → PGLT be the composition of this
morphism with the projection to the second factor. Denote by h◦ : B → Hilb◦

the composition αHilbT ◦ (h × g−1) : B → Hilb◦
T × PGLT → Hilb◦

T . Then
the holomorphic morphism h◦ is K-equivariant and factors through the Kc-
equivariant holomorphic morphism W ◦ → Hilb◦

T . Moreover, we have an
induced isomorphism h∗◦U ∼= X .

Since the differential of the induced morphism B → W ◦ at 0 ∈ B is a
K-equivariant isomorphism, we can assume that B → W ◦ is a K-equivariant
open embedding. Let us denote by β : B → H1

T (X,Θ) the composition of this
morphism B → W ◦ with W ◦ → H1

T (X,Θ). Then β is also a K-equivariant
open embedding.

Note that both BKc ⊂ H1
T (X,Θ) and β(B)Kc ⊂ H1

T (X,Θ) are the com-
plexification, in the sense of [Hei], of B with respect to the action ofK . From
the uniqueness of the complexification, there is a Kc-equivariant biholomor-
phism γ : BKc → β(B)Kc which is compatible with the K-equivariant
morphisms B ⊂ BKc and β : B → β(B)Kc.
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Now we have the following cartesian diagrams

R BKc ×Kc H1
T ×Kc

B ×B BKc ×BKc H1
T ×H1

T

s×t

↪→⊠id

αBKc α
H1
T

↪→⊠2 ↪→⊠2

RW β(B)Kc ×Kc H1
T ×Kc

B ×B β(B)Kc × β(B)Kc H1
T ×H1

T

sW×tW

↪→⊠id

αβ(B)Kc
α
H1
T

β⊠2
↪→⊠2

Since γ : BKc ∼−→ β(B)Kc isKc-equivariant, it satisfies γ⊠2◦αBKc = αβ(B)Kc◦
(γ ⊠ id) and hence gives an isomorphism of the groupoids (p1 ◦ αBKc , p2 ◦
αBKc) : BKc×Kc → BKc and (p1 ◦αβ(B)Kc , p2 ◦αβ(B)Kc) : β(B)Kc×Kc →
β(B)Kc. It follows that there is an isomorphism (ρ, idB) : (R,B)

∼−→ (RW , B)
of the groupoids s × t : R → B × B and sW × tW : RW → B × B. Hence
there is an isomorphism [B/R] ∼= [B/RW ] of the quotient Can-stacks.

On the other hand, since β : B → H1
T factors through the Kc-equivariant

open embedding W ◦ → H1
T , the groupoids sW × tW : RW → B × B also

appears in the following cartesian diagram.

RW W ◦ ×Kc

B ×B W ◦ ×W ◦

sW×tW αW◦

β⊠2

Therefore we obtain an open embedding of the quotient Can-stacks [B/RW ] ↪→
[W ◦/Kc].

Moreover, the étale finite morphism W ◦ ×Kc
PGLT → Hilb◦ induces

an étale finite morphism of the quotient Can-stacks [W ◦/Kc] ∼= [W ◦ ×Kc

PGLT/PGLT ]→ [Hilb◦
T/PGLT ].

Now combining all, we obtain an étale morphism [B/R] → KT,χ with
finite fibers, which obviously commutes with B → KT,χ and B → [B/R]
from its construction.

Here is our main theorem.
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Theorem 3.4.8. There exists a Hausdorff complex analytic space KT,χ,
which we call the moduli space of Fano manifolds with Kähler–Ricci soli-
tons, and a morphism KT,χ → KT,χ from the Artin Can-stack KT,χ such
that any morphism from KT,χ to any complex space B holomorphically and
uniquely factors through KT,χ. Moreover, this moduli space enjoys the fol-
lowing property.

1. The complex space KT,χ is normal and homeomorphic to the space
KT,χ in Definition 3.3.18. We will prove this in Proposition 3.4.11 after
constructing a moduli space with the following property.

2. The morphism KT,χ → KT,χ induces a bijection |KT,χ|/ ∼ → KT,χ

where |KT,χ| denotes the set of points of the stackKT,χ, which is canon-
ically identified with the set of the isomorphism classes of gentle Fano
manifolds, and [X] ∼ [X ′] if the central fibers of the gentle degenera-
tions of gentle Fano manifolds X and X ′ coincide.

As we have already noted, the logical order of our argument is “Proposi-
tion 3.4.7 ⇒ Proposition 3.2.18 ⇒ Theorem 3.4.8”. Here we apply Proposi-
tion 3.2.18 before we prove it. The author recommend the readers who prefer
following the proof in the logical order to read section 3.4.4 firstly.

Proof. The image of the étale morphism [B/R]→ KT,χ defines an open sub-
stack Im[B/R] ⊂ KT,χ. Object in Im[B/R] is an object (π :M→ S, α) in
KT,χ whose fibers are gentle Fano T -manifolds appearing in the Kuranishi
family ϖ : X → B. Firstly, we prove that the morphism [B/R] → BKc �
Kc in Lemma 3.4.5 factors through Im[B/R]. We construct a morphism
Im[B/R] → BKc � Kc. Take an object (π : M → S, α) in Im[B/R] and
consider the following cartesian diagram.

S̃ [B/R]

S Im[B/R]

Since [B/R]→ Im[B/R] is étale, S̃ → S is also étale. Then we can take local
slices sα : Uα → S̃ of S̃ → S so that {Uα}α covers S and obtain morphisms
Uα → [B/R], hence also obtain holomorphic morphisms ϕα : Uα → BKc�Kc.
From its construction, we know that x ∈ Uα maps to the point ϕα(x) ∈ BKc�
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Kc = ν−1(0)/K representing the central fiber of some gentle degeneration
ofMx, which is unique due to Proposition 3.2.18. So if S is reduced, these
morphisms ϕα : Uα → BKc �Kc coincide on the overlaps, hence they give a
holomorphic morphism ϕ : S → BKc � Kc, glued together. When S is not
reduced, since any Fano T -manifold has reduced semi-universal family, we
can locally extend the morphism S → Im[B/R] to some T → Im[B/R] with
reduced T . Take a point x ∈ Uα ∩ Uβ and a small neighbourhood U of x
so that U → Im[B/R] extends to some T → Im[B/R] with reduced domain
T ⊃ U containing U as a closed subspace. Taking smaller T , sections sα|U ,
sβ|U extend to some sections tα, tβ : T → T̃ , where T̃ is given similar as
S̃. Therefore the morphisms ϕα|U , ϕβ|U : U → BKc � Kc extend to some
morphisms ψα, ψβ : T → BKc�Kc. As we have already observed that ψα and
ψβ coincide, the restrictions ϕα|U = ψα ◦ iU , ϕβ|U = ψβ ◦ iU : U → BKc �Kc

also coincide as holomorphic morphisms, where iU : U → T is the closed
immersion. Therefore we obtain a morphism ϕ : S → BKc � Kc by gluing
the morphisms ϕα : Uα → BKc �Kc. It is easy to see that this construction
is functorial, so we obtain the expected morphism Im[B/R] → BKc � Kc,
which inherits the universal property from the morphism [B/R]→ BKc�Kc.

Now consider two morphisms [B/R] → KT,χ and [B′/R′] → KT,χ with
different domains. We also consider two maps i : BKc�Kc → L2

kK(M,ω, T )
and i′ : B′K ′c � K ′c → L2

kK(M,ω, T ). For any point x ∈ L2
kK(M,ω, T ) in

the overlaps Imi∩ Imi′, we can find another étale morphism [B′′/R′′]→ KT,χ

and a map i′′ : B′′K ′′c � K ′′c → L2
kK(M,ω, T ) with i′′([0]) = x so that

Im[B′′/R′′] ⊂ Im[B/R] ∩ Im[B′/R′] ⊂ KT,χ and Imi′′ ⊂ Imi ∩ Imi′. Es-
pecially we have a natural inclusion morphism Im[B′′/R′′] → Im[B/R] and
hence obtain a morphism Im[B′′/R′′] → BKc � Kc. From the universality
of the morphism Im[B′′/R′′]→ B′′K ′′c �K ′′c, we obtain a holomorphic mor-
phism B′′K ′′c � K ′′c → BKc � Kc. This holomorphic morphism is clearly
compatible with i′′ and i as maps, so especially it is a homeomorphism onto
its open image, after taking smaller B′′ if necessary. Since the analytic GIT
quotient spaces BKc �Kc are normal, this holomorphic homeomorphism is
actually a biholomorphism. This argument shows that the coordinate change
i′−1 ◦ i is biholomorphic. Thus we obtain a complex space K(M,ω, T ) by giv-
ing a complex structure on the topological space L2

kK(M,ω, T ) defined from
the above holomorphic charts. Set KT,χ :=

⨿
χ(M,ω,T )=χK(M,ω, T ). Clearly

from its construction, there is a morphism KT,χ → KT,χ enjoying the uni-
versal property. It follows from section 3.3 and Proposition 3.2.18 that this
morphism induces a bijection |KT,χ|/ ∼ → KT,χ. We prove in the next sub-
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section that the space K(M,ω, T ), which is homeomorphic to L2
kK(M,ω, T ),

is actually homeomorphic to K(M,ω, T ).

Corollary 3.4.9. The Can-stack Ks
T,χ admits a tame moduli space Ks

T,χ →
Ks

T,χ (see [Alp1, Definition 7.1]), with the same universal property as the
moduli space KT,χ → KT,χ. Moreover, the complex space Ks

T,χ is a Hausdorff
complex orbifold.

This corollary follows from the construction in the proof of the main
theorem, the openness property of the K-stable Fano T -manifolds and the
fact that [B/R] → Ks

T,χ is an open embedding in this case, which is an
easy consequence of the injectivity of the map |[B/R]| → BKc � Kc ≈
ν−1(0)/K → KT,χ and the bijection |Ks

T,χ| → KT,χ. The orbifold coordinates
are given by open neighbourhoods of the origin in the spaces H1

T (X,Θ) �
(AutT (X)/T ). We can also consider a separated smooth Deligne-Mumford
Can-stack K∗

T,χ associated to the Can-stack Ks
T,χ.

3.4.3 Consistency

In the previous section, we constructed a complex analytic space structure
on the spaces L2

kK(M,ω, T ) = (S int
ξ )−1(0)2k/HamT (M,ω)2k+1 and proved that

it has a certain universality independent of k, which is described in terms of
the stack KT,χ. Since the universality determines a complex space uniquely
up to biholomorphisms, the complex spaces (S int

ξ )−1(0)2k/HamT (M,ω)2k+1 are
all canonically biholomorphic to each other. In particular, we deduce that
they are all homeomorphic through the following natural maps

Il,k : (S int
ξ )−1(0)2l /HamT (M,ω)2l+1 → (S int

ξ )−1(0)2k/HamT (M,ω)2k+1 : [J ] 7→ [J ].

Now we show the continuous map

Ik : (S int
ξ )−1(0)/HamT (M,ω)→ (S int

ξ )−1(0)2k/HamT (M,ω)2k+1 : [J ] 7→ [J ]

is also homeomorphic, using that Il,k is homeomorphic.
In the proof of the following proposition, we hope to apply an L2

k-version
of Newlander–Nirenberg theorem. Unfortunately, the author could not find
in literatures a precise L2

k-version of Newlander–Nirenberg theorem for our
purpose, but only find the reference [NW]. As the Newlander–Nirenberg
type theorem in [NW] losses some regularity, we make use of the above fact
obtained from the universality of our moduli space.
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Proposition 3.4.10. The continuous map Ik is a homeomorphism.

Proof. Take two elements J, J ′ ∈ (S int
ξ )−1(0) and suppose there is a L2

k+1-
regular map ϕ ∈ HamT (M,ω)2k+1 such that ϕ∗J = J ′. Then ϕ is C∞-smooth
by Myers-Steenrod theorem. This shows that Ik is injective.

Next we show the surjectivity. It is sufficient to show that for any
J ∈ (S int

ξ )−1(0)2k, there is a L2
k+1-regular map ϕ ∈ HamT (M,ω)2k+1 such

that ϕ∗J ∈ (S int
ξ )−1(0). Take a large integer m ≥ 2 and l so that L2

l ⊂
Cm−1,α ⊂ Cm−1 ⊂ L2

k+1. Since Il,k is a homeomorphism, we can find a L2
k+1-

regular map ϕ0 ∈ HamT (M,ω)2k+1 so that ϕ
∗
0J ∈ (S int

ξ )−1(0)2l . Then it follows

from [NW] that there is a Cm,α/n-smooth diffeomorphism ϕ1 :M
′ →M such

that ϕ∗
1ϕ

∗
0J is a C∞-smooth integrable complex structure, where on the other

hand ϕ∗
1ϕ

∗
0ω and ϕ∗

1ϕ
∗
0gJ is only Cm−1,α/n-regular, in particular, L2

k+1-regular.
We can choose a C∞-smooth diffeomorphism ϕ2 : M → M ′, which we can
additionally suppose that it is sufficiently close to ϕ−1

1 in Cm-topology. Note
that ϕ0 ◦ ϕ1 ◦ ϕ2 is sufficiently close to ϕ0 in L2

k+2-topology. The pull-back
metric ϕ∗

2(ϕ0 ◦ ϕ1)
∗gJ is a L2

k+1-regular metric which is a Kähler–Ricci soli-
ton with respect to C∞-smooth integrable complex structure ϕ∗

2(ϕ0 ◦ ϕ1)
∗J .

The elliptic regularity argument shows that (ϕ0 ◦ ϕ1 ◦ ϕ2)
∗gJ is in fact C∞-

smooth. Hence (ϕ0 ◦ ϕ1 ◦ ϕ2)
∗ω is also C∞-smooth. Since we further assume

that (ϕ0 ◦ ϕ1 ◦ ϕ2)
∗ω is close to ϕ∗

0ω = ω in L2
k+1-topology, both C

∞-smooth
symplectic form ω, (ϕ0 ◦ ϕ1 ◦ ϕ2)

∗ω have the same cohomology classes and
ωt := tω + (1 − t)(ϕ0 ◦ ϕ1 ◦ ϕ2)

∗ω is non-degenerate for any t ∈ [0, 1].
From Moser’s theorem, we obtain a C∞-smooth diffeomorphism ϕ3 satis-
fying ϕ∗

3(ϕ0 ◦ϕ1 ◦ϕ2)
∗ω = ω, which is close to idM in L2

k+1-topology as in the
proof of Proposition 3.3.7. Now we have obtained the expected L2

k+1-regular
map ϕ := ϕ0 ◦ ϕ1 ◦ ϕ2 ◦ ϕ3. From the construction, we know ϕ can be taken
sufficiently close to ϕ0 in L2

k+1-topology.
Finally we prove that Ik is actually a homeomorphism. Take a convergent

sequence Jn → J∞ ∈ (S int
ξ )−1(0)2k. It suffices to show that there are elements

ϕn, ϕ∞ ∈ HamT (M,ω)2k+1 such that ϕ∗
nJn, ϕ

∗
∞J∞ belong to (S int

ξ )−1(0) and
the sequence ϕ∗

nJn converges to ϕ∗
∞J∞ in the C∞-topology, by taking a sub-

sequence if necessary (thanks to the injectivity of Ik). Since Ik is surjective,
we can find an element ϕ∞ ∈ HamT (M,ω)2k+1 so that ϕ∗

∞J∞ is C∞-smooth
and hence there is no loss of generality in supposing C∞-smoothness of J∞
from the beginning. Since Il,k is a homeomorphism, we can find a sequence
ϕn,l ∈ HamT (M,ω)2k+1 so that ϕ∗

n,lJn ∈ (S int
ξ )−1(0)2l and ϕ∗

n,lJn converges to
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J∞ in the L2
l -topology. We define a set

Σl(J) := {ϕ ∈ HamT (M,ω)2l+1 | ϕ∗J ∈ (S int
ξ )−1(0)}

for J ∈ (S int
ξ )−1(0)2l . Since Il is surjective, Σl(J) is a non-empty set. More-

over, the density of HamT (M,ω) ⊂ HamT (M,ω)2l+1, which we can deduce
fromWeinstein’s tubular neighbourhood theorem, shows that Σl(J) ⊂ HamT (M,ω)2l+1

is also dense. Therefore we can perturb ϕn,l, as small as n goes to the infin-
ity, so that ϕ∗

n,lJn are C∞-smooth and preserve the L2
l -convergence ϕ

∗
n,lJn →

J∞ ∈ (S int
ξ )−1(0)2l . Now we can proceed to the diagonal argument with re-

spect to (n, l) and conclude that a subsequence ϕ∗
nl,l
Jnl converges to J∞ in

C∞-topology.

There is another topological space consisting of biholomorphism classes
of Fano manifolds with Kähler–Ricci solitons, which is considered in [PSS].

KRGH(n, F ) :=
{
[M,J, g, ξ′]

∣∣∣ (M,J, g, ξ′) is a Fano manifold (M,J) with
a Kähler–Ricci soliton (g, ξ′) and

∫
M
|ξ′|2gωn ≤ F.

}
In [PSS], a topological compactification KRGH(n, F ) of this space is consid-
ered in regard to the ‘complexified’ Gromov–Hausdorff convergence. It was
open whether the spaceKRGH(n, F ) is stable for large F , which was expected
in [PSS]. As we have the equality Fut(ξ′) = 2

∫
M
|ξ′|2gωn for Kähler–Ricci soli-

ton (g, ξ′), this is equivalent to say that the invariants Fut(ξ′) are uniformly
bounded from above for n-dimensional Fano manifolds with Kähler–Ricci
solitons.

We show that this invariant is actually bounded, not only for Fano man-
ifolds with Kähler–Ricci solitons, but also for all n-dimensional Fano T -
manifolds with the maximalK-optimal action. We also compareKRGH(n, F )
with our K(M,ω, T ) and KT,χ, which a priori have different topologies.

Proposition 3.4.11. Set

KRGH(n) :=
{
[M,J, g, ξ′]

∣∣∣ (M,J, g, ξ′) is a Fano manifold (M,J)
with a Kähler–Ricci soliton (g, ξ′).

}
.

Then KRGH(n) = KRGH(n, F ) for large F and the map

K(M,ω, T )→ KRGH(n) : [J ] 7→ [M,J, gJ ]

gives a homeomorphism onto a clopen (closed and open) subset of KRGH(n),
for any 2n-dimensional symplectic Fano manifold (M,ω) with K-optimal T -
action.
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Proof. Since Fano manifolds are bounded [KMM], we have a sufficiently
large Hilbert scheme Hilb of CPN with bounded Hilbert polynomials so that
for any Fano manifold X we can find a point [X] ∈ Hilb, uniquely up to
Aut(PN) = PGL(N + 1)-action, representing an anti-canonically embedded
X ⊂ CPN . We denote by HilbFano the Zariski open locus parametrizing the
anti-canonically embedded Fano manifolds. Obviously, PGL(N+1) preserves
the subset HilbFano.

Fix a maximal algebraic torus T of PGL(N + 1) and consider its action
on HilbFano. Note as we have Stab([X].g) = g−1Stab([X])g ⊂ PGL(N + 1)
for g ∈ PGL(N + 1), we can find a point [X] ∈ HilbFano so that Stab([X]) ∩
T ⊂ Stab([X]) ∼= Aut(X) is a maximal torus. Indeed, for a maximal torus
TX ⊂ Stab([X]), pick a maximal torus T ′ = gTg−1 ⊂ PGL(N + 1) so that
T ′ ∩ Stab([X]) = TX , then we have a maximal torus Stab([X].g) ∩ T =
g−1TXg ⊂ Stab([X].g).

Next, consider the normalization H̃ilb → Hilb, where H̃ilb is a normal
projective variety and the morphism is a finite surjective morphism. Then
we have a T -equivariant embedding of H̃ilb into some P(V ), where V is a
T -representation ([MFK-book, Corollary 1.6]). Since V decomposes into 1-
dimensional representations as V ∼= Cχ1⊕· · ·⊕CχdimV

, the stabilizer Tx ⊂ T
of any point x ∈ P(V ) can be written as χ−1

i1
(1) ∩ · · · ∩ χ−1

ij
(1), hence the

possibilities are finite. It also follows that every fiber S−1
T (T ′) of the following

map
ST : P(V )→ { sub torus of T } : x 7→ Tx

is a (possibly non irreducible) subvariety in P(V ). Therefore, we obtain a

finite stratification {S−1
T (Ti) ⊂ P(V )} and {Hi ⊂ H̃ilbFano} by its restriction.

We refine this stratification by taking connected components of each Hi and
continue to write {Hi ⊂ H̃ilbFano}. Since the restricted family U|Hi → Hi

gives a family of Fano Ti-manifolds, we can consider the K-optimal vector
ξi ∈ (Ni)R with respect to the Ti-action on the Fano manifolds Xs (s ∈ Hi),
which is independent of s ∈ Hi. Let T ′

i ⊂ Ti be the sub-torus generated by
ξi.

Now from the construction, every Fano manifold X with a maximal K-
optimal T ′-action finds some Hi satisfying [X] ∈ Hi and T

′ = T ′
i . Since the

Futaki invariant of ξ′i on Xs is independent of the choice of s ∈ Hi, we con-
clude that there are only finitely many possibilities of the values of FutX(ξ

′)
for the pairs (X, ξ′) of Fano manifolds with vanishing modified Futaki invari-
ant FutX,ξ′ . In particular, FutX(ξ

′) is bounded for (X, g, ξ′) ∈ KRGH(n) and
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hence KRGH(n, F ) = KR(n) for large F .
Next we see that the given map K(M,ω, T ) → KRGH(n) is a homeo-

morphism by a standard argument as follows. The continuity of the map
is obvious. For every [M,J, g] ∈ KRGH(n) and any two representatives
(M1, J1, g1), (M2, J2, g2) ∈ [M,J, g], we have a diffeomorphism ϕ : M1 → M2

satisfying ϕ∗J2 = J1, ϕ
∗g2 = g1 and (ϕ−1)∗ξ

′
2 = ξ′1, where ξ

′
i is the unique

holomorphic vector field satisfying Ric(gi) − Lξ′i
gi = gi. It follows that the

map K(M,ω, T ) → KRGH(n) is injective for K-optimal (M,ω, T ), and the
images of K(M1, ω1, T1), K(M2, ω2, T2) → KRGH(n) intersect iff there is an
isomorphism θ : T1

∼−→ T2 and a (T1, T2)-equivariant symplectic diffeomor-
phism (M1, ω1)

∼−→ (M2, ω2).
Since the images of the maps for distinct pairs (M1, ω1, T1), (M2, ω2, T2)

are disjoint, it suffices to prove that the maps are closed. Actually, if the
maps are closed, then the maps are homeomorphisms onto their images and
the images are open from the above finiteness of the possibilities of the
K-optimal pairs (M,ω, T ). To see the closedness, take a sequence [Jn] ∈
K(M,ω, T ) which has the convergent images [M,Jn, gJn ]→ [M∞, J∞, g∞] in
KRGH(n). As remarked before Proposition 6.1 in [PSS], we have a sequence
[M,Jn, gJn ] ∈ Hilb◦

T which converges to [M∞, J∞, g∞] ∈ Hilb◦
T , where Hilb◦

T

denotes the open subset of HilbT parametrizing gentle Fano T -manifolds with
bounded Hilbert polynomial. Now we have a canonical continuous (holomor-
phic) map Hilb◦

T → K(M,ω, T ) ⊂ KRT,χ induced by the universality of KT,χ.
The image of the sequence [M,Jn, gJn ] is nothing but the original sequence
[Jn], so we obtain the convergence of [Jn] to the image of [M∞, J∞, g∞] in
K(M,ω, T ).

Remark 3.4.12. The compactification KRGH(n) of KRGH(n) constructed in
[PSS] is a compact Hausdorff space with a countable basis (cf. [DoSu2])
and the boundary KRGH(n) \ KRGH(n) is closed. The closedness of the
boundary is easily confirmed as follows. Suppose [Xn, gn] is a sequence in
KRGH(n) \KRGH(n) converging to [X∞, g∞] in KRGH(n). Take a sequence
[Xn,i, gn,i] ∈ KRGH(n) for each n converging to [Xn, gn] in KRGH(n). We
can suppose that Hilb(Xn,i, gn,i)→ Hilb(Xn, gn) in HilbT . Then we can find
a subsequence of [Xn, gn] so that Hilb(Xn, gn) → Hilb(X∞, g∞) in HilbT by
the diagonal argument. Since the subset of HilbT parametrizing singular
subspaces of CPN forms a closed subset, the limit [X∞, g∞] must be also
singular, hence [X∞, g∞] ∈ KRGH(n) \ KRGH(n)
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3.4.4 The promised proof of Proposition 3.2.18

If X is a gentle Fano T -manifold, then Rξ′(X) = 1 for the K-optimal vector
ξ′. So there exists a unique solution ωt = ωt(α) of the following equation

Ric(ωt)− Lξωt = tωt + (1− t)α

for every t ∈ [0, 1) and any initial metric α.

Lemma 3.4.13. Let X → ∆̄ be a family of Fano T -manifolds with Rξ′(Xσ) =
1 for the K-optimal vector ξ over a compact disc ∆̄ and α be a smooth family
of TR-invariant Kähler metrics ασ on Xσ. Then there is a sufficiently divisible
k ∈ N and a positive constant c > 0 which depend only on the pair (X ,α)
such that for any σ ∈ ∆̄ and t ∈ [0, 1) the following uniform partial C0-
estimate holds.

ρXσ ,ωt(ασ),k ≥ c,

where ρXσ ,ωt(ασ),k denotes the function on Xσ defined by

ρXσ ,ωt(ασ),k(x) := max |s(x)|hXσ,ωt(ασ),k
,

where s runs over s ∈ H0(Xσ,O(−kKX)) with
∫
Xσ
|s|2hXσ,ωt(ασ),k

(kωt(ασ))
n =

1 and hXσ ,ωt(ασ),k denotes a metric on −kKXσ whose curvature is kωt(ασ).

Proof. This follows from estimates in the proof of Lemma 5.6, Lemma 5.7 and
Lemma 5.8 in [F. Wang, X. Zhu]. Note that we can uniformly take constants
C in Lemma 5.6, B in Lemma 5.7 and c1, C in Lemma 5.8 independent of ασ,
since the constants of Theorem A in [Mab] and of Corollary 5.3 in [Zhu] can be
uniformly taken. Then it follows that any sequence (Xσi , ωti(ασi)) (ti → 1) is
a sequence of almost Kähler–Ricci solitons in the sense of [F. Wang, X. Zhu,
Definition 5.1]. Now we can deduce our estimate from [JWZ, Corollary 1.4],
[DoSu1, Lemma 3.4] and the argument after the lemma.

Now we can apply the arguments in [DoSu1] to the metric family

{(X,ωt(αs))}(t,s)∈[0,1)×[0,1],

under the above partial C0-estimate. Thus we have a sufficiently divisible
number k ∈ N with the following properties.
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1. The pair (Xσ, ωt(ασ)) defines a point Hilb(Xσ, ωt(ασ)) in the compact
Hausdorff topological space HilbT/UT by embedding Xσ into CPN us-
ing a unitary basis of H0(Xσ,O(−kKXσ)) with respect to the metric
ωt(ασ).

2. For any sequence (σi, ti) ∈ ∆× [0, 1], we have a subsequence such that
(Xσi , ωti(ασi)) converges in the ‘complexified’ Gromov–Hausdorff topol-
ogy to some Q-Fano variety X∞ with a Kähler–Ricci soliton (ω∞, ξ

′
∞).

3. After taking a further subsequence, the sequence Hilb(Xσi , ωti(ασi)) ∈
HilbT/UT converges in HilbT/UT to the point Hilb(X∞, ω∞) which is
similarly defined using a unitary embedding X∞ ↪→ CPN .

Proof of Proposition 3.2.18. Let {(X,ωt(α))}t∈[0,1) be the family of so-
lutions of the continuity method with an initial metric α. Suppose there
is a smooth Fano T -manifold with Kähler–Ricci soliton (X∞, ω∞) which is
the limit of a Gromov–Hausdorff convergent subsequence (X,ωti(α)). First
we show that the limit (X∞, ω∞) is uniquely determined independent of the
choice of the initial metrics α and the subsequences (X,ωti(α)). Suppose
α′ is another Kähler metric on X and (X,ωt′i

(α′)) → (X ′
∞, ω

′
∞) be a con-

vergent subsequence to a Q-Fano T -variety with Kähler–Ricci soliton. Set
αs := sα′ + (1 − s)α. As we noted right before this proof, we can find
a sufficiently divisible number kα ∈ N so that all (X,ωt(αs)) can be uni-
formly embedded using the unitary basis of H0(X,O(−kαKX)) with respect
to ωt(αs), which defines a point Hilb(X,ωt(αs)) ∈ HilbT/UT . Moreover,
we can assume (X∞, ω∞) and (X ′

∞, ω
′
∞) also define points Hilb(X∞, ω∞) ∈

HilbT/UT , Hilb(X
′
∞, ω

′
∞) ∈ HilbT/UT respectively, and Hilb(X,ωti(α)) →

Hilb(X∞, ω∞) ∈ HilbT/UT , Hilb(X,ωt′i
(α′)) → Hilb(X ′

∞, ω
′
∞) ∈ HilbT/UT .

These embeddings clearly define a continuous map [0, 1)× [0, 1]→ Hilb/UT :
(t, s) 7→ Hilb(X,ωt(αs)).

Suppose X∞ ≇ X ′
∞. If Hilb(X∞, ω∞)PGLT ∩ Hilb(X ′

∞, ω
′
∞)PGLT ̸= ∅,

then we obtain a test configuration of X∞ with the central fiber X ′
∞ from the

reductivity of the stabilizer AutT (X
′
∞), which allows to apply the étale slice

theorem [AHR, Theorem 2.1] and the Hilbert-Mumford theorem. Since the
central fiber admits a Kähler–Ricci soliton, the modified algebraic Futaki
invariant of this test configuration is zero. However, as X∞ has Kähler–
Ricci soliton and hence K-polystable, X ′

∞ must be isomorphic to X∞. This
contradicts to our assumption.
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So we have Hilb(X∞, ω∞)PGLT ∩Hilb(X ′
∞, ω

′
∞)PGLT = ∅. Then in par-

ticular we can take open neighbourhoodsBε(Hilb(X∞, ω∞)PGLT ), Bε′(Hilb(X
′
∞, ω

′
∞)UT )

separating the two closed subsets Hilb(X∞, ω∞)PGLT and Hilb(X ′
∞, ω

′
∞)UT .

Here we use a UT -invariant distance on HilbT to consider Bε and fix this
distance. Take UT -invariant open neighbourhoods V ⋐ V ′ ⊂ HilbT of
Hilb(X∞, ω∞)UT so that U|V ′ → V ′ parametrizes Fano T -manifolds appear-
ing in the family ϖ : X → B with central fiber X0 = X∞. We can assume
Hilb(X,ωti(α)) ∈ V/UT . From the finiteness of the fibers of the morphism
[B/R]→ KT,χ in Proposition 3.4.7, there are only finitely many isomorphism
classes of Fano T -manifolds with Kähler–Ricci solitons in this family that
can be the central fiber of some gentle degeneration of X. Putting ωi(σ) :=
ωσt′i+(1−σ)ti(ασ), we have a continuous curve Hilb(X,ωi(−)) : [0, 1]→ HilbT/UT .
Furthermore, putting

σi := sup{σ ∈ [0, 1] | Hilb(X,ωi(−))|[0,σ) ⊂ Bε(Hilb(X∞, ω∞)PGLT/UT )},

we obtain a sequence of almost Kähler–Ricci solitons in the sense of [F. Wang, X. Zhu].
So after taking a subsequence, we have a sequence (X,ωi(σi)) converging
to some Q-Fano T -variety admitting Kähler–Ricci soliton (X ′′

∞, ω
′′
∞) with

the convergent corresponding sequence Hilb(X,ωi(σi)) → Hilb(X ′′
∞, ω

′′
∞) in

HilbT/UT . Replacing ε with ε/2k, we can construct σi,k and X ′′
∞,k by the

same process.
Suppose there is infinitely many i for each k such that Hilb(X,ωi(σi,k)) /∈

V PGLT/UT . After taking subsequence, we know that

Hilb(X,ωi(σ
′
i,k)) ∈ ∂(V PGLT/UT ) ∩Bε/2k−1(Hilb(X∞, ω∞)PGLT/UT )

(3.15)

for
σ′
i,k := sup{σ ∈ [0, σi,k] | Hilb(X,ωi(−))|[0,σ) ⊂ V PGLT/UT}.

Since (X,ωi(σ
′
i,k)) is a sequence of almost Kähler–Ricci solitons for each k,

we can assume (X,ωi(σ
′
i,k))→ (X ′′′

∞,k, ω
′′′
∞,k) for some Q-Fano T -variety with

Kähler–Ricci soliton (X ′′′
∞,k, ω

′′′
∞,k). The diagonal argument shows that there

is a subsequence {(X,ωik(σ
′
ik,k

))}∞k=1 of {(X,ωi(σ
′
i,k))}i,k and a Q-Fano T -

varietyX ′′′
∞,∞ such that (X,ωik(σ

′
ik,k

))→ (X ′′′
∞,∞, ω

′′′
∞,∞) and Hilb(X,ωik(σ

′
ik,k

))→
Hilb(X ′′′

∞,∞, ω
′′′
∞,∞). Now from the property (3.15), we conclude Hilb(X ′′′

∞,∞, ω
′′′
∞,∞) ∈

Hilb(X∞, ω∞)PGLT \ Hilb(X∞, ω∞)PGLT . But this is absurd in the same
way as we have seen before.
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Therefore we can assume that for any large k, Hilb(X,ωi(σi,k)) is in the
neighbourhood V PGLT/UT except for only finitely many i. In this case,
the convergent sequence (X,ωi(σi,k)) → (X ′′

∞,k, ω
′′
∞,k) defines a convergent

sequence Hilb(X,ωi(σi,k))→ Hilb(X ′′
∞,k, ω

′′
∞,k) in HilbT/UT that is uniformly

away from Hilb(X∞, ω∞)PGLT because Hilb(X,ωi(σi,k)) ∈ ∂Bε/2k(Hilb(X∞, ω∞)PGLT/UT ).
It follows that X ′′

∞,k ≇ X∞. Since Hilb(X ′′
∞, ω

′′
∞,k) ∈ V ′PGLT/UT and each

there is a gentle degeneration of X with its central fiber X ′′
∞,k, there is only

finitely many isomorphism classes in {X ′′
∞,k}∞k=1. So we can assume X ′′

∞,k

is all isomorphic after taking subsequence. From the uniqueness of Kähler–
Ricci soliton, the sequence (X ′′

∞,k, ω
′′
∞,k) is constant and hence converges to

the limit (X ′′
∞,∞, ω

′′
∞,∞) ∼= (X ′′

∞,k, ω
′′
∞,k). It follows that Hilb(X

′′
∞,∞, ω

′′
∞,∞) ∈

Hilb(X∞, ω∞)PGLT from the fact

Hilb(X ′′
∞,k, ω

′′
∞,k) ∈ Bε/2k(Hilb(X∞, ω∞)PGLT ).

This is the last contradiction in this argument, which is now familiar to us.
Finally, we conclude X ′

∞
∼= X∞, so the limit is independent of the choice of

the initial metrics α and the subsequences ti.
Now we proceed to prove the uniqueness of the central fibers of gen-

tle degenerations of X. Let X → ∆ be a gentle degeneration. We have
a smooth family of Kähler metrics αs on Xs which extends the Kähler–
Ricci soliton α0 on the central fiber X0, thanks to the stability argument
of the Kähler condition in any sufficiently small deformation (see the last
chapter of [KM-book]). The uniqueness of the continuity path, proved in
[TZ1], shows that ωt(α0) = α0, so we can find a sequence ti → 1 and
si → 0 ∈ ∆ so that (X,ωti(αsi)) converges to (X0, α0). We can show that the
sequence (X,ωt′i

(αsi)) also converges to (X0, α0) for any sequence t′i → 1 by
a similar argument as above (compare [LWX1, Lemma 6.9. (1)]). Consider

some convergent sequence (X,ωtm(αsi))
tm→1−−−→ (X∞,i, ω∞,i) and a sequence

t′i → 1 so that dGH((X∞,i, ω∞,i), (X,ωt′i
(αsi))) < 1/i. The diagonal argu-

ment shows that (X∞,i, ω∞,i)→ X0. Since X0 is a smooth Fano T -manifold,
X∞,i is also smooth for large i. From what we have shown in the above
argument, it follows that for any fixed Kähler metric α on X, we obtain

(X,ωt(α))
t→1−−→ (X∞,i, ω∞,i) for each i, so especially (X∞,i, ω∞,i) are all iso-

morphic to each other. Now we conclude (X,ωt(α))
t→1−−→ (X0, α0) where the

limit is independent of the choice of the initial metrics α and the sequence
is also independent of the choice of the central fibers (X0, α0) of the gentle
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degenerations. So for another central fiber (X ′
0, α

′
0) of another gentle degen-

eration X ′ → ∆ of X, we also have (X,ωt(α))
t→1−−→ (X ′

0, α
′
0). It follows that

(X ′
0, α

′
0) is isomorphic to (X0, α0) from the uniqueness of the limit. This is

what we expected.

3.5 Discussions

3.5.1 On some examples

Here we observe step by step some known examples of Fano manifolds ad-
mitting Kähler–Ricci solitons. Although the existence is known, as far as
the author knows, even the associated holomorphic vector fields ξ′ are not
explicitly given in almost all examples.

Example 3.5.1. The blowing-up of CP 2 at one point is a typical example of
Fano manifold admitting non-Einstein Kähler–Ricci solitons. This seems the
first example of a compact complex manifold proved to admit Kähler–Ricci
solitons, which was found by Koiso [Koi] and Cao [Cao], independently.

Example 3.5.2 (toric Fano manifolds). It is shown in [X-J. Wang, X. Zhu]
and reproved by [DaSz] from the K-stability viewpoint that every toric Fano
manifold admit Kähler–Ricci soliton and it is Kähler–Einstein if and only
if the barycenter of the canonical polytope coincides with the origin. Note
that the maximal torus action on a toric Fano manifold is not necessarily
K-optimal.

Every toric Fano manifold is rigid, i.e. H1(X,ΘX) = 0, where ΘX denotes
the tangent sheaf ([BieBri, Proposition 4.2.]). It follows that toric Fano
manifolds give discrete points in the moduli space KRGH(n).

Example 3.5.3 (Fano homogeneous toric bundles). It is shown in [PS] and re-
covered in [Hua] that Fano homogeneous toric bundles have Kähler–Ricci soli-
tons. This is a generalization of the main result in [X-J. Wang, X. Zhu]. It is
again proved in [BieBri, Proposition 4.2.] that Fano homogeneous toric bun-
dles are rigid (see also [BieBri, Proposition 2.2.1.], [T. Del, Example 3.10.]).

Example 3.5.4 (horospherical Fano manifolds). It is shown in [T. Del] from
the K-stability viewpoint and reproved by [F. Del] that every horospherical
Fano manifold admits Kähler–Ricci soliton. This is a generalization of one
of the main results in [PS].
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Horospherical Fano manifolds with Picard number one (b2 = 1) are clas-
sified in [Pas]. There is a unique horospherical Fano manifold (with an action
of the complex G2 group) in this classified class which admits a non-trivial
small deformation. We can see as follows (or just by checking the criterion in
[T. Del]) that the Kähler–Ricci soliton on this horospherical Fano manifold
X0 is not Kähler–Einstein. It is shown in [PP] that the Kuranishi family
of this horospherical Fano manifold X0 is given by an iso-trivial degenera-
tion X → C of the orthogonal Grassmanian Grq(2, 7). As the Grassmanian
Grq(2, 7) is homogeneous, it admits Kähler–Einstein metric ([Mat2]). If X0

admits Kähler–Einstein metric, then we get a contradiction by the separation
property of Kähler–Einstein Fano manifolds ([SSY, LWX1]) as the deforma-
tion X → C is iso-trivial and the general fibre admits Kähler–Einstein metric.
Thus we conclude that X0 cannot admit Kähler–Einstein metrics, while it
admits Kähler–Ricci soliton explained as above.

This example shows that the family X → C is not in the category K(n),
though any fibers in the family, which are isomorphic to either Grq(2, 7) or
X0, admit Kähler–Ricci solitons. We have to separate them into two pieces
X ∗ → C∗ and X0 → {0} as the associated holomorphic vector fields jump at
the origin.

It seems interesting to study whether any horospherical Fano manifolds
are K-rigid, which means H1

T (X,ΘX) = 0 for a K-optimal action X ↶ T .

Example 3.5.5 (Fano manifolds with complexity one). It is shown in [IS] and
[CabSüs] that complexity one Fano threefolds of type 2.30, 2.31, 3.8*, 3.18,
3.21, 3.22, 3.23, 3.24, 4.5* and 4.8 from Mori and Mukai’s classification [MM]
admit non-Einstein Kähler–Ricci soliton.

Especially 3.8 and 4.5 admit deformations, so H1
T (X,Θ)�AutT (X) might

be not mere a point.

The productX×Y of two Fano manifoldsX,Y with Kähler–Ricci solitons
admits Kähler–Ricci solitons. So for instance, suppose X is a Del Pezzo
surface of degree 1 ≤ d ≤ 4 and Y is the blowing-up of CP 2 at one point,
thenX×Y admits non-Einstein Kähler–Ricci solitons. By deformingX while
fixing Y , we get a T -equivariant deformation of X × Y where X × Y ↶ T
is induced from the K-optimal action Y ↶ T . So X × Y provides a non
discrete point in the moduli space KRGH(n) outside of the subset K0,GH(n)
consisting of Kähler–Einstein Fano manifolds.

Dancer–Wang’s examples [DW] may also provide non discrete points in
the moduli space.
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3.5.2 Future studies

Questions on the structure of the moduli space

Question 3.5.6. Study explicit examples of (T, χ) or (M,ω, T ) with non-
trivial T whose moduli space KT,χ or K(M,ω, T ) has positive dimension and
has a concrete description on its structure.

The author does not have any concrete description of positive dimensional
moduli spaces K(M,ω, T ) so far. Related studies in the Kähler–Einstein case
(i.e. T = 0) are explored by [OSS, SS, LiuXu].

Question 3.5.7. Is the complex analytic space KT,χ actually quasi-projective?

This question is related to the result in [LWX2] where the quasi-projectivity
of the moduli space of Fano manifolds with Kähler–Einstein metrics is proved.

When T is non-trivial, even the finiteness of the number of the connected
components of KT,χ is still unknown, even though it has a natural topological
compactification as a moduli space.

Question 3.5.8. Is there a canonical complex analytic structure on the com-
pact topological space KRGH(n)? How about on the space KRGH(n) \
KRGH(n)? Can we identify them with algebraic spaces, or moreover with
projective schemes?

This is related to the work of [Oda3, LWX1]. The techniques in this
chapter do not work, at least directly, in the singular setting.

Question 3.5.9. Is there a canonical complex analytic (or algebraic) moduli
space of Q-Fano varieties with Kähler–Ricci solitons?

In all questions, it seems better to investigate modified K-stability from
more algebro-geometric perspectives, possibly with some help of differential
geometry.

Questions related to the extent of the moduli space

Question 3.5.10. Are there any non-gentle/modified K-unstable examples of
Fano manifolds with Picard number one? How about birationally rigid Fano
manifolds with Picard number one?

This is a refined question related to the Odaka-Okada conjecture [OO].
Two modified K-unstable examples are given in [T. Del], but both have the
Picard number greater than one. The following is an optimistic conjecture
towards a framework for classification of K-unstable Q-Fano varieties.
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Conjecture 3.5.11. Let X be a Q-Fano variety.

1. If X is not modified K-semistable, there is a (non-equivariant) R-
degeneration (cf. [DeSz, CSW]) of X whose central fiber is a modified
K-semistable Q-Fano variety whose H-invariant attains the infimum of
the H-invariants over all R-degenerations. Moreover, these degenera-
tions are unique up to isomorphisms.

2. If X is modified K-semistable with respect to a torus action T , then
there is a T -equivariant degeneration X ′ → ∆ of X whose central
fiber X ′

0 is a K-polystable Q-Fano T -variety (modified K-polystable
with respect to the T -action). Moreover, any two such T -equivariant
degenerations X ′

1 → ∆,X ′
2 → ∆ are equivalent up to scaling in the

sense of the T -equivariant version of [BHJ, Definition 6.1.], not only
they have isomorphic central fibres.

This conjecture is related to [CSW, Conjecture 3.7.] and is an analogy
of the Harder-Narasimhan filtration for torsion-free coherent sheaves and the
Jordan-Hölder filtration for semistable coherent sheaves (see [HL-book]) as
already observed in [DeSz, Remark 3.6.]. We include the singular case for
the future application to the Question 3.5.9.

For the first item, [CSW] shows that every smooth Fano manifold X has
an R-degeneration with the Q-Fano central fiber X0 and there is an another
degeneration X ′ → ∆ of X0 with the modified K-polystable Q-Fano central
fiber X ′

0 with the K-optimal vector ξ′, which can be extended to X0 with the
vanishing modified Futaki invariant (see also [DeSz]). So as for the existence,
it suffices to prove the modified K-semistability of X0. Since (X ′

0, ξ
′) is K-

polystable, the problem is reduced to the ‘stability of K-semistability in small
deformations’, which is related to the Artinness of the Can-stack consisting
of K-semistable Q-Fano T -varieties, as in Proposition 3.4.4. It is remarkable
that if X is K-unstable (with respect to the trivial torus action), then X ′

0

must be endowed with non-Einstein Kähler–Ricci solitons ([CSW, p. 17]).
The existence part of the second item is confirmed in [DaSz] for smooth

modified K-semistable Fano T -manifolds. The uniqueness of the central fiber
in this case could be demonstrated by the same methods in [LWX1], which is
a role model of our proof of Proposition 3.2.18. (We worked with the smooth
central fiber because the author felt that it makes arguments clear. )
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The uniqueness assertion in the second item is stronger than the unique-
ness of the central fiber. This stronger uniqueness (for every smooth gentle
Fano T -manifold X) has the following application.

Corollary 3.5.12 (of the uniqueness statement of Conjecture 3.5.11 (2)).
The moduli space KT,χ → KT,χ we constructed in Theorem 3.4.8 is good
in the sense of Alper [Alp1]. (In our case, the cohomological affineness
should be defined as the exactness of the push-forward functor Coh(KT,χ)→
Mod(KT,χ). )

Actually, using the uniqueness of the degeneration in the sense of [BHJ],
we can show that the étale morphism [B/R]→ KT,χ is an open embedding.
Then the corollary follows from the fact that [BKc/Kc] → BKc � Kc is
a good moduli space. Recall that we have already shown the central fiber
of the degeneration is unique, which we used to prove that the morphism
[B/R] → BKc �Kc factors through Im[B/R] ⊂ KT,χ. There may be other
ways to show this naturally expected corollary.

3.6 Appendix: Complex analytic stacks

In this Appendix A, we briefly review some general notions and examples of
stacks which we used in section 4. As we work only over the category (or
more precisely, the site) Can of complex spaces, we do not introduce stacks
in full generality, which actually work over any site such as the étale sites
of schemes or algebraic spaces, the site of C∞-manifolds and so on. The
interested readers should also refer to [SPA, FGA-book] for stacks in full
generality.

3.6.1 Fibred category

Recall that we denote by Can the category of complex spaces, which are not
assumed to be reduced nor irreducible. The set of holomorphic morphisms
between complex spaces U and V is denoted by Holo(U, V ).

Definition 3.6.1 (fibred category). Let F be a category and p : F → Can
be a functor to the category of complex spaces. The functor p : F → Can
is called a fibred category over Can if it satisfies the following properties.
For any holomorphic morphism f : X → Y between complex spaces and
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any object η ∈ Obj(F), there exists an object ξ ∈ Obj(F) and a strongly
cartesian morphism ϕ : ξ → η ∈ Mor(F) over f .

Here the morphism ϕ : ξ → η is called strongly cartesian if it enjoys the
following universal property: for any complex space X ′, any holomorphic
morphism g : X ′ → X, any object ξ′ ∈ Obj(F) with p(ξ′) = X ′ and any
morphism ϕ′ : ξ′ → η ∈ Mor(F) with p(ϕ′) = f ◦ g, there exists a unique
morphism χ : ξ′ → ξ such that ϕ′ = ϕ ◦ χ and p(χ) = g.

F ξ′ ξ η

Can X ′ X Y

p

ϕ′

χ ϕ

g

f◦g

f

Let X be a complex space and p : F → Can be a fibred category. We
denote by F(X) the subcategory of F consisting of objects ξ ∈ Obj(F)
with p(ξ) = X and morphisms ϕ with p(ϕ) = idX . We call F (or more
precisely F → Can) a category fibred in groupoids if morphisms in F(X)
are all invertible for any complex space X.

A functor f : F → G between two fibred categories is called a morphism
of fibred categories if pF = pG ◦ f (strictly) and f maps strongly cartesian
morphisms in F to strongly cartesian morphisms in G. We can also consider
2-morphisms between two (1-)morphisms f, g : F → G which are just natural
transformations t : f → g satisfying pG(tξ : f(ξ) → g(ξ)) = idpF (ξ) for all
ξ ∈ Obj(F).

The functor CanX → Can : (ξ : S → X) 7→ S, where CanX denotes
the category of holomorphic morphisms ξ : S → X, is a typical example of
category fibred in groupoids (actually in sets). A holomorphic morphism of
complex spaces f : X → Y gives the morphism CanX → CanY which maps
an object ξ : S → X to the object f ◦ ξ : S → Y . On the other hand,
a morphism f : CanX → CanY as fibred categories gives a holomorphic
morphism f(idX) : X → Y . Therefore, we have a canonical fully faithful
embedding of Can to the (2-)category of fibred categories. So we often
abbreviate CanX as X.

Example 3.6.2. Let a : X×G→ X be a holomorphic action of a complex Lie
group G to a complex space X. We denote by [X/G]p

1 the fibred category

1The symbol p means that this fibred category is not a stack in general; it is just a
pre-stack.

180



(in groupoids) defined as follows.

1. Its objects are holomorphic morphisms ξ : S → X from some complex
spaces S.

2. Its morphisms ξS → ηT are the pairs (f, ϕ) of holomorphic morphisms
f : S → T and ϕ : S → X ×G satisfying p1 ◦ ϕ = ξ and a ◦ ϕ = η ◦ f .

3. Its functor [X/G]p → Can maps objects ξS to S and morphisms (f, ϕ) :
ξS → ηT to f : S → T .

Objects in the fibred category [X/G]p coincide with X = CanX , but
morphisms are different. For instance, two objects x, y : pt → X in [X/G]p
are isomorphic if and only if there exists an element g ∈ G with xg = y. We
have the morphism X → [X/G]p of fibred categories defined by ξS 7→ ξS.

There is another related fibred category JX/GK with a good geometric
feature.

Example 3.6.3. We denote by JX/GK the fibred category (in groupoids) de-
fined as follows.

1. An object consists of a triple (S, P, ξ) where S is a complex space,
P is a principal G-holomorphic bundle over S and ξ : P → X is a
G-equivariant holomorphic morphism.

2. A morphism (S, P, ξ)→ (T,Q, η) is a pair (f, ϕ) where f : S → T is a
holomorphic morphism and ϕ : P → Q is a G-equivariant holomorphic
morphism over f which induces an biholomorphism P ∼= S ×T Q, and
satisfies ξ = ξ′ ◦ ϕ.

3. Its functor JX/GK → Can maps objects (S, P, ξ) to S and morphisms
(f, ϕ) : (S, P, ξ)→ (T,Q, η) to f : S → T .

We have the morphism [X/G]p → JX/GK of fibred categories which maps
an object ξ : S → X to the object (S, S ×G, a ◦ (ξ × idG)) and a morphism
(f, ϕ) : ξS → ηT to the morphism (f, f ×ϕ). This is a typical example of the
‘stackification’ we treat in the next subsection. The fibred category JX/GK
is called a quotient stack.

When the action is proper free, then there exists a complex space X/G,
a holomorphic morphism X → X/G and an isomorphism X/G ∼= JX/GK of
fibred categories, which is compatible with X → X/G and X → JX/GK.

Let us see another example generalizing [X/G]p. A holomorphic groupoid
consists of the following data (X,R, s, t, c):
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1. X and R are complex spaces.

2. s and T are holomorphic morphisms from R to X.

3. c : R×s,X,t R→ R is a holomorphic morphism.

These data are to satisfy the following rules for any complex space S:

1. For every holomorphic morphism ξ ∈ Holo(S,X), there exists a holo-
morphic morphism eξ ∈ Holo(S,R) such that c ◦ (eξ × ϕ) = ϕ and
c ◦ (ψ × eξ) = ψ for any pairs (eξ, ϕ), (ψ, eξ) with s ◦ eξ = t ◦ ϕ and
s ◦ ψ = t ◦ eξ.

2. The equality c ◦ ((c ◦ (ϕ× ψ))× χ) = c ◦ (ϕ× (c ◦ (ψ × χ))) holds for
any ϕ, ψ, χ ∈ Holo(S,R) with s ◦ ϕ = t ◦ ψ and s ◦ ψ = t ◦ χ.

3. For any ϕ ∈ Holo(S,R), there exists a ψ ∈ Holo(S,R) such that s◦ϕ =
t ◦ ψ = ξ, s ◦ ψ = t ◦ ϕ = η and c ◦ (ϕ× ψ) = eη, c ◦ (ψ × ϕ) = eξ.

This condition is equivalent to say that Holo(S,X) forms an abstract groupoid
whose morphisms ξ → η are ϕ ∈ Holo(S,R) with s ◦ ϕ = ξ and t ◦ ϕ = η,
and composition is given by c.

A holomorphic group action a : X×G→ X gives an example of holomor-
phic groupoid with R = X ×G, s = p1, t = a and c = id×µ : X ×G×G→
X ×G. If u : U → X is a holomorphic morphism, then we can consider the
pull-back holomorphic groupoid (U, (U × U)×u×u,X×X,s×t R, s

′, t′, c′).

Example 3.6.4. We denote by [X/R]p the fibred category (in groupoids) de-
fined as follows.

1. Its objects are holomorphic morphisms ξ : S → X from some complex
spaces S.

2. Its morphisms ξS → ηT are the pairs (f, ϕ) of holomorphic morphisms
f : S → T and ϕ : S → R satisfying s ◦ ϕ = ξ and t ◦ ϕ = η ◦ f .

3. Its functor [X/R]p → Can maps objects ξS to S and morphisms (f, ϕ) :
ξS → ηT to f : S → T .

Here is our interested fibred category from Definition 3.4.1.

Lemma 3.6.5. The category KT,χ and Ks
T,χ forms a fibred category by the

functor K(s)
T,χ → Can : (π :M→ S, α) 7→ S.
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This is just because the following cartesian diagram gives a cartesian
morphism for any holomorphic morphism f : X → Y between complex
spaces and any object (π :M→ Y, α) ∈ K(s)

T,χ.

X ×Y M M

X Y

π

f

The correspondence (π :M→ Y, α) 7→ (f ∗π : X ×Y M→ X, f ∗α) gives
a functor KT,χ(Y ) → KT,χ(X). It looks like that this provides a functor
X 7→ KT,χ(X) from the category Can to the “category” of groupoids, but
actually does not. This nuisance comes from the set theoretical fact that
X ×f,Y (Y ×g,Z M) ̸= X ×g◦f,Z M; they are not exactly the same objects
but just naturally isomorphic. This is the reason why we should formulate
things in terms of fibred category.

3.6.2 Descent data

We introduce descent data of a fibred category over Can.

Definition 3.6.6 (descent data). Let p : F → Can be a fibred category, X
be a complex space, U := {iα : Uα ↪→ X}α∈A be an open cover of X (in the
real topology). We denote by uα,β : Uα ∩ Uβ ↪→ Uα the inclusion morphism
to the first factor and by uαβ,γ : Uα ∩ Uβ ∩ Uγ ↪→ Uα ∩ Uβ the inclusion
morphism to the intersection of the first and second factor (uαβ,γ = uβα,γ).
Put A2 := A× A/S2, A3 := A× A× A/S3.

A descent datum of F over (X,U) consists of the following data D =
(Ξ1,Ξ2,Ξ3,Θ2,Θ3):

Ξ1 := {ξα ∈ F(Uα)}α∈A
Ξ2 := {ξαβ ∈ F(Uα ∩ Uβ)}{α,β}∈A2

Ξ3 := {ξαβγ ∈ F(Uα ∩ Uβ ∩ Uγ)}{α,β,γ}∈A3

are sets of objects in F and

Θ2 := {θα,β : ξαβ → ξα | θα,β is cartesian over uα,β}(α,β)∈A2

Θ3 := {θαβ,γ : ξαβγ → ξαβ | θαβ,γ is cartesian over uαβ,γ}({α,β},γ)∈A2×A
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are sets of cartesian morphisms in F . These data must satisfy

θα,β ◦ θαβ,γ = θα,γ ◦ θγα,β

for any α, β, γ ∈ A.

F Can

ξαβγ ξβγ Uαβγ Uβγ

ξαβ ξβ Uαβ Uβ

ξγα ξγ Uγα Uγ

ξα Uα X

p

θβγ,α

θγα,β

θαβ,γ

θγ,β

θβ,γ

uβγ,α

uγα,β

uαβ,γ

uγ,β

uβ,γ

θβ,α uβ,α

iβ
θγ,α

θα,γ

uγ,α

uα,γ iγ

θα,β uα,β

iα

A descent datum D = (Ξ1,Ξ2,Ξ3,Θ2,Θ3) is called effective if there exists
an object ξ ∈ F(X) and a set of morphisms

Θ1 := {θα : ξα → ξ | θα is cartesian over iα}α∈A

satisfying
θα ◦ θα,β = θβ ◦ θβ,α

for any α, β ∈ A. We define an effective descent datum of F over (X,U) to
be an object consisting of data D+ = (D, ξ,Θ1) = (ξ,Ξ1,Ξ2,Ξ3,Θ1,Θ2,Θ3)
as above.

Remark 3.6.7. Note that

• Every descent datum of CanX is effective.

• There are descent data of [X/G]p which are not effective, in general.

• Every descent datum of JX/GK is effective.

As for the second item, consider the fibred category [(C2 \ {0})/C∗]p
for example. More explicitly, let U be an open cover of CP 1 defined by
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two open subsets Uα := {(z1 : z2) | z2 ̸= 0}, Uβ := {(z1 : z2) | z1 ̸= 0}
and let ξα : Uα → C2 \ {0}, ξβ : Uβ → C2 \ {0} be morphisms defined by
ξα(z1 : z2) := (z1/z2, 1), ξβ(z1 : z2) := (1, z2/z1), respectively. Consider a
descent datum over (CP 1,U) with Ξ1 := {ξα, ξβ} given by an obvious way.
In order to be effective, this descent datum should define a non-constant
morphism CP 1 → C2 \ {0} which is isomorphic (not equal) to ξα, ξβ when
restricted to each open set, but this is impossible as every holomorphic map
CP 1 → C2 \ {0} is constant. So this descent datum is not effective in this
fibred category.

On the other hand, the corresponding descent datum in the fibred cat-

egory J(C2 \ {0})/C∗K becomes effective, completed by the object CP 1 C∗
←−

(C2 \ {0}) id−→ (C2 \ {0}) in J(C2 \ {0})/C∗K. Actually, J(C2 \ {0})/C∗K is
isomorphic to CP 1 as fibred categories.

Definition 3.6.8 (morphism of descent data). Let D = (Ξ1,Ξ2,Ξ3,Θ2,Θ3),
D′ = (Ξ′

1,Ξ
′
2,Ξ

′
3,Θ

′
2,Θ

′
3) be two descent data of F over (X,U). A morphism

from D to D′ is a triple Φ = (Φ1,Φ2,Φ3) of sets of morphisms

Φ1 := {ϕα : ξα → ξ′α ∈ F(Uα) | ξα ∈ Ξ1, ξ
′
α ∈ Ξ′

1}α∈A
Φ2 := {ϕαβ : ξαβ → ξ′αβ ∈ F(Uα ∩ Uβ) | ξαβ ∈ Ξ2, ξ

′
αβ ∈ Ξ′

2}{α,β}∈A2

Φ3 := {ϕαβγ : ξαβγ → ξ′αβγ ∈ F(Uα ∩ Uβ ∩ Uγ) | ξαβγ ∈ Ξ3, ξ
′
αβγ ∈ Ξ′

3}{α,β,γ}∈A3

in F satisfying

ϕα ◦ θα,β = θ′α,β ◦ ϕαβ and ϕαβ ◦ θαβ,γ = θ′α,β,γ ◦ ϕαβγ

for all α, β, γ ∈ A. Descent data naturally form a category with these mor-
phisms. We denote by Fdes(X,U) the category of descent data.

Let D+ = (D, ξ,Θ1), D
′
+ = (D′, ξ′,Θ′

1) be two effective descent data of F
over (X,U). A morphism from D+ to D′

+ is a quadruple Φ+ = (ϕ,Φ1,Φ2,Φ3)
where (Φ1,Φ2,Φ3) gives a morphism of corresponding descent data and ϕ :
ξ → ξ′ is a morphism in F(X) satisfying

ϕ ◦ θα = θ′α ◦ ϕα

for any α ∈ A. We denote by F eff(X,U) the category of effective descent
data.
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3.6.3 Stacks over the complex analytic site Can

We can consider the forgetful functors F eff(X,U) → Fdes(X,U) defined
by D+ = (D, ξ,Θ1) 7→ D and F eff(X,U) → F(X) defined by D+ =
(D, ξ,Θ1) 7→ ξ. The latter functor F eff(X,U) → F(X) is fully faithful
and essentially surjective. Therefore there is an inverse functor F(X) →
F eff(X,U) (assuming the axiom of global choice). As for our fibred category
KT,χ, there is a canonical choice2 of the inverse functor defined by

(π :M→ S) 7→ (M→ S, {π−1(Uα)→ Uα}α, {π−1(Uα∩Uβ)→ Uα∩Uβ}α,β, . . .).

However, in general there is no canonical choice of this inverse functor; there
needs an additional choice of (D,Θ1) compatible to ξ, which is not unique
as object but unique only up to isomorphisms.

Definition 3.6.9 (Can-stack). A fibred category p : F → Can is called a
stack over Can or just Can-stack if it satisfies the following two conditions
for any complex space X and any open cover U of X.

1. The functor F eff(X,U)→ Fdes(X,U) is fully faithful.

2. The functor F eff(X,U)→ Fdes(X,U) is essentially surjective.

Remark 3.6.10. If we have a choice of pull back f 7→ f ∗ξ with a morphism
f ∗ξ → ξ so that it is cartesian over f : S → X, we can consider a contravari-
ant functor defined by

MorX(ξ, η) : Can
op
X → Sets : (f : S → X) 7→ HomF(S)(f

∗ξ, f ∗η),

where Canop
X stands for the opposite category of CanX . Then the first condi-

tion of the above definition is equivalent to say that the functor MorX(ξ, η)
is a sheaf on the site CanX .

It is customary to denote by IsomX(ξ, η) the functor MorX(ξ, η) when F
is a category fibred in groupoids, as every morphism in F(X) is an isomor-
phism.

We can consider a related fibred category MorX(ξ, η) (in setoids) with-
out a choice of pull back. The category consists of objects (fS, ϕξ, ϕη) where

2This is well-defined because Uα∩Uβ = Uβ∩Uα as complex spaces, in particular as sets.
On the other hand, Uα×XUβ ̸= Uβ×XUα as sets, though they are canonically isomorphic,
because of the set theoretical fact (a, b) = {{a}, {a, b}} ̸= {{b}, {b, a}} = (b, a).
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f : S → X is a holomorphic morphism of complex spaces and ϕξ : ξS →
ξ, ϕη : ηS → η ∈ Mor(F) are cartesian arrows over f . Its morphisms
(fS, ϕξ, ϕη) → (fS′ , ϕ′

ξ, ϕ
′
η) are triples (g, ψξ, ψη) where g : S → S ′ is a holo-

morphic morphism of complex spaces and ψ : ξS → ξS′ , ψη : ηS → ηS′ are
cartesian arrows over g satisfying fS = fS′ ◦ g, ϕξ = ϕ′

ξ ◦ψξ and ϕη = ϕ′
η ◦ψη.

For any fibred category, we can always associate a stack in a canonical
way. Here is the fact from [SPA, TAG 02ZN, 0435].

Proposition 3.6.11. Let p : F → Can be a fibred category. Suppose we
have a choice of pull back (f, ξ) 7→ f ∗ξ (just for simplicity). Then there exists
a Can-stack F ′ (with a choice of pull back) and a morphism s : F → F ′ of
fibred categories with the following properties.

1. For every complex space X and any ξ, η ∈ Obj(F(X)), the mor-
phism of presheaf MorX(ξ, η) → MorX(s(ξ), s(η)) is a sheafification
of MorX(ξ, η).

2. For every complex space X and any ξ′ ∈ Obj(F ′(X)), there exists an
open cover U = {iα : Uα → X}α of X such that i∗αξ

′ is isomorphic to
s(ξα) for some ξα ∈ Obj(F) for every α.

3. Given a Can-stack G and a morphism g : F → G of fibred categories,
there exists a morphism g′ : F ′ → G of fibred categories such that
there exists a 2-isomorphism between g and g′ ◦ s.

The last property actually follows from the first two properties. A stack
F ′ with the last property is called a stackification of F and the stack F ′

constructed in the proof of this proposition as the stackification of F (a fixed
construction is in mind). We denote by [X/G], [X/R] the stackification of
the fibred category [X/G]p, [X/R]p respectively and call them the quotient
stack. The stack JX/GK is a stackification of the fibred category [X/G]p, so
it is (canonically) isomorphic to the stackification [X/G].

A 2-fibre product [SPA, 003Q] of fibred categories can be calculated as
follows. We refer to this construction as the 2-fibre product of fibred cate-
gories.

Proposition 3.6.12. Let F ,G,H be fibred categories over Can and f :
F → H, g : G → H. The fibred category E defined as follows enjoys the
universal property of 2-fibre product.
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1. An object of E is a quadruple (X, ξ, η, ϕ) where X is a complex space,
ξ is an object in F(X), η is an object in G(X) and ϕ : f(ξ)→ g(η) is
an isomorphism in H(X).

2. A morphism (X, ξ, η, ϕ)→ (Y, ξ′, η′, ϕ′) is a pair (σ, τ) where σ : ξ → ξ′

is a morphism in F and τ : η → η′ is a morphism in G satisfying
p(σ) = p(τ) : X → Y and g(τ) ◦ ϕ = ϕ′ ◦ f(σ).

WhenF ,G,H are all Can-stacks, the stackification of the fibred category
E is denoted by F×f,H,gG. The Can-stack F×f,H,gG satisfies the universal
property of 2-fibre product in the 2-category of Can-stacks.

The following verifying process might help the readers’ better under-
standing of the notion of descent. See Definition 3.4.1 for the definition
of KT,χ,Ks

T,χ.

Lemma 3.6.13. The fibred categories KT,χ, Ks
T,χ are Can-stacks.

Proof. For abbreviation, we let M stand for (π : M → S, α) ∈ KT,χ.
Let S be a complex space, U = {Uα}α be an open cover of S and D =
(Ξ1,Ξ2,Ξ3,Θ2,Θ3) be a descent datum of KT,χ over (X,U). Since θα,β ∈ Θ2

is cartesian, it induces an isomorphism

θ̃α,β :Mαβ
∼−→Mα|Uα∩Uβ .

So we obtain an isomorphism

θ′βα := θ̃β,α ◦ θ̃−1
α,β :Mα|Uα∩Uβ

∼−→Mβ|Uα∩Uβ .

Similarly, we obtain an isomorphism

(θ̃β,α|Uαβγ ◦ θ̃βα,γ) ◦ (θ̃α,β|Uαβγ ◦ θ̃αβ,γ)−1 :Mα|Uαβγ
∼−→Mβ|Uαβγ

which we denote by θ′βα,γ, from the cartesian arrow θαβ,γ ∈ Θ3.
From the condition θα,β ◦θαβ,γ = θα,γ ◦θγα,β, we obtain θ′γβ,α◦θ′βα,γ = θ′γα,β

and θ′βα|Uα∩Uβ∩Uγ = θ′βα,γ. So we can glueMα together by gluing maps θ′βα
and obtain a complex spaceM with a natural set of morphisms Θ1 := {θα :
Mα → M}α∈A such that (M,Ξ1,Ξ2,Ξ3,Θ1,Θ2,Θ3) is an effective descent
datum. Therefore the forgetful functor Feff(S,U)→ Fdes(S,U) is essentially
surjective.

It is easy to see that MorS(M,M′) is a sheaf on the site CanX .
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Example 3.6.14. This example is cited from [Alp1, Example 8.2] and must
help the readers to understand that gluing good moduli spaces is a non-
trivial task. Consider the C∗-action on C2 by the scalar multiplication. The
quotient stack [(C2 \ {0})/C∗] is naturally an open sub-stack of the quotient
stack [C2/C∗]. Both stacks admit good moduli spaces [(C2 \ {0})/C∗] →
CP 1, [C2/C∗] → C2 � C∗ = pt respectively. In spite of the openness of the
morphism [(C2 \ {0})/C∗] → [C2/C∗], the induced morphism CP 1 → pt of
good moduli spaces is not open.
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Chapter 4

Application of Theorem G:
Algebraic moduli problems on
Q-Fano varieties with KRs

Theorem G in chapter 3 enables us to approach the problem on compact-
ification of the moduli space of Fano manifolds with Kähler–Ricci solitons.
When the author wrote [Ino1], Theorem G was missing, so that the author
was unable to apply established methods in [Oda2, Oda3, LWX1] on the
moduli space of Kähler–Einstein Fano varieties. This is why the author de-
veloped another method to construct the moduli space of Fano manifolds
with Kähler–Ricci solitons, making use of moment map picture on µ-scalar
curvature. Now we have filled the missing piece and so are able to apply
the methods in [Oda2, Oda3, LWX1]. We will prove the algebraicity of the
moduli space constructed in the previous section. We also outline how we
can reduce the moduli problem to a fundamental task on µK-stability; Con-
jecture I.

The content is based on the article [Ino3].
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4.1 Algebraic moduli space of Fano manifolds

with KRs

4.1.1 Constructibility

The YTD conjecture on µK-stability of Fano varieties

We firstly prepare some terminologies. For a Q-Fano T -variety X, we call a
vector ξ ∈ t K-optimal if we have Fut2πξ |t ≡ 0. Such a vector ξ always exists
and is unique for each T -action by [TZ2, Lemma 2.2]. A torus action on a Q-
Fano variety X is called K-optimal if the torus is generated by the K-optimal
vector ξ of some maximal torus action in X. All K-optimal actions on X are
conjugate to each other since the K-optimal vector associated to a maximal
torus is unique and all maximal tori are conjugate to each other. We call
a Q-Fano T -variety X µK-semistable (resp. µK-polystable, µK-stable) if T
is K-optimal and the polarized variety (X,−KX) is µ2π

ξ K-semistable (resp.
µ2π
ξ K-polystable, µ2π

ξ K-stable) with respect to the K-optimal vector ξ.

Conjecture I. Let X be a Q-Fano variety admitting Kähler–Ricci soliton
with a K-optimal torus action T . Then it is µK-polystable with respect to
general T -equivariant test configurations.

It is already known by [BW] that a Q-Fano variety with Kähler–Ricci
soliton is µK-polystable with respect to special degenerations. There are two
possible approaches to this conjecture from different perspectives:

• Algebraic approach: As Li–Xu [LX] for the usual K-stability, we show
that the µK-polystability of a Q-Fano variety with respect to general
test configurations and with respect to special degenerations are equiv-
alent.

• Analytic approach: As Berman–Darvas–Lu [BDL] for the usual K-
stability with smooth X, studying µλ

ξ -Mabuchi functional, we show

that any test configuration with vanishing µλ
ξ -Futaki invariant is equiv-

alent to a product configuration under the existence of µλ
ξ -cscK metric.

For our interest in this section, it suffices to deal with smoothable Q-Fano
variety. We already know that a Fano manifold with Kähler–Ricci soliton is
µK-semistable with respect to general test configurations. So in the smooth
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case, it is a matter of dealing with test configurations with vanishing µ-Futaki
invariant.

The converse claim ‘from polystability to the existence of canonical met-
ric’ is in general regarded as a difficult direction of the Yau–Tian–Donaldson
conjecture. However, for Fano manifolds, it is already proved by Datar–
Székelyhidi [DaSz] and [Y. Li] that a µK-polystable K-smoothable Q-Fano
variety admits a Kähler–Ricci soliton, as a variant of the Kähler–Einstein
case [CDS, Tian2, SSY], using twisted Kähler–Ricci soliton instead of log
Kähler–Einstein metric. The argument heavily employs an argument on
Gromov–Hausdorff limit under a uniform estimate on Kähler metrics with
Ricci lower bound (the partial C0-estimate), which is not suited for general
polarization (cf. [DoSu1]).

The moduli stack

A K-family over B of Q-Fano varieties is a T -equivariant proper flat family
π : X → B of Q-Fano varieties with K-optimal T -action which enjoys Kollár
condition. Here Kollár condition means that some reflexive power ω

[m]
X/B of

the relative canonical sheaf is T -equivariantly isomorphic to a T -equivariant
line bundle and every reflexive power ω

[m]
X/B commutes with arbitrary base

change (cf. [Kov], [BX]). A non-equivariant family may not be a K-optimal
torus equivariant family, however, we can stratify the base so that the family
restricted on each stratum admits a K-optimal torus action (cf. [Ino1]). We
call a K-family π : X → B µK-semistable family if every fibre is a µK-
semistable Q-Fano T -variety.

A K-smoothable Q-Fano variety X is a Q-Fano variety which admits a
K-family π : X → ∆ of Q-Fano varieties with an isomorphism X0

∼= X whose
fibres away from the origin 0 ∈ ∆ are smooth Fano manifolds.

Define the moduli stack Mn by putting its fibre over B as

Mn(B) :=

{
µK-semistable families over B of

K-smoothable Q-Fano varieties of dimension n

}
. (4.1)

Let us recall a terminology in [Ino1]. We call a Fano manifold X gentle
if it admits a special degeneration to a smooth Fano manifold with Kähler–
Ricci solitons which is equivariant with respect to a K-optimal action of X.

Proposition 4.1.1. Let α ∈ c1(X) be a Kähler form on X. If there exists
a twisted Kähler–Ricci soliton ωt on X for every 0 ≤ t < 1, which satisfies
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Ricωt−LξJωt = tωt+(1− t)α, then X is µK-semistable. In particular, every
gentle Fano manifold is µK-semistable. (cf. [Ino1, Section 2])

Sketch of proof. Gentle Fano manifold admits a twisted Kähler–Ricci soliton
for every t < 1. Similarly to [Sze-book], we can see that the following twisted
µMabuchi functional is bounded from below for each t < 1:

Mα,1−t,ξ(ϕ) =Mξ(ϕ) + (1− t)Jα,ξ(ϕ),

where we put

Mξ(ϕ) := −
∫ 1

0

dt

∫
X

ϕ̇tŝ
2π
ξ e

θξ(ϕt)ωn
ϕt ,

Jα,ξ(ϕ) := n

∫ 1

0

dt

∫
X

ϕ̇t(trωϕt (α− ωϕt) + ξJφt)e
θξ(ϕt)ωn

ϕt ,

where φt is a function satisfying
√
−1∂∂̄φt = α−ωt. On the other hand, as in

[DR, Theorem 6.4] (cf. [Lah]), we can see that the following twisted µFutaki
invariant is the slope of the twisted µMabuchi functional along any smooth
subgeodesic associated to a smooth test configuration (X ,L) dominating the
trivial test configuration:

Fut1−t,ξ(X ,L) = Futξ(X ,L) + (1− t)Evξ(−KX − L.eL)
Evξ(eL)

,

independent of α ∈ c1(X). It follows that Fut1−t,ξ(X ,L) is non-negative
for every t < 1. Since Fut1−t,ξ(X ,L) is continuous on t, Futξ(X ,L) =
Fut0,ξ(X ,L) is also non-negative.

We also put Mn,◦ the substack of Mn consisting of gentle Fano man-
ifolds. It is shown in [Ino1] that Mn,◦ is Artin in analytic category and
admits the moduli space.

Constructibility

We firstly note the following counterpart of [Oda2, Lemma 2.10] for general
Kähler class.

Lemma 4.1.2. Let B be a projective manifold with a Hamiltonian action
by a torus T . Let c = [α + µ] ∈ NST (B,R) be an equivariant cohomology
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class. For x ∈ B and η ∈ t, we put f(x, η) := −µη(limt→∞ x.et
√
−1η). Then

there is a finite collection {Bi} of disjoint constructible subsets of B and a
continuous piecewise linear function φi such that

φi(η) = f(x, η)

for every x ∈ Bi and η ∈ t. Each function φi is convex if moreover α is a
Kähler metric.

Proof. Since the equivariant class c is of the form c =
∑l

k=1 akc
T
1 (Lk) for

some aj ∈ R and some equivariant (holomorphic) line bundles Lj, the claim
on the lattice N(T ) ⊂ t is a consequence of [Oda2, Lemma 2.10] (cf. [LWX1,
Lemma A.3]). Indeed, since the limit limt→∞ x.et

√
−1η is independent of the

equivariant class c, we have fc(x, η) =
∑

k akfcT1 (Lk)
(x, η). For integral η

associated to a one parameter subgroup Λ : C∗ → T , we have f(x, η) =
−Λ̄∗

xc/η
∨, where Λ̄x : C → B is the extension of the morphism Λx : C∗ →

B : τ 7→ x.τ . We omit the proof for general η ∈ t.

We call a collection F of Q-Fano varieties is of fixed character if −mKX

is Cartier for a fixed integer m, the K-optimal tori TX are isomorphic to a
fixed T and the Hilbert characters χ of −mKX with respect to T are fixed
for all X in F. Here the Hilbert character χ of a line bundle L is the function
χ : Z 7→ R(T ) given by χ(k) =

∑n
i=0(−1)iH i(X, kL), where H i(X, kL) is

regarded as T -representations. For such collection F, we have a uniform k0
such that for each X ∈ F there is a T -equivariant anti-canonical embedding
of X into CP χ(k0)−1 ⟲ T . We call a collection F of Q-Fano varieties has
bounded characters if F is a finite union

∪N
i=1 Fi of collections Fi of fixed

characters. Note that the K-optimal vector ξ ∈ t of X is determined by its
Hilbert character.

Let HilbT (χ(·)) denote the Hilbert scheme of T -invariant subschemes of
P(χ(1)) with Hilbert polynomial χ(·), identifying the character χ(1) with
T -representation. Let UT (χ(·)) denote the universal family over HilbT (χ(·))
and L denote the restriction of p∗2O(1) on HilbT (χ(·))×P(χ(1)) to the closed
subscheme UT (χ(·)) ⊂ HilbT (χ(·)) × P(χ(1)). For a Q-Fano manifold X
with the Hilbert character χ(ℓ) =

∑n
i=0(−1)iH i(X, ℓ(−mKX)), we denote

by [X] a point of HilbT (χ(k·)) representing an anti-canonically embedded X
by | − kmKX |, which is unique modulo PGLT (χ(k)).

The following is essentially an application of deep analysis in [CW] and
arguments in [CSW].
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Proposition 4.1.3. Let F be a collection of K-smoothable Q-Fano varieties
of fixed character. Then there is a uniform positive integer k1 such that
if X ∈ F is µK-unstable, there exists a one parameter subgroup Λ : C∗ →
PGLT (χ(k1)) such that the induced test configuration (Λ̄∗

XUT (χ(k1·)), 1
k1m

Λ̄∗
XL)

has negative µλ
ξK-Futaki invariant with respect to λ = 2π and the K-optimal

vector ξ.
Moreover, assuming Conjecture I, we can take k1 so that if X ∈ F is

µK-semistable but not µK-polystable, then there exists a one parameter
subgroup Λ : C∗ → PGLT (χ(k1)) such that the induced test configuration
(Λ̄∗

XUT (χ(k1·)), 1
k1m

Λ̄∗
XL) is special and has a µK-polystable central fibre.

Proof. Firstly, we note that there is a uniform constant δ ∈ (0, 1) such
that every smooth Fano manifold X admits a Kähler metric ωX ∈ 2πc1(X)
with Ric(ωX) ≥ δωX . Indeed, thanks to the equivalence of Székelyhidi’s
R-invariant R(X) = β(X) and the delta invariant δ(X) proved in [BBJ,
Corollary 7.6], it suffices to bound the delta invariants of Fano manifolds
from below. The bound holds by the finiteness of delta invariants for smooth
Fano manifolds [BLZ, Theorem 1.4]. Otherwise we can show the bound via
log K-stability as in [Oda2], translating log K-stability into the existence of
twisted KE by [CDS, I].

Since we have a uniform bound of the Sobolev constant for such ωX , we
have a uniform bound in the assumption of [CW, Theorem 6.8 (6.5)]. Thus
we get the partial C0-estimate for Kähler–Ricci flow on t ≥ 1 with the initial
metric ωX by [CW, Theorem 1.3]. Then the argument in [CSW] shows that
there is a uniform integer k1 such that for each X ∈ F there is a vector
ΛX ∈

√
−1Lie(PUT (χ(k1))) and gX ∈ PGLT (χ(k1)) such that the limit

[X̄] = limt→∞[X].gX .e
tΛX in the Hilbert scheme HilbT (χ(k1·)) is a Q-Fano

variety with FutX̄,ξ ≡ 0 for the vector ξ on X̄ generated by Λ. Let ξX ∈ t
be the K-optimal vector of X, which satisfies FutX,ξX ≡ 0. Then since ΛX is
T -equivariant, we have FutX̄,ξX |t ≡ 0. Since Tian–Zhu’s volume functional
log Vol(η) = log

∫
X̄
eθηωn is strictly convex and FutX̄,ξ(ξX − ξ) = 0,

FutX̄,tξX+(1−t)ξ(ξX − ξ) = −
d

dt
log Vol(tξX + (1− t)ξ),

is monotonically decreasing. Thus we get

FutX̄,ξX (−ξ) = FutX̄,ξX (ξX − ξ) < FutX̄,ξ(ξX − ξ) = 0.

Now let Tmax ⊂ PUT (χ(k1)) be a maximal torus with
√
−1ΛX ∈ tmax. By

Theorem G and Lemma 4.1.2, there is a continuous piecewise linear function
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φ on tmax such that Futlimt→∞[X].etη ,ξX (−η) = φ(η) for every η ∈ tmax. Note
when η is in the lattice Hom(U(1), Tmax) ⊂ tmax, we have Futlimt→∞[X].etη ,ξX (−η) =
FutξX ((Λη)

∗
XUT (χ(k1·)),

1
k1m

(Λη)
∗
XL) for the one parameter subgroup Λη as-

sociated to η. (The minus sign on η comes from the sign inversion of the
fundamental vector fields of an R-action and a C∗-action which are related
by R → C∗ : t → e−t. ) Approximating the ray R+Λ ∈ tmax by inte-
gral rays, we can find a one parameter subgroup Λ′ : C∗ → Tmax with
FutξX (Λ̄

′∗
XUT (χ(k1·)), 1

k1m
Λ̄′∗

XL) < 0. Since we have a convergence of Kähler–
Ricci flows [CW, Theorem 6.9], we can also discuss K-smoothable case with
a uniform k1 by diagonal argument.

The second case is precisely the case X is µK-semistable but not admit
Kähler–Ricci soliton under Conjecture I. In this case, X is never destabilized
by Λ, so it degenerates in the Hilbert scheme to a Q-Fano variety X0 with
Kähler–Ricci soliton which is not isomorphic toX by the argument in [CSW].

Theorem G further implies the following key proposition, which works as
a translator from analytic result to algebraic result.

Proposition 4.1.4. We assume Conjecture I for the claim on Bps. Let
(X ,L)→ B be T -equivariant family of T -polarized schemes Then the subsets

Bss = {b ∈ B | (Xb,Lb) is a µK-semistable Q-Fano variety. }
Bps = {b ∈ B | (Xb,Lb) is a µK-polystable Q-Fano variety. }
Bs = {b ∈ B | (Xb,Lb) is a µK-stable Q-Fano variety. }

are constructible sets of B.

Proof. We can realize the family (X ,L) → B as a pull-back of the univer-
sal family over a Hilbert scheme Hilb (with a fixed Hilbert polynomial) by
embedding X → B relatively to CPN using sections of a sufficient multi-
ple of L. By the above proposition, we may assume by taking a sufficiently
divisible multiple that if a fibre (Xb,Lb) is a µK-unstable Q-Fano variety,
then there is a one parameter subgroup Λ : C∗ → G = Aut(CPN) such
that Futλξ (Λ̄

∗
bX , Λ̄∗

bL) < 0. Since the inverse image of constructible sets are
constructible, we may assume that B is such a Hilbert scheme.

If we take a G-equivariant resolution β : B̃ → B, then we have β(B̃ps) =
Bps, so that we may assume B is smooth by Chevalley’s theorem on con-
structible sets. Since Hilbert scheme is projective, we may assume B is
smooth projective.
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In this situation, the complement B \Bss is equal to the set{
b ∈ B

∣∣∣ (Xb,Lb) is not
a Q-Fano variety

}
∪
{
b ∈ B

∣∣∣ Futλξ (Λ̄
∗
bX , Λ̄∗

bL) < 0
for some Λ : C∗ → Aut(CPN)

}
.

By [HK, 3.11] as in [BX, 3.2], the set {b ∈ B | (Xb,Lb) is a Q-Fano variety }
is locally closed in B.

On the other hand, the set{
b ∈ B

∣∣∣ Λ̄∗
bDξµ

λ
T×G(X/B,L)/η∨ < 0

for some Λ : C∗ → Aut(CPN)

}
is constructible by Lemma 4.1.2. Therefore, B \ Bss is constructible and so
is Bss. We can similarly show the claim on Bps, Bs (cf. [Oda2]).

4.1.2 Algebraic moduli problems

Zariski openness of gentle locus

Now making use of Theorem G, we prove the following. The proof here is
independent of the analytic results in section 3.3.

Theorem 4.1.5. The moduli stack M◦,n = K(n) (resp. KT,χ) of gentle
Fano manifolds over the étale/fppf site of algebraic schemes is Artin algebraic
(resp. Artin algebraic of finite type).

Sketch of proof. To see that the moduli stack is Artin algebraic, it suffices to
show that the set

Bss,◦ := {b ∈ B | Xb is a gentle Fano manifold. }

is Zariski open for every smooth family π : X → B of Fano manifolds. Since
every family X → B is Zariski locally isomorphic to the pull-back of the uni-
versal family on a T -invariant Hilbert scheme along some morphism, we may
reduce the problem to the following: suppose a fibre Xo is a Fano manifold
admitting Kähler–Ricci solitons, then there exists a Zariski neighbourhood
U ⊂ B of o ∈ B such that Xb is gentle for every b ∈ U .

We firstly show that there is a Zariski neighbourhood V ⊂ B on which ev-
ery fibre is a µK-semistable Fano manifolds. Taking a smaller B if necessary,
we may assume the family is anticanonically embedded in a projective space
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X ↪→ B×CPN over B. If we cannot take such V , then by the constructibility
shows that we have a locally closed subset S ⊂ B such that Xb is µK-unstable
for every b ∈ S and the closure S meets o. Moreover, we may assume that
S is taken so that a one parameter subgroup C× → AutT (CPN) destabilizes
every Xb over S. As in the previous section, we can see that Xb over S is
(1 − t)-twisted µK-unstable for t ∈ (t0, 1] some uniform t0 < 1. Since the
modified Székelyhidi–Hashimoto invariant Rξ(Xb) is a lower semi-continuous
function on b, we conclude that Xo is (1 − t0)-twisted µK-unstable. This is
a contradiction since we assume Xo admits Kähler–Ricci solitons, hence it is
(1− t)-twisted µK-semistable for every t ∈ (0, 1].

Now we may assume every Xb is µK-semistable. By [DaSz], we have
a special degeneration to a Q-Fano variety X ′

b with Kähler–Ricci solitons
for each Xb. It suffices to show that the central fibres X ′

b are smooth after
replacing B with a smaller neighbourhood U ⊂ B. We firstly show that we
can take such U as an analytic neighbourhood. Taking a family of Kähler
metrics αb around the fibre Xo such that αo is a Kähler–Ricci soliton. Then
as in the proof of Proposition 3.2.18, we can see that X ′

b, which are obtained
as a Gromov–Hausdorff limit along the continuity method Ric(ωt) = tωt +
(1 − t)αb, subconverges to Xo in a Hilbert scheme as b → o. Since Xo is
smooth, X ′

b must be smooth for b sufficiently close to o.
To see that U can be taken as a Zariski open set, we note that any gentle

Fano manifold does not admit any equivariant special degeneration to some
µK-semistable singular Fano variety. If there exists an equivariant special
degeneration of a gentle Fano manifold X to a singular µK-semistable Fano
varietyX0, then similarly as in [Y. Li] we can construct an equivariant special
degeneration of X0 to a Fano variety X ′

0 with KRs by the diagonal argument
for twisted KRs on X. As X0 is singular, X ′

0 is also singular. We can
construct these degenerations equivariant with respect to the maximal torus
action, so we also obtain a special degeneration of the gentle Fano manifold
X to X ′

0. However, since the central fibre of special degenerations of X to a
Fano variety with KRs are unique by Proposition 3.2.18, the fact that X ′

0 is
singular contradicts to the assumption that X is gentle. Thus we have

B\U =

{
b ∈ B

∣∣∣ Xb admits an equivariant special degeneration in CPN to
a µK-semistable singular Fano variety

}
.

This is a constructible set. It follows that U is a constructible analytic open
set, which shows the desired Zariski openness.
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After the publication of [Ino1], the author was asked a question from Yue
Fan on the proof of Proposition 3.3.8. He noticed that the proof (as well as
Székelyhidi’s original proof for cscK metrics) does not show the desired claim
but it only shows the following: for each b ∈ B whose orbit b.G is closed, there
exists tb > 0 such that J(t.b) admits Kähler–Ricci solitons for every t ∈ (0, tb).
There is no reason for tb ≥ t0 with a uniform t0 > 0 for every b ∈ B in a
small sphere as we do not know whether we can take a uniform constant C ′

in the proof independent of b. A similar but slightly different proof can be
found in [Bro], however, since the pulled-back symplectic form may not be
Kähler after we apply the perturbation in Theorem 3.3.7, the proof there
also seems to be fail. Yue Fan [Fan] achieved to prove an analogous claim
in the context of moduli problem on Higgs bundles, using a result similar to
[CS]. Thus the result is recovered for the cscK case.

Now we give an alternative proof in the case of KRs which does not rely
on the result in section 3.3.2. Instead of establishing a similar result as in
[CS] for the case of KRs, we imitate an argument in [LWX1], applying the
above result.

Proposition 4.1.6. Let B → HilbT be an affine étale local slice (with re-
spect to the PGLT -action) at a point [X] ∈ HilbT representing an anticanon-
ically embedded Fano manifold X with KRs. Then we can take an Aut(X)-
invariant analytic open set B′ of B, such that every closed Aut(X)-orbit of
B′ parametrizes a Fano manifold with KRs.

Proof. If not, there is a sequence bk ∈ B converging to the point o ∈ B
corresponding to the point [X] ∈ HilbT such that bk.G ⊂ B is closed but the
Fano manifolds Xbk do not admit KRs. Similarly as in the above proof (or as
in [Y. Li]), we can construct special degenerations of Xbk to Fano manifolds
X ′

bk
with KRs in CPN which converges to Xo = X in the Hilbert scheme.

Since B ×G PGLT → HilbT is open, the degenerations C → HilbT are in
the image of this map for sufficiently large k. Since B ×G PGLT → HilbT is
equivariant, we can realize the degenerations in B×G PGLT . It follows that
bk.G × PGLT = p−1((bk, e).PGLT ) is not closed in B × PGLT as the orbit
(bk, e).PGLT is not closed in B×G PGLT , which contradicts to the fact that
bk.G is closed in B.

Now we prove the following, using Theorem 4.1.5 and Theorem 3.4.8.

Theorem 4.1.7. The moduli space K(n) constructed in section 3.4 is a
separated algebraic space.

199



Proof. As proved in section 3.4, we have an analytic moduli space M◦,n →
K(n). Since gentle locus is Zariski open, we can cover the moduli stack by
étale morphisms [Bα/Gα]→M◦,n with affine Bα. Then by the universality
of the morphism [Bα/Gα] → Bα � Gα, we get a collection of morphisms
ϕα :Mα → K(n) from affine normal varietiesMα = Bα � Gα which covers
K(n). Similarly as in the proof of Theorem 3.4.8, we can see that these
morphisms are analytically étale.

For each point x ∈ ϕα(Mα) ∩ ϕβ(Mβ), we can construct algebraic étale
morphismsMαβ,x →Mα,Mβ from an affine normal varietyMαβ,x so that
they commute with the morphisms ϕα, ϕβ and the composition Mαβ,x →
K(n) covers x, similarly as in the proof of Theorem 3.4.8. Here the point
is the commutativity of morphisms, however, this easily follows from the
analytic construction of the moduli space.

Towards the compactification

We can strengthen the result in the previous section under Conjecture I.

Claim. We assume Conjecture I. Then the moduli stack Mn is Artin alge-
braic and admits a unique proper algebraic good moduli space Mn. More-
over, the moduli space enjoys the following.

• The points of Mn are exactly smoothable µK-polystable Q-Fano va-
rieties, which are precisely smoothable Q-Fano varieties with Kähler–
Ricci solitons.

• The forgetting morphism Mn → Mn maps µK-semistable Q-Fano
T -varieties X and X ′ to the same point if and only if there are T -
equivariant test configurations of X and X ′ with an identical smooth-
able µK-polystable Q-Fano T -variety.

If the moduli space exists, then the properness of the moduli space is a
consequence of the compactness result in [PSS] combined with the bounded-
ness of Fut(ξ) for K-optimal vectors ξ ([Ino1, Proposition 4.11]). It is recently
proved by [Y. Li] that a K-smoothable Q-Fano variety admits a Kähler–Ricci
soliton if it is µK-polystable with respect to special degenerations.

We can show that K-smoothable µK-semistable Q-Fano varieties are
bounded. If we further aim to construct a finite type moduli space for
Q-Fano varieties with Kähler–Ricci solitons and with non-smoothable klt
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singularities, we must impose a bound on Hilbert polynomials since there
is an unbounded collection of toric orbifolds with Kähler–Ricci solitons (cf.
[PSS]), unlike Kähler–Einstein case. In view of [PSS], the author speculates
that it suffices to bound the usual Futaki invariants Fut(ξ) of the K-optimal
vectors ξ and the volumes in order to bound the Hilbert polynomials of µK-
semistable Q-Fano varieties.

Now we outline the proof of the main Claim. More details will be included
in a separate paper.

Outline of the proof of Claim. As in [Oda3] and [LWX1], we apply Alper’s
gluing theorem of (local) good moduli spaces [Alp2, Theorem 1.3] (cf. [Alp1,
Proposition 7.9]). We will construct étale local moduli stacks iα : Mα →
Mn of the moduli stackMn so that each stackMα is of the form [SpecA/G]
with reductive G and so that these Mα cover Mn. Each Mα admits the
good moduli space Mα = SpecA � G. If we can check the conditions in
Alper’s gluing theorem, we get the expected good moduli space Mn →Mn

by ‘gluing’ these local moduli spacesMα in étale topology.
As we remarked in [Ino1], the concept of good moduli space is still not

well established in analytic category. Especially, good moduli spaces of an
analytic stack are not ensured to be unique while the uniqueness is essential
for gluing theorem. So we must show that global and local moduli stacks are
algebraic in order to apply Alper’s framework on good moduli space. Now is
the time to apply the above proposition.

Construction of local moduli stacks Mα reduces to the following claim.

• For a T -equivariant family (X ,L) → B of K-smoothable Q-Fano T -
varieties, Bss is Zariski open.

We can prove this similarly to [LWX1, Theorem 7.3] using twisted µK-
stability instead of log K-stability as in [Y. Li]. We take the affine scheme
SpecA as an étale local slice of HilbT at µK-polystable [X] ∈ HilbT (cf. [AHR,
Theorem 2.1]) so that SpecA parametrizes only µK-semistable K-smoothable
Q-Fano varieties. The group G is the automoprhism group Aut(X).

Gluing the local moduli spacesMα boils down to the following claim, by
shrinking SpecA further if necessary.

• If a K-smoothable Q-Fano variety X admits two equivariant special
degenerations to K-smoothable µK-polystable Q-Fano varieties X0, X

′
0,

then X0 and X ′
0 are isomorphic.
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• A point x ∈ SpecA parametrizes a µK-polystable Q-Fano variety Xx if
the orbit x.G is closed.

• The stabilizer Gx is isomorphic to Aut(Xx) for every x ∈ SpecA.

We can show these similarly to [LWX1, Theorem 1.1, Theorem 8.8, Corollary
8.14]. We in particular make use of the constructibility of Bps to prove the
second claim. The first two items show that the morphism Mα → M is
universally weakly saturated in Alper’s sense (cf. [Alp2]). The last one shows
the morphism is pointwise stabilizer preserving. Now we can apply [Alp2,
Theorem 1.3] and obtain the expected good moduli space.
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[PS] F. Podestà, A. Spiro, Kähler–Ricci solitons on homogeneous toric bun-
dles, J. Reine Angew. Math. 642, 109–127, 2010.
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