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Preface

This thesis consists of the following two parts:

e In part I, we establish a framework unifying both the frameworks on
cscK metrics € K-stability and Kdahler—Ricci solitons € modified K-
stability, which we call the framework on p-cscK metrics € uK-stability
of polarized manifolds.

e In part II, we study moduli problems on Fano manifolds admitting
Kahler—Ricci solitons.

Part I is a reorganization of the articles [Ino2], [Ino3] and that in part II
is a reorganization of the articles [Inol], [Ino3], while these articles appear in
the order of [Inol], [Ino2], [Ino3].

The main aim of part I is to formulate a proper framework on pu-cscK
metrics and pK-stability. Another aim, which is especially important in
the case of Kéhler—Ricci solitons, is to refine the definition of modified K-
stability related to the existence of Kahler—Ricci solitons. Though modified
Futaki invariant is defined only for special degenerations, it is desirable in
view of application to moduli problem that such invariants are defined also
for general test configurations. The framework on p-cscK helps to distinguish
the role of the polarization £ and the anti-canonical ‘polarization’” —Ky ¢ of
test configurations, which are indistinguishable for special degenerations.

In chapter 1 of part I, we introduce the notion of u-scalar curvature for
Kahler metric, motivated by a Donaldson-Fujiki type moment map picture
on Kéhler—Ricci solitons proved in chapter 3 (cf. [Inol]). The concept fits
into a Lahdili’s more general framework on weighted cscK metrics, where we
use an exponential weight. We study constraints for the existence of Kéhler
metrics with constant p-scalar curvature, which we call pu-cscK metrics for
short. Some compactness results on a generalization of Tian—Zhu’s functional
in this p-cscK setup shows that not only the concept unifies the framework of
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cscK metrics and Kahler—Ricci solitons, but also it has an intriguing connec-
tion with extremal metrics, which cannot expected from moment map picture
and is special aspect of p-cscK metrics among weighted cscK metrics. This
chapter corresponds to the article [Ino2].

In chapter 2 of part I, we introduce the notion of pK-stability of polarized
manifolds as a framework unifying both K-stability and modified K-stability.
We show that the existence of p-cscK metrics in the first Chern class of the
polarization implies the pK-semistability of the polarized manifold. We also
construct a characteristic class which generalizes Paul-Tian’s CM line bundle
to the context of pK-stability. We make use of this product in chapter 4 in
part II. This chapter is based on the article [Ino3].

The aim of part II is to unveil a proper formulation of moduli problem
on Fano manifolds with Kahler—Ricci solitons and to construct its separated
complex analytic/algebraic moduli space.

In chapter 3 of part II, we construct a complex analytic moduli space
of Fano manifolds admitting Kahler-Ricci solitons. It is observed that the
moduli problem must be formulated as a construction of a complex analytic
space enjoying a universal property with respect to an Artin stack of families
of adequate Fano manifolds equivariant with respect to the torus action gen-
erated by a vector field £ with vanishing modified Futaki invariant Fute = 0.
We directly make use of the moment map picture on Kahler—Ricci solitons
to construct local charts on the moduli space and then show the holomorphy
of the coordinate changes by establishing a uniqueness result on degenera-
tions of a Fano manifold to Fano manifolds with Kéhler—Ricci solitons, using
Donaldson—Sun’s argument on Gromov—Hausdorff limit of algebraic varieties.
This chapter corresponds to the article [Inol] and is written independently
from the results in part I.

In chapter 4 of part II, we show applications of Theorem G in chapter 2
of part I to the algebraic moduli problem. We firstly show that the moduli
space constructed in chapter 3 is indeed algebraic as predicted. Theorem G is
applied to show Zariski openness of the subset consisting of Fano manifolds
which degenerate to some Fano manifolds with Kéahler-Ricci solitons. We
then propose an approach to the compactification problem of the moduli
space. This chapter is based on the article [Ino3].
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Part 1

Constant p-scalar curvature
Kahler metrics and pyK-stability



Introduction for Part 1

In this part I, we introduce the notions on p-cscK metrics and pK-stability
of polarized manifolds and establish a foundation on these concepts. The
framework unifies the frameworks on cscK metrics and Kahler—Ricci solitons
and propose a refinement of modified K-stability related to the existence of
Kéahler—Ricci solitons.

The p-scalar curvature is firstly introduced as a family of functions asso-
ciated to a Kéhler metric on a Kahler manifold with an action by a torus T’
which is parametrized by the parameters £ € t and A € R. We call ,ué\—scalar
curvature the function corresponding to the parameter (£, \). When £ = 0,
u?—sealar curvature is nothing but the usual scalar curvature. On the other
hand, when £ # 0, Kahler—Ricci solitons give typical examples of p-cscK
metrics for £ # 0: for K&hler metrics in the cohomology class ¢;(X), the
,u%’r—scalar curvature is constant if and only if the metric is a Kahler—Ricci
soliton with respect to the vector field &: Ric(w) — Ljew = w.

Our starting point on p-scalar curvature is a Donaldson—Fujiki type mo-
ment map picture. For fixed £ € ¢, the ,ug\—scalar curvature has an inter-
pretation as a moment map on the space Jr(M,w) of T-invariant almost
complex structures on a symplectic manifold (M,w) with respect to a sym-
plectic structure Q¢ on Jr(M,w) associated to the measure e~ #<¢w™ for a
moment map p : M — t¥ of w. This moment map picture formally predicts
that the existence of ,ug‘—cscK metrics must be characterized by the positivity
of some numerical invariant associated to degenerations of the given polarized
manifold. The invariant will be introduced and studied in chapter 2.

In chapter 1, we study p-scalar curvature not only from this perspective,
which is well-studied aspect in the case of cscK metrics, but also from a
different viewpoint based on Tian—Zhu’s volume minimization argument on
Kahler—Ricci solitons. In the latter viewpoint, we fix our parameter A € R
and study constraints on & for the existence of /L?—CSCK metrics. It turns out



that for each A\ < 0, there are only finitely many ¢ which has a chance to
admit ué\—cscK metrics and moreover such ¢ is unique when A < 0, regardless
of the actual existence of ,ug‘-cscK metrics. We also observe an intriguing new
phenomenon as \ tends to —oo: the rescaled vectors A&, converge to extremal
vector field as A\ — —oo. This implies in chapter 2 that the existence of ji*-
cscK metrics for every A < 0 implies the relative K-semistability of the
polarized manifolds, which is related to the existence of extremal metrics.
Conversely, we can also show the existence of extremal metrics implies the
existence of p*-cscK metrics for every A < 0. In this way, we conclude
that p*-cscK metrics can be considered as a continuity path connecting to
extremal metric.

In chapter 2, we formulate the pK-stability of polarized manifolds. A
new parameter £ € t, which does not appear in the usual K-stability, pre-
vents us to express ‘p-Futaki invariant’ by an intersection formula similar to
the usual Donaldson—-Futaki invariant. Instead, we express it by an equiv-
ariant intersection formula. The formula enables us to observe the behaviors
of p-Futaki invariants along the normalization and resolutions of test con-
figurations. Using Lahdili’s result on weighted K-semistability with respect
to smooth test configurations, we conclude the pK-semistability of polar-
ized manifolds with p-cscK metrics. On the other hand, we also construct
an equivariant characteristic class Dep* € HZ(B, R) for equivariant families
(X,L) — B of polarized schemes which generalizes Paul-Tian’s CM line
bundle. We develop basics on relative equivariant intersection on schemes to
construct such characteristic class. This product will be used in section 4 of
chapter II.



Chapter 1

Constant p-scalar curvature
Kahler metric

In this chapter, we propose a new variant of scalar curvature of Kahler metric
with a moment map, which we call u-scalar curvature, motivated by a ver-
sion of Donaldson-Fujiki moment map picture on a weighted measure e%w"
associated to a holomorphic vector field ¢/. We design our framework on con-
stant p-scalar curvature Kéhler metrics (p-cscK metrics for short) so that it
fits into both of the frameworks on cscK metrics and Kahler-Ricci solitons.
From the moment map picture, we are naturally motivated to study a family
of p-cscK metrics parametrized by A € R. It turns out that p-cscK metrics
can also be regarded as a continuity path to/from extremal metrics.

We exhibit some fundamental constraints to the existence of p-cscK met-
rics by investigating a variant of Tian-Zhu’s volume functional, which is
closely related to Perelman’s W-functional. A new K-energy is studied as an
approach to the uniqueness problem of p-cscK metrics and as a prelude to
new K-stability concept.

The content corresponds to the article [Ino2].

1.1 Main results

We simply begin with the definition of p-scalar curvature and the main results
of this chapter.



Setup

Let X be a Kahler manifold and w be a Kéhler form on X. We call a
smooth real vector field ¢ on X O-Hamiltonian with respect to w if the
complexified vector field ¢/ := J€ + v/—1¢ is holomorphic (< L¢J = 0) and
lesw 1S O-exact. Note that lesw 18 O-closed for any holomorphic &7. As &/
is holomorphic, we have i¢s(w + v/ —100¢) = igsw + /=107 ¢, so that the
O-Hamiltonian property does not depend on the choice of the Kéahler form
w in the fixed Kéhler class [w]. Moreover, it is known by [LS] that a vector
field ¢ preserving J on a compact Kihler manifold is 0-Hamiltonian with
respect to [w] if and only if it has a fixed point, thus in particular the O-
Hamiltonian property is even independent of the Kéahler class [w]. We call a
function @ satisfying /—100 = iesW a 0-Hamiltonian potential with respect
to w, which is complex-valued in general. We call a 0-Hamiltonian vector
field & properly O-Hamiltonian if € generates a closed torus, i.e., the closure
exp RE C Aut(X) is compact.

We define the pg-scalar curvature s¢(w) of a Kihler metric w and a 0-
Hamiltonian vector £ by

se(w) = (s(w) +00) + (O — £79), (1.1)

where 6 is a 0-Hamiltonian potential of £ with respect to w and s(w) denotes
the Kihlerian scalar curvature: s(w) := —g*9,0,logdetg. We can take
a real-valued 6 iff w is &invariant since we have /—1(dRef — JdImf) =
V=100 — /=100 = les_gIw = 2v/—ligw. In this case, 6 is &-invariant, so
€70 is also real valued.

A version of Donaldson-Fujiki moment map picture characterizes u-scalar
curvature. As we will see this motivative interpretation in section 1.2.1, here
we instead simply observe how the individual terms of the p-scalar curvature
arise. The first term s(w) + 6 is just the trace of the Bakry-Emery Ricci
curvature Ric(w) —+/—19096, which is well-studied in Riemannian and metric
measure geometry. The second term [J0—&76 often arises as the Lie derivative
of the weighted measure:

Les(ePw™) = —(00 — €70)e’w.

Another important aspect is that this second term is a 5—l{amiltonian_po_ten—
tial of the Bakry—Emery Ricci curvature Ric(w) — v/ —1090, i.e. v/—19(10 —
£70) = ics (Ric(w) — v/—1000).



We may also regard s¢(w) as the trace of the following ‘complex analogy
of (m=1)-Bakry—Emery curvature’ for an integrable complex structure J:

Ric(w) + 2v/—1900 — /=106 A 06.

We can easily see that this (1,1)-form does not change by simultaneously
replacing the equivariant form w + 6 with @ + 6 = c(w + 0) and § with
£ = ¢ ¢ for a positive constant ¢ > 0, so that we have

Se-1¢(ew) = ¢ lse(w) (1.2)

for every positive constant ¢ > 0. (Note s¢(cw) # ¢ 'sg(w) when £ # 0. )
Next, introducing a parameter A € R, we define the ué\—scalar curvature
of a Kahler metric w by

st(w) = (s(w) +00) + (08 — £76) — A6. (1.3)

We call a Kahler metric w a constant ug‘—scalar curvature Kdahler metric
(p2-cscK metric for short) if s3(w) is constant. We may also use variant
terminologies such as p*-cscK metric or pu-cscK metric when the abbrevi-

ated parameters are determined/unimportant in the context. Since we have
Im(sy(w)) = Almf — 2J£(Imf) — AIm#, we get

/ Im(s} (w))Imb e"w™ = / (AIm@ — 2J€(Imf) — AImf)Ime "W
X

b
:/ |d1m6’|2eReew”—)\/ (Im@)?eRelm
b X

by (dIm6, Ref) = 2¢(Ref) = 2.J€(Imb). Thus we automatically obtain Lew =
0 for any ug‘—CSCK metric w with A < 2); for the positive first eigenvalue \; of
%(A — VRe#). In this thesis, we are mainly interested in this case, especially
the case A < 0. So from now on we always assume the &-invariance of the
Kéhler metric w. Hence s3(w) is real-valued.

A cscK metric obviously gives an example of p-cscK metric for & = 0 and
every A\. We will see in section 1.2.1 that a Kéhler-Ricci soliton Ric(w) —
Leyw = Aw gives an example of u?—cscK metric for A > 0, which satisfies
A< 2)\. Ifwisa ug\—cscK metric, then for any positive constant ¢ > 0,

@ = cwis a M?—CSCK metric for € := ¢ ¢ and A := ¢ *A. The product
(X X Y,wx +wy) of a ,ug\X—cscK metric wy on X and a u?y—cscK metric wy
on Y gives a ,ug‘X +g,-cscK metric.



Main results

Now we collect the main results in this chapter. The first three results, except
for Theorem B (3), are analogous to well-known foundational results on cscK
metric and Kéhler-Ricci soliton (cf. [Sze-book], [TZ2]. [AS] is a good survey.
).

In the following, X denotes a compact Kahler manifold. Let us firstly
recall the reduced automorphism group (cf. [Gau]). Put

ho(X) 1= {¢€ € Ar(X) | ¢ is O-Hamiltonian. }, (1.4)

which is naturally a complex vector space by putting v/—1¢ := J¢. De-
note by Aut’(X/Alb) the connected subgroup of the group Aut(X) of bi-
holomorphisms associated to ho(X). It is known by [LS] that ho(X) is the
space of vector fields tangent to the Jacobi map A, : X — Alb(X), or
equivalently, the space of vector fields with non-empty zero set. This group
Aut’(X/Alb) is called the reduced automorphism group of X. Similarly, we
put hoe(X) :={C € ho(X) | [£,(] = 0} for a vector £ € ho(X) and denote by
Aut?(X/Alb) the connected subgroup of Aut(X) associated to ho¢(X).
Note that for a line bundle L on X, the identity component Aut®(X, L) of
the group of biholomorphisms lifting to L is contained in the reduced auto-
morphism group Aut’(X/Alb). Moreover, it is known that Aut’(X, L®") co-
incides with Aut’(X/Alb) for some positive integer n (because Aut®(X/Alb)
is linear algebraic). If X has no holomorphic 1-form, or equivalently b!(X) =
0, then the reduced automorphism group Aut’(X/Alb) coincides with the
identity component Aut’(X) of the group of biholomorphisms of X.

Theorem A (Reductiveness). Let w be a constant ug\—scalar curvature Kahler
metric on a compact Kahler manifold X. Then

1. the group Aut(X/Alb) is the complexification of the compact con-
nected subgroup HIsomg(X ,w) associated to the Lie algebra of Hamil-
tonian Killing vector fields with respect to the ué\—cscK metric w com-
patible with £. Especially, it is reductive. (Corollary 1.3.5)

2. When A <0, Autg(X /Alb) is maximal among reductive subgroups of
Aut’(X/Alb). This fails in general when A > 0. (Corollary 1.3.19)

When b'(X') = 0, we can replace Autg(X /Alb) by the identity component
Autg(X ) of the group of biholomorphisms preserving & and Hlsomg(X ,w) by
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the identity component Isomg(X ,w) of the group Isom¢(X,w) of isometries
preserving &.

Theorem B (y-Futaki invariant and g-volume functional). Let X be a com-
pact Kéhler manifold, [w] be a K&hler class and £ be a properly 0-Hamiltonian
vector field on X.

1. There is a C-linear functional Futé\ : ho(X) — C depending only on the

quadruple (X, [w],&, A) such that Futg‘ vanishes if the Kéahler class [w]
admits a ug\—cscK metric. (Proposition 1.3.6)

2. For any compact Lie subgroup K C Aut’(X/Alb) and A € R, there
always exists a vector £ € £ such that Futg\’gc vanishes, regardless of the
existence of p*-cscK metrics. (Corollary 1.3.15)

3. We have the uniqueness of such £ for A < 0. Moreover, the value
Afreeze := SUp{A € R | VN < A Futg‘y lee = 0 for a unique &y}
is never +00. (Proposition 1.5.3 and its remark)

The second claim in the above is a partial generalization of a volume
minimization result in [TZ2], except for the uniqueness. Indeed, we will see
in section 5.2 that vectors ¢ with Futg‘ = ( are not unique for A > 0 as
claimed in the above (3). As for general theory, we are mainly interested
in the case A < 0 since in this case we have a nice compactness/finiteness
results as in Corollary 1.3.18 and Corollary 1.3.19. The author suspects the
above value Ageese is always slightly positive.

In section 4, we prove the following extension result, which generalizes
the result of [Chen2]. This is the first step for studying the uniqueness of
pg\—CSCK metrics and ‘pK-stability’.

Theorem C (pK-energy and geodesic). Let (X, [w]) be a compact Kéhler
manifold with T-action. Fix a vector £ € t and A € R.

1. There is a functional ./\/12 on the space of &-invariant smooth Kéhler
metrics in the Kahler class [w] such that the critical points of M}
are precisely pg\—CSCK metrics and that Mg‘ is convex along smooth
geodesics.



2. There is a canonical extension of this functional Mg to the space ’Hilg of

&-invariant sub-Kdahler metrics with Ctt-potentials. Here a sub-Kihler
metric with C1l-potentials means a (1, 1)-form wy = w++/—199¢ with
L°°-coefficients given by a smooth Kéhler metric w and a Ct'-smooth
w-psh function ¢, i.e., a Ct'-smooth function satisfying ws > 0 as a
current.

The following result illustrates an intriguing special aspect of p-scalar
curvature. From this result, our parameter A can be thought as a continuity
path connecting ;%-cscK metric/Kahler-Ricci soliton and extremal metric.

Theorem D (Behavior of K-optimal vectors). Fix a compact subgroup K C
Aut’(X/Alb).

1. Let {(&,\) € € x R}ien be a sequence satisfying Futg‘; e = 0 and
Ai = —oo. (Note such a sequence always exists by Theorem B. ) Then
the rescaled sequence \;§; € € converges to the extremal vector &.
which is uniquely characterized by the property

P, (¢) = [

X

<<S<w) —5) = (O — Qext))egw” =0

for every ¢ € €, where we put 5 = [, s(w)w"/ [, w" and 0., =
Jx Ocoew™/ [ w™. (Section 2.2 and Corollary 1.3.18)

2. If there are ug\;—cscK metrics w; with a uniform C®-bound of the Kihler

potentials ¢; of w; = w++/—109¢; and a uniform lower bound Cw < w;,
then w; subconverges to an extremal metric wey on X. (Section 2.2)

3. Conversely, if there is an extremal metric on wey in a Kahler class [w],
then there are constants A_ and A such that there is a family of p-cscK
metric {wx}ae(—oor_)U(rs,00) Where for each A € (=00, A_)U(A4, 00) the
metric wy is a ug—cscK for some vector field &, in the Kéhler class |w]
such that wy converges to wey; smoothly as A — +00. (Theorem 1.5.5)

By Theorem B (3), the vector field &, in the above Theorem D (3) is
unique for each A < 0, while we may have other solutions for A > 0.

In section 5.1, we prove the following result analogous to one of the main
results in [LS] on extremal metric.



Theorem E (Perturbation of Kahler class). Let w be a ,ué\—cscK metric
on a compact Kéahler manifold X. Suppose we have X < 2\; for the first
cigenvalue Ay > 0 of the operator O — J& = 3(A — VRef) restricted to
the space Cg°(X,R) of {-invariant real-valued functions. Then there exists
a neighbourhood U of [w] in the Kéhler cone and a positive constant € > 0
such that for every Kahler class [0] € U and A € (A — ¢, A + ¢), there exists a
vector §~ and a constant ug—scalar curvature Kahler metric @5 in the Kahler

class [@].

It follows that if a Kahler class [w] admits a cscK metric, then a small
perturbation of [w] admits both extremal metric and p*-cscK metrics for
A < 2);. For example, the Kéhler class ¢;(X) of CP? blown up at three
points (1 : 0 :0),(0:1:0),(0:0:1)admits cscK metric, but a small
perturbation of ¢;(X) does not admit cscK metrics (cf. [LS, Example 3.2]).
This example shows that there exists a non-trivial path of p*-cscK metrics
connecting extremal metric and p%-cscK metric.

In section 6.2, we give more explicit examples of u-cscK metrics on ruled
surfaces, using Calabi ansatz method. It turns out that there is a Kahler
class that does not admit extremal metrics, but do admit p°-cscK metrics. In
particular, we observe that there exists a path of y*-cscK metrics connecting
Kéhler-Ricci soliton and extremal metric on X = CP?#CP? in the Kéhler
class ¢1(X).

Relation with Lahdili’s work

Just after uploading the first version of [Ino2] on arXiv, the author was
informed that the p-scalar curvature is a special part of weighted scalar
curvature introduced in [Lah]. As there are some overlaps on the results,
especially on uK-energy, we collect them here. Proposition 1.4.2 in this thesis
should correspond to Theorem 5 in [Lah] and its corollary is mentioned in
Remark 4. Proposition 1.4.1 is also covered in the proof of Proposition 1
in his paper. Proposition 1.3.6 corresponds to Proposition 2 in [Lah], but
the statement is slightly different. Computing with p-Lichnerowicz operator,
we can extend the domain of Futé\ to ho(X) from the centralizer ho¢(X)
of &, where the latter case is considered in [Lah]. While it is natural to
consider only a torus equivariant test configurations to formulate weighted
K-stability (or uK-stability), our slight deviation to non-equivariant direction
boe(X)t C ho(X) enables us to conclude the maximality of Autg(X/Alb) -
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Aut’(X/Alb) among reductive subgroups in Aut’(X/Alb) for X admitting a
,ug—cscK metric for some A < 0 (see Corollary 1.3.19). This is indeed not the
case when A > 0 as we see in the example of CP!. Lahdili also considers a
weighted Futaki invariant for smooth test configurations, which should have
an advantage towards an algebraic formulation of pK-stability (or weighted
K-stability) for general test configurations (cf. section 1.4.2). The materials
in the section 1.2.2, 1.3.3, 1.5.1 and 1.6 have different original flavors from
these overlaps.

Organization

In section 1.2.1, we explain a motivative interpretation of p-scalar curvature
as a moment map. We observe in section 1.2.2 how p-scalar curvature is
related to extremal metric, assuming some results in section 1.3.3. We prove
Theorem A in section 1.3.1 and check Theorem B (1) in section 1.3.2 using a
formula obtained in section 1.3.1. Theorem B (2) is verified in section 1.3.3.
We also prove Theorem D in this section, combining with the observation in
section 1.2.2. Theorem C is demonstrated in section 1.4.1. We also present
some naive stability notion which should fit into our ‘u’-framework. We note
that Lahdili introduced weighted Futaki invariant for smooth test configura-
tions in [Lah] in his weighted framework. This will be refined in the future
study [Ino2] for general test configurations in our p-framework. In section
1.5, we prove Theorem E, Theorem B (3) and Theorem D (3). In section 1.6,
we firstly observe there are non-trivial pu*-cscK metrics on CP! for A > 0,
and then we construct explicit examples of p-cscK metrics on ruled surfaces,
using Calabi ansatz method.

1.2 Motivative observation on p~-cscK metrics

1.2.1 p-scalar curvature and Donaldson-Fujiki picture

In this section, we fix a symplectic structure w on a smooth manifold M and
a smooth vector field ¢ preserving w and vary complex structures J and the
parameter A € R.

In this setup, we can also consider all variation of Kahler metrics on a
fixed complex manifold X = (M, J) and in a fixed Kéhler class as follows.
Let o’ be another Kéahler metric on X in the Kéhler class [w]. As tw'+(1—t)w
is nondegenerate for all ¢ € [0, 1], we can apply Moser’s theorem to obtain a
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diffeomorphism ¢ of M so that ¢*w’ = w. We obtain another w-compatible
complex structure ¢*J on M. Conversely, if we have an w-compatible com-
plex structure J’ which is biholomorphic to J via some diffeomorphism ¢
of M, ie. J' = ¢*J, then we obtain another Kahler form ' := (¢~ !)*w
on X = (M,J). This gives a natural identification of the space of Kéahler
metrics in a fixed Kéhler class [w] on a complex manifold X = (M, J) with
the quotient space

{J € T(M,w) | (M,J") is biholomorphic to (M, J)}/Symp(M,w).

The leaf {J' € J(M,w) | (M, J’) is biholomorphic to (M, J)} can be psycho-
logically regarded as ‘the orbit of J by the complexified action of J(M,w)
Symp(M,w)’, which enables us to interpret YTD-type conjecture as an infi-

nite dimensional analogy of the finite dimensional Kempf-Ness theorem. (cf.
[Donl], [Sze-book]. )

Moment map

Let (M,w) be a closed C*°-symplectic manifold. A smooth vector field £ on
M preserves w if and only if icw is closed, as Lew = dicw. Put ham(M, w) as

ham(M,w) :=={£ € X(M) | iew is exact }, (1.5)

which is a Lie subalgebra of the Lie algebra X(M) of smooth vector fields.

A smooth right action M v T by a Lie group T is called Hamiltonian
if the linearization t — X(M) factors through ham(M,w). In this case,
we have an equivariant smooth map p : M — t* satisfying —du; = iew
called a moment map, where we consider the coadjoint action on t* and
e is a real valued function on M defined by pe(z) = (u(x),&). For two
moment maps i, i’ with respect to the same action and the same symplectic
form w, we know that pu — p’ is constant as d(u — p') = 0 and moreover
pw—p e () ={v et |vt=uvioreveryt € T} by the equivariance
of the maps. In other words, moment maps are unique modulo (t*)7. We
will mainly consider an action by a closed real torus 7' = (U(1))* and have
(t*)T = t* in this case.

There is an associated element [w + u] € HA(M;R) of the equivariant
de Rham cohomology. For another T-invariant symplectic form «’ and a
moment map p', we have [w + u] = [w' + ¢/] if and only if there exists a T-
invariant 1-form ¢ such that w = w'+d¢ and pg = p; +ic¢. In particular, we
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have [w+ u] = [w+ /] if and only if 4 = i’ as € has a zero. The push-forward
measure j,(w"/n!) on t* is called the Duistermaat—Heckman measure, which
defines the same measure independent of the choice of w + p in the same
equivariant cohomology class [GGK].

Vector fileds

For an w-compatible almost complex structure J, we put

¢hi=Je+V=le, =T VEIE (1.6)
and 0 := —2p¢. Then we have

V=100 = icow, /—100; = —igIw, (1.7)

where 9 := (d + v/—1Jd)/2 and 9 := (d — v/=1Jd)/2. In other words, we
have £/ = ¢?10,0, and £/ = ¢P70,0, in the usual Kahlerian notation. We also
have J§ = -V, pe and thus

§'0¢ = —2(J ) pe = 21¢[;, = €73, (1.8)
= [00¢lg, = trg, (V' —100¢ A O0¢).

p-scalar curvature

Let (M,w) be a closed C*°-symplectic manifold with a Hamiltonian action
by a closed real torus T and p : M — t* be a moment map. For an w-
compatible almost complex structure J, we denote by s(J) the hermitian
scalar curvature defined by Donaldson [Donl], which coincides with the usual
Kahler (the half of the Riemannian) scalar curvature skz(gs) = %sRm (gs) for
integrable J. Note that this s(.J) differs from the half of the Riemannian
scalar curvature %sRm(g 7) for non-integrable J in general.

The p-scalar curvature s¢(gy) of a metric g;(-,-) = w(-, J-) (associated to
a T-invariant w-compatible almost complex structure J on M) with respect
to a vector £ € t is defined as follows:

SE(QJ) = (5(J> - AgJMé) + (_Angué + 25]:”5)7 (1'1())

where A, denotes the usual Riemannian Laplacian A,, = d*d with respect
to g; Since two moment maps with respect to the same symplectic form only
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differ by a constant, (1.10) is independent of the choice of the moment map .
When ¢ = 0 and J is integrable, the p-scalar curvature is of course nothing
but the usual Kahlerian scalar curvature. .

As A,, is the twice of d/0-Laplacians 0 = O = —¢¥9,0; when J is
integrable, we can express (1.10) as

se(9.7) = (sxa(gs) + 06g) + (00 — £706)

= (Ologdet g — £ logdet g + Z 9,8 + (00 — &76¢)

i=1

= (O~ ¢)log(e™ det g) + Y i€, (1.11)

i=1
using 0 = —2u¢. Note that £ logdet g— Y 9;¢" = —10; is a globally-defined
function while £7 log det g is just locally-defined on a holomorphic chart.

Put
5¢(J) ::/ ss(gj)e2“§w”// e 2Hey" (1.12)

= [ (stan) = Agyugyeean | [ e

A similar calculation as in the proof of Proposition 3.1 in [Inol] (cf. section
3.3.1) shows

;ig e(Jr) = <411c;lt(4s(Jt) _2”5)+/)(2|§|31>//Xe_2“5w”

1 . )
= <Z(L—2e2“§§JtaJtJt)+/2W(§ath)6_2M£Wn //G_QMEWn

= / (( Jd/ig ®E+ d,u£ ® JE, tht) + 2w(§ Jt o~ 2He // o
X w w
=0.

So 5¢(J) is a constant independent of J compatible with w. For an integrable
complex structure J, we can compute it as

so= / ne=2¢Ric(w) A w” / O(~2pg)e ) / / e
/(RIC( ) + 06) w+95// w0

= 2m(e1(X, €) - e B)) fer (B9,
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where the last expression depends only on the equivariant Chern classes.
For each \ € R, we define the u*-scalar curvature sé\(g s) of a metric g,
by

se(91) = se(g) + 2pte. (1.13)

We put
fe i= / ,u562“5w”// e e (1.14)

M M
and

fle = pie — e, (1.15)
57 1= 8¢ + 2\, (1.16)
5¢(9s) = s¢(90) — 52 (1.17)

Then the constant 52 depends only on the equivariant Chern classes ¢f (X), ¢f (L)
and s3(g,) is constant iff 52(g;) = 0.
Relation with Kahler-Ricci soliton

There are two fundamental examples of constant p-scalar curvature Kahler
metric:

e A constant scalar curvature Kéahler metric is also a constant p-scalar
curvature Kahler metric with respect to £ = 0 and any A € R.

e A Kahler-Ricci soliton gy with respect to &, i.e. Ric(gs) — Lesgs = Agy,
is a constant p-scalar curvature Kahler metric with respect to £ and .

The second claim follows from a standard calculation in [TZ2] (cf. [Inol]).
For the readers’ convenience, we exhibit the proof here. Remember that
Kéhler-Ricci soliton with nontrivial £ # 0 could exist only when A > 0 and
[Aw| € 27y (X). In particular, X is a Fano manifold in this case. Take a
Ricci potential h of w, i.e. Ric(w) — Aw = +/—190h, and consider a moment
map p with respect to w normalized as

/ pelw™ = 0. (1.18)

X

Taking the Lie derivative Les of Ric(w) — Aw = /—100h, we have
V—100(00: — M) = V/—190((0*h)b;),
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where we used that &7 is holomorphic and (9*h)0; = £7h. Note that the
operator (—0%h is formally self-adjoint with respect to the weighted measure
ehw™, therefore (O — 9%h) f = ¢ has a solution f (unique up to constant) iff
[y we"w™ = 0. So under the normalization (1.18), we obtain

00 — &7h — X0 = 0. (1.19)

Then we can express 5¢ as

S¢ = / (O(=h +0¢) + )\n)eeﬁw"// elem
X X

:)\n+/(—ﬁh+§‘]h+)\05)605w”// e
X X

:)\n—l-)\/Ggeaﬁw”//eeﬁw”, (1.20)
b b

where we again used that [0 — &7 is formally self-adjoint with respect to
the weighted measure e’sw”. Now suppose w is a Kihler-Ricci soliton, then
taking the trace of Ric(gy) — Lgrgs = Mgy, we obtain

s(gs) + 00 = An.

As h is equal to ¢ up to constant, we have 0 = fX fcePw™ = 0 under the
normalization (1.18) and 00 — £76; — A0 = 0. Therefore, we conclude

se(97) — Mg = (s(gs) + 00;) + (06 — £76;:) — M = 5.

The normalization (1.18) of the moment map fx is equivalent to [w + u] =
cI'(X) where ¢ (X) denotes the equivariant Chern class of the anticanoni-
cal bundle — Ky, which can be represented by the equivariant closed form
Ric(w) + 00 in the equivariant deRham cohomology.

Donaldson-Fujiki picture for p-scalar curvature

Now we explain the moment map picture for p-scalar curvature. Let (M, w)
be a real 2n-dimensional C'*°-symplectic manifold. Denote by J¢(M,w) the
space of all £-invariant almost complex structures compatible with w, which
admits the structure of an infinite dimensional Fréchet manifold and is path-
connected. We have the following symplectic structure Q¢ on Je(M,w):

Qe(A, B) = /M Tr(JAB)e e (1.21)
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for each A, B € T;J¢(M,w) C EndT M.

For simplicity, we assume the first Betti number of M is zero. In this
case, we can identify the Lie algebra symp,(M,w) of the Fréchet Lie group
Sympg(M,w) of symplectic diffeomorphisms preserving { with the space
Cg(M)/R of real-valued {-invariant C'*°-functions on M modulo constant.
We identify a 2n-form ¢ on M satisfying [,, ¢ = 0 and L¢p = 0 with the
following element of the dual of symp (M, w): f— [, fe.

Now define a smooth map S : Je(M,w) — symp.(M,w)* of Fréchet
manifolds by

S?(J) = 4§2(gj)e_2“5w". (1.22)
Then we have the following. The proof will be given in Proposition 3.3.1.
Proposition 1.2.1 ([Inol]). The map 82 : Je(M,w) — symp, (M, w)* is a
moment map with respect to the symplectic structure ¢ and the action of
Sympg (M, w) on Je(M,w). Namely, S is a Symp, (M, w)-equivariant smooth
map satisfying

d :
- t:0<S§(Jt), f) = Qe(Lx, Jo, Jo) (1.23)
for every smooth curve J; € Je(M,w) and f € Cg°(M), where X; is the
Hamiltonian vector field of f: df = —ix,w.

Note that moment maps with respect to the symplectic structure ¢ is
unique up to Symp, (M, w)-invariant elements of shymp, (M, w). In particular,
the map J — (8¢(gs) + pe — [y pee 2w™/ [, e ew™)e2ew™ also gives a
moment map for any ¢ tangent to the action of the closed torus generated
by £. In this thesis, we restrict our interest to the proportional one, i.e.
¢ = —2X¢ for some X € R.

The following invariant gives a constraint on A for each fixed ¢ and con-
versely a constraint on £ for each fixed A for the non-emptiness of the moduli
space (82)71(0)/Symp,(M,w). We will study these constraints in the next
section and section 1.3.3, respectively.

Corollary 1.2.2 (p-Futaki invariant). Let t be the Lie algebra of the closed
torus generated by &. The following linear map Futé\ t— R,

is independent of the choice of J € J:(M,w) and the moment map x (as we
divide it by [,, e"*w").
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If we fix a complex structure J, it is independent of the choice of the
Kahler metric w’ in the Kéhler class [w] (by Moser’s theorem). So in particu-
lar, Futg\ can be regarded as an invariant of the quadruple (X, [w], £, \) where
X = (M, J) is a complex manifold. As observed in [Wangl|, the moment
map picture further expects that Futg‘ extends to ho¢(X). In section 1.3.2, we
further show that Futg\ extends to ho(X), which is larger than ho¢(X). Such
an extension is out of expectations coming from the moment map picture.

Note that the above corollary also shows that this complex invariant Futé\
(restricted to t) is also a T-equivariant deformation invariant.

Weighted cscK metrics and p-cscK metrics

For a smooth positive function v on P, Lahdili [Lah] defines the weighted
scalar curvature s,(w) by

suft) = () (0o ) 4 Bulvop?) =3 7 (JEE (o op®). (124)

1<i,j<k

As observed in [Lah], weighted scalar curvature has a moment map picture
similar to that for p-scalar curvature in the previous section.

When v is of the form v(z) = v({(z, £)) with some smooth positive function
v on R and € € t, we can simplify it as

() = 5() - (0.0 ) + (B - (7 0 148) — (Vg Vi) - (0" 0 ) — 5 (JEWE - (" 1)

~ w w ~/ w 1 w ! w
= (@) - (B 1) + Dupif - (7 0 1) + 5(JOHE - (7 0 i)

2728 yields our p-scalar curvature s¢(w):

Substituting v(x) = ef
so(w) = ((s(w) + Ob) + (00 — (JE)g))e% =: se(w)e’.
So Mg—cscK metrics are equivalent to weighted cscK metrics with the weight

v(x) = e!®72) For general A € R, ,ug‘—CSCK metrics are regarded as a special
case of weighted extremal metrics.

1.2.2 From p-cscK metrics to extremal metric: \ Y\
—00

In this section, we fix a complex structure J on M and a Kéahler class [w].
We observe some intriguing features of p*-cscK, assuming some results in the
rest of this chapter.
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Constraint on A\

There is an a priori constraint on A for each fixed £ # 0 to admit a u-
cscK metric in a fixed Kéhler class [w]. If there is a pg-cscK metric o, i.e.
§2(w') = 0, in the Kéhler class [w], then we must have

0= Futg‘(f) = Futg(f)—)\ (/ 9?@95(,0”// e — / fcel ™ // aiw ) .
X X

(1.25)
For ¢ € t, we put

ve(Q) :—/Xegeafw"//Xeefw”—(/X@geefwn//xegﬁwny. (1.26)

This is invariant when we add a constant ¢ on 6, so it must be positive when
¢ # 0 since it is obviously positive when normalizing 6, so that [ X Oclswn =
0. The function v is an invariant of the equivariant deRham class [w + p]
and &, since it can be expressed as

fP<m7_2C>2€<m’i2£>DH( ) Jp(m, —2Q)e "2 DH (m)
ve(Q) = T e S D () - T =2 D H (m) )

using the Duistermaat-Heckman measure DH = p,w"™, which is an invariant
of the equivariant deRham class [w+ | associated to the moment map. Here
P denotes the support of the measure DH.

Thus from (1.25) we can determine A as

A= e = Futd(€) /v (€), (1.27)

where the right hand side is an invariant of the triple (X, [w],£) (also an
invariant of the symplectic triple (M,w,€)). The sign of A¢ coincides with
that of Futg({‘).

A as a function on the real blowing-up t

While the function A¢ is well-defined and continuous just on the punctured
space t\ {0}, the following functional

§ €] - A (1.28)
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continuously extends to the real blowing-up
t={(5) | €€E=10,00) vt vet\{0}} S t:(65) ¢

of t at the origin, where we take the norm on t as [¢]* := [ Zw". Indeed,
as €| tends to 0, the function 1€]72ve(€) on t\ {0} approaches to a positive
continuous function ( =1/ [yw"— ([ 0=w"/ [ w™)? on the boundary
sphere m1(0), where we put 0= := 0, for a unique vector v e Z with |v] =1
and similarly [¢]7!- Futg(f ) approaches to a continuous function ER(O, =)=
Fut(v) = [(s — 5)0zw"/ [, w™ on 77'(0). Here the positivity of 7 again
follows by the Cauchy-Schwartz inequality.

We will see in section 1.3.3 that A, i.e. Futg(f), is always positive suf-
ficiently away from the origin. Assuming this, it follows that any sequence
& € twith g, — —oo must converge to the origin 0 € t. Moreover, as
the function [£| - A¢ is bounded near the origin, we have a uniform bound
|Ai&i| < C, so that there is a subsequence such that \;§ converges to some
vector £ € t. Now suppose Fut€ = 0 for every i. Since we can compute all

Fut& by a fixed T-invariant Kéhler metric w, the limit of this functional is

given as
-0 - . .
Futelc) = /X () = 5) = (0 = 8) ) e / /XW ,
where we put 8¢ == [, 0"/ [ w". We must have Fﬁtg = 0 for the limit
vector €.

Such a vector € is uniquely characterized as the critical point of the fol-
lowing strictly convex functional on t:

c© = [ (st =5 - 0-09) '/ [~ [ (st spur] [ am

(1.29)
whose derivative at £ is 2Fﬁt2. (We add the second term so that the funct1ona1
is independent of the choice w € [w]. ) The minimizer of this functional is

called the extremal vector. We denote it by éext- From the above observation,
we obtain £ = & for the limit vector ¢, independent of the choice of the
subsequence of {i}. It follows that the original sequence \;§; also converges

to fext‘
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Extremal metric in the limit of A — —o0

Suppose there is a sequence of ugii—cscK metrics w; in the fixed Kéahler class
[w] with \; = —o0:

(s(wi) + Oy, (i) + (Ol g, (wi) = &0, (wi)) — Mg, (wi) = 5,

where 0, (w;) denotes the d-Hamiltonian potential with respect to w; in the
same equivariant class. Fix a reference metric w and take a Kahler potential
¢; of w; so that max ¢; = 0.

Suppose we have a uniform C*®-bound of ¢; and a uniform bound Cw <
w;, then the limit of the metrics gives a metric w_., € [w] after taking a
subsequence. Remember that the vectors & must converge to 0 and the
sequence \;&; converges to the extremal vector ey (by the observation in the
last subsection). It follows that b, (w;) = 0, (w) — &/ ¢; converges to 0 in C*
and the limit metric w_,, must satisfy the following equation

S(W_oo) — b, (W_oo) = const,

which is nothing but the equation of extremal metric.
Conversely, we will see in section 1.5 the following:

o If there exists an extremal metric, there also exists u*-cscK metrics in
the same Kahler class for A sufficiently small or large.

e Ifthereisa ,u’\—cscK metric for A < 0, then we can find a ,uX—cscK metric
in the same Kéhler class for small perturbations A" € (A — €, A + ¢).

Thus the problem of connecting p°-cscK metric/Kéhler-Ricci soliton and
extremal metric (when both of them exist) reduces to the problem on the a
priori estimate.

Though we firstly introduced the parameter A\ so that we can include
Kahler-Ricci soliton in our study on p-cscK metric, the above observation
now tells us that the parameter A can be regarded as a continuity path
connecting p°-cscK metric/Kéhler—Ricci soliton and extremal metric.
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1.3 p-Futaki invariant, py-volume functional and
automorphism group

1.3.1 p-Lichnerowicz operator and reductiveness

In this section, we fix a complex structure J on M, a Kahler metric w and a
function € on M. We prove the reductiveness of the automorphism group of
a Kahler manifold admitting p-cscK. This result is a first step to construct a
good moduli space of the complex structures of Kéhler manifolds admitting
p-cscK metrics, in order to apply GIT locally. We firstly begin with basic
calculations for the readers’ and the author’s convenience.

Warming up for calculations

Let (X,w) be a Kéhler manifold, # be a smooth real-valued function on X
and (F, h) be a hermitian (not necessarily holomorphic, so far) vector bundle
on X. Define an L*-norm (-, -}y by

(a, B)g = /X h(a, B) efw"

for smooth sections a, 8 € Q°(F). For a differential operator D : Q°(E) —
QO(F) from E to F, denote by D% : Q°(F) — Q°(E) the formal left adjoint
of D with respect to such pairing, i.e.

<D9*@7B>E,9 = (o, Dﬁ)F,H

for all sections o € Q°(F), 8 € Q°(E). As usual, we denote by A : QP(E) —
Qp~L4=1(E) the adjoint operator of wA:

WP~ (Aa), B) = WP (a,w A B),
where hP? is the induced hermitian metric on AP? ® E defined as

LI

Uiy AUT..g R O, V1. A VL. R T) := h(o, T) - det _
( 1--p 1---q 1-p 1. ) ( ) ( 0 g(ul%avf) bt

for uy., = wr A+ Ay, V1. = V1A AV, € APOX ug o = Ui A+ -Aug, V..g =
vi A Avg € A2X and 0,7 € E,.
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Ezample 1.3.1. For a = a;; @ dz' A dz7 € QV1(E), we have
Alar) = _\/—_19i304¢j-
For v = ;55 ® dz' N dz7 A dzF € QY (E), we have
A() = —V=1g" (g1 — virz) dz*.

For a hermitian connection V on (E,h), the following local expressions
yield global operators.

V=) d AV) QPUE) - QH(E), (1.30)
=1

V"= dZ AV QPU(E) - QPIH(E), (1.31)
=1

where

VA QAP @ E) — QAP @ E)

is the induced connection on A?? ® E. These operators V', V" are the first
order differential operators from AP? @ E to AP*14 @ E and AP? ® E to
APt @ B respectively, and V' + V” is the exterior covariant derivative of
V.

Put 0, := 00/02?,0; := 00/0z9 on a holomorphic chart of X and denote
by &', & the following global vector fields associated to

¢ =0 = 9"10,0,, &' = o0 = gpqugq'

Then the formal adjoints V', V"% of V’, V" with respect to the pairing
(-,-)g can be written as

V/6'>o< _ v/* _ Zgl _ \/—_1<AV” o V/IA> _ if” (132)
V=V i = —VST(AV = VA g (1.33)
Indeed, using (o, B)g = (a, Be’), we compute

(V" B)s = (0, V'B)o
= (o, V'(e?B)) — (o, 00 A B)g
= <v/*avﬁ>9 - <i§/()l, 5>9
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Weitzenbock formula

Let (L,e~?) be a holomorphic hermitian line bundle on X, where we denote
the hermitian connection by a local expression e=?. We denote by V the
Chern connection on L. The Chern curvature is given by 00¢. Put

V= Vivoxer o f: QOH(L) — QYT X ® L),

VH = Vinoxer o QML) — QPHTYX ® L),
where £ : Q%1 (L) — QYT X @ L) is given by #(a;dz’) = g¥a;0;. Consider
the following four variants of weighted Laplacian acting on Q%'(L):

0= V"V +V V" = vV
EH o V//G*V// + \vid V//G*
0% O
0% == V¥V =b(V'rxer Vixes )t
— 0* *
Df@& = VTV = b(V”?X@)L /7/‘X®L)Jja
where b : QYT X ® L) — Q%!(L) is given by b(n'd;) = g;n'dz’.

Lemma 1.3.2 (Weighted Laplacians). The above weighted Laplacians can
be expressed by the usual Laplacians as follows.

0 =0- vy, (1.34)
0% =0 Vi — g70dz" © 9;, (1.35)
;‘; = Uy — Ve (1.36)
0% = Oy — Ve, (1.37)

where 0,z = 9%0/02°07" and ¢"0zdz* ® 9; € End(T%'X) is identified with
the operator acting on Q%!(L).

Proof. Let aj ® dz* be an element of Q%!(L) expressed by local sections oy
of L. Then from (1.32), we have

D (az ® dz*) = V'V (0 ® dzF)
- (v’*v’ - igv’) (ap ® dz")
=(0O-Vo)(og® dz").
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We can do similarly as for Di and Ei.
As for 0%, we calculate as follows.

O (aj, @ dz%) = (V" V" + V'V"") (af @ dz")
- ((v”*v” L v v B (8 v v”zgu)) (o ® dz¥)
= O(ag @ d2") — V(g @ d2*) + d2° N gV (o @ d2*) — D1(9"76;07)
= (0~ Vi) (o ® dz") — g70,505d7",
where we transform dz? A igr Vi (af @ dz*) as
dz? Nign V) (o ® dz¥) = dz? A (€0, g0g + ap(—ETE;))
= g”_fﬁléj;oz,; — a,;@lgljgpl_“gpmdfq
= 915];(9”504,;).
O

Corollary 1.3.3 (Weitzenbdck formula). Write Ric(w) = +/—1991og det(g,;)
as v —1R;dz' Ndz7 and put £ := (£ —¢")/2v/—1. Then we have the following.

07 — 0 = A(V—100¢) — 2/ =1V} + g70dz" © 9;, (1.38)
0f — 0% = A(V=100¢) + ¢" Ryzdz" © 9; — 2v/—1V7, (1.39)
0, —0° =0, 7 (1.40)
E]i — 0% = —¢Y(Ry; — 0,5)dz" ® 5j. (1.41)

Proof. The first two equalities follow from the above lemma combined with
the usual Kodaira-Nakano formula

00— 0= A(V-100¢),
Oy — Oy = b(g¥ RS d2P @0, + g7 pdz" @ D))t
= ¢"R,dZ ® 9, + g7 ;37" © D,
Put o, := Vpop and aj; := Vgag. Then using (1.32) and (1.33), we
obtain

Vi(azdzF) = g”%a,;.ypdzp ® 0, (1.42)

0% _ »
VI (BLd2? @ 0) = —gf;gPQ( !+ BL0g)dE (1.43)
VH(apdz") = (¢ ap)qdz? @ 0, (1.44)
vﬁﬂ"*(ﬁgdzq ® 0) = V¥ (BLdz? @ 9) — 913970, 8LdZ. (1.45)
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p-Lichnerowicz operator and Reductiveness
Proposition 1.3.4 (u-Lichnerowicz operator). Put D := V#0 : O2(X) —
QOHTHOX). Suppose &' = 9% is a holomorphic vector field, then
DD = @A
— (TP f — (07(g" (Ryp — 0,0)d=" @ B,)D)
= (0 -¢")?f + (Ric(w) — Lew, vV—190f) (1.46)
+ (O se(w) (),

where s¢(w) = (s(w) + 00) + (00 — £0).
Proof. Tt suffices to show the third equality. As 00 = 0, we have 0710 =

(0%%0)(07+0) = (O—¢")(O—¢"). The second term in the second formula can
be simplified as

(@ (g7 (R — 0)dz* © 8))D)f = (V=I(A0) + ien) (g (g — e
1.

As for v/=T(AD) (g7 (Rif, — O:5) [d2*),

V=I(A0) (97 (R, — 02) f3d2%) = V=1(—V=1¢")(g" (Riz. — 0.2) f5)
= glkgij(Ril‘c - eil‘c)flj + glk(gij(RiE - 91'1%))lfj
= (Ric(w) — Lgw, vV—190f) (1.48)
+ glkgij,l(RiE — O f; + glkgij<Ril_c,l — 050 15,
where Rjz; = ORz/07' and 0,3, = 8°0/02'02%02'. As Ry — 05, = Ry —
05> the last term of (1.48) is equal to

9" (R — 00))ifs — 97 g™ (R, — 0) - (1.49)

As g*gi | = —g*gilg,197 = —g* g7 = g* g¥, the second term of
(1.48) is distinguished by the second term of (1.49). So we obtain

V=1(A9) (g7 (R — 0:5) f;dZ") = (Ric(w) — Lew, V—190f) + (0*(s + 00)) f.
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The rest term in (1.47) is
ié”(gij(RiE _eil_c)f ) fk ”( ik zl%)fi
= glkgwel( 'Lk)f]

and the following calculations show (1.46). As &’ = ¢g%6; is holomorphic, we
have (g?10,); = (g796,); = = 0. It follows that

(00); = —(g pqe — (g™ p)‘ti + (gpq ‘9p>i
= (—g" 99 10,

—(0""912.7)59" 0, — 67912 1(57"6,);
:gpkepRifc

and
(£0); = (6"0:0)); = (90,05, + g 0,0, = g™ 6,0,
]

Corollary 1.3.5 (Reductiveness). Suppose there exists a ,ug—cscK metric
w on X, then the identity component Autg(X /Alb) of the subgroup of the
reduced automorphism group Aut(X/Alb) preserving ¢ is the complexifica-
tion of the group HIsomg(X ,w) of the Hamiltonian isometries of the u-cscK
metric w preserving &, especially, it is reductive.

Proof. If w is a p-cscK, then the operator D%D restricted to C&(X,C) =
{f € C*(X,C) | £&f =0} is a real operator. It follows that

{f € CZ(X,C) | Df =0} = {g+v—Th | Dg=Dh =0, g,h € CZ(X,R)},

which are respectively isomorphic to aute (X, [w]) and isom¢ (X, g)®v/ —Tlisome (X, g)
as we have D = V#9 = 070", O

1.3.2 p-Futaki invariant

In this section, we fix a complex structure J on M, a Kéahler class |w]|, the
properly O-Hamiltonian vector field € and the parameter \ € R.

Let ¢ be a properly 0-Hamiltonian vector field on a Kéhler manifold X.
Taking a &-invariant Kéhler metric w € [w], we define a C-linear functional

Futé\ : ho(X) — C by

Futé\(C) ::/X§g‘(w)0¢ eefw”//Xeeﬁwn. (1.50)
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Remember that

5 (w) = (s(w) +06e) + (O — 70¢) — M — 5,

5¢ = / (s + 00 — )\95)6950.)"// efewm.
X X

The following proposition proves Theorem B (1).

Proposition 1.3.6. The linear functional Futg‘ is independent of the choice
of the &-invariant Kéhler metric w in the fixed Kéahler class [w] and of the nor-
malization of the moment map 6 (independent of the equivariant cohomology
class [w + 6]).

Proof. Take two &-invariant Kéhler forms w,w’ € [w] and take a smooth
function ¢ so that o' = w + v/—100¢. Put w; := w + t/—190¢. Then
the moment map p' with respect to w; with w; + p' € [w + p is given by
ué = pe — t&¢/2. We put 92 = 0, + t¢7¢ for ¢ € ho(X), which satisfies
5«92 = i¢cswy and is complex-valued in general and becomes real-valued when

¢ € ho(X,w). As we already know that [ % e s invariant, it is sufficient

to see
d

7 ; §2‘(gt)02 eeéwf =0
for every t € [0, 1]. Firstly, we compute
52w = - ((TRG — 60, 5) + (~gi18L 5 — €706) ~ M)
= — 73t g RY — 9P (9" 9L + 917 0L — 97 (€70)5
+ 91 Ghag" s — 99 (€1 0)ig — €776 = AT
= —0,0,¢0 — (Ric(w;) — Leswy, \/—_135¢) + 079
+ (Leswe, vV=1009) + (O = €7)(¢79) = A¢7¢
= —((O = €)% + (Ric(wy) — Lewy, V—=1099)) — /0,6 — 0,879 + 7€
+ 0,670 + (Leswr, V=100¢) + (O — £7)(¢79) — A9
= —D"Di6 + (FPse(90))(6) — A9
— &'0hp + 0,76 + (Leswr, V—100¢)
= —D/"Dip + (53 (9:))(¢) = —D{*Diop + (952 (90)) (),
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where we used the &-invariance of metrics for £7¢ = £7¢ etc. and compute
the last line by

(Leswr, v —185@ =g gtjeé U¢kl_
= gt (5 brr)i — 9 gfzeéjgbkf - gilfkﬁbkﬁ
= g ((E0u)D)i — 9P g7 0 b — E5 (gl ba)ie + 9870 gt
= —0¢’¢ +¢'0s.

It follows that

d [ .
G [ sttt ar = [ DFDw oieap + [ @2a0)(0) ey
X

+ [ sbacs e — [ 50000, - €))%
—— [ o DD + [ (@sta(e) tier
+ [ e [ Fam@tk

- /X ¢ DD fLe’sw)

and the last term vanishes as ¢ € ho(X). O

By the definition of Futg‘7 if there is a ,ug‘—cscK metric in the Kahler class

w], Futé\ must vanish.
We put

:%J?‘(C) = /ng\(W)eg e = Fut?(()/ e, (1.51)

X

In contrast to Fut:c\, 4;? depends on the choice of the moment map 6 while
it is independent of the choice of the Kahler metric in the fixed Kéhler class
[w].

When X is a Fano manifold and [w] = 2m¢i(X), Fut; reduces to the
following well-known form:

Futé(g) = —/XCJ(h — 92)665wn = —/Xege%wn//XeGgwn’

where £ is a Ricci potential and 6¢ denotes the normalization of 0 satistying
[ €’w™ = 1. This invariant was investigated in [TZ2].
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1.3.3 p-volume functional

Here we introduce a generalization of a functional considered in [TZ2].

Let X be a compact Kahler manifold with a Hamiltonian holomorphic
action of a compact Lie group K and w be a K-invariant Kahler form on X.
Define the p-volume functional Vol with respect to w on € by

Vol*(¢) := 682(/Xe€5w”>/\ (1.52)

using a real-valued Hamiltonian potential 0, : /=100 = icsw. We can easily
check that Vol*(¢) is independent of the choice of the Hamiltonian potential.
Remember again that the constant 52 is given by

52 = / (s + 06 — A@g)eefw”// s,
X X

As 52 and [, e%sw™ is independent of the choice of the &-invariant Kihler

metric, the g-volume functional Vol” is also independent of the choice of the
K-invariant K&hler metric in the fixed Kéhler class [w].

When X is a Fano manifold and the Kéahler class [w] is equal to 2mey (X),
we have 5; = n by (1.20) under the normalization (1.18) and thus obtain
Vol' = e S X e%sw™, which is equivalent to the volume functional considered
in [TZ2]. We can easily see the properness and the convexity of Vol' in this
case and thus obtain a unique critical point & of Vol', which is equivalent to
Futg =0.

In [Inol], the author used this result in order to formulate an appropriate
moduli problem for Fano manifolds admitting Kahler-Ricci solitons, which
is equivalent to detect a sensible moduli stack, and to construct the mod-
uli space of them. It is important that we have such a result for all Fano
manifolds, not only for Fano manifolds admitting Kahler-Ricci solitons, as
we must include ‘K-semistable’ manifolds in the member of the moduli stack
in order to ensure the openness of the interested families in general families,
which corresponds to the Artinness of the moduli stack.

Variational formulas

Proposition 1.3.7. The derivative dg\/olA of Vol at & € ¢ is given by

(deVol*)(¢) = Vol (€) - Futg (¢).
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Proof. We calculate the derivative of log Vol*(¢) = 52 + Alog [ eswm. We
have the following basic calculations:

d — n
dt l=o /X(S + D¢ — Merig)e’w (1.53)
= /X ((s D0 = A) + (0 — €70 — M) ) e
= ﬁ (E? — )\)/ fceew™,
X
d 0 0
— E+tC oy 3
p tO/ / Oee’sw" (1.54)

It follows that
d

— §2+t< = Futg\(() - /\/ Gceeﬁw"// ePew
=0 X X

dt

So we obtain

log VolM ¢+ 1) = dt‘ <sg‘+t4 + A log/ eerCw”)
b

dt le=
O
Remark 1.3.8. The log of the p-volume functional is given by
log Vol* = / (s + 067 — AGF)e"w™,
X
where we put 67 := 0 — log [ e”sw™ so that [ e%€w™ = 1. As we have

[ D0 wm = [ 106’ wn, this functional has the same expression with
the Perelman’s IW-functional:

_ A n
W fA ) = [ @3 00P) + pel(32)"
X 47
While we usually consider the W-functional for positive A > 0 (and for

general smooth function f with the normalization [, e™/(32)" = 1), we are
mainly interested in A < 0 for our Vol in the context of pi-cscK.
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Next, we exhibit the second variational formula of Vol*. Define a smooth
map DVol* : &€ — £* by
DVol*(§) = d¢Vol* = Vol*(¢) - Fut;. (1.55)

Proposition 1.3.9. The derivative ngVol)‘ £ — £ of DVol* at & € ¢ is
given by

(deDVol*(¢), @) = Vol (€)* - Fut (C) - Futg( )

0. 9& n
— Vol (¢ fX Sy Oectten o ut)(e) — vOF(g)-M
fX 95wn Jx eewn

-1
+ Vol*(€) - (/ eeﬁw"> / (§2Q<6’. +2¢70,)ew"
X X
-1 9 95 n
— AVol}(¢) - (/ eefw”> (/ 0c0o% W™ — fxc#/ G.eeﬁw”) .
X X [y ePewr Jx

Proof. Using the first variational formula, we have

Fut?(()

6650.7”
(dDVOI(C), &) = Vol (€)? - Futd() - Futd(s) — VoI (&) - X piae)

-1
A Os, d
+ Vol (f)(/xeﬁw) pri i

The claim follows by the following computation.

d d - ) )
P ffg&tg( ) = Jt Lo /X(s 2000 poc — (€4 10) Oese — Mee — Sg\ﬂg)e.egﬁmw
= c]}é/)\ _ )\ 9 95 n
- / (200, — 2676 — M)bue’ewr — = © efX — / IR
* S elewr X
+ / §29,9<e(9€w”
X

Jg 6 fXGe w" N .
:2/X§ fee”¢ " [ e e (C)-|-/XS€9.Q<6 £

0 95 n
— A </ (949.605w" — fxc—jw/ G.eefw"> )
X [ ePewr Jx
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Corollaries of the second variational formula

Using the second variational formula, we obtain a criterion for £ to be a local
minimizer.

Corollary 1.3.10. Let w be a u?—cscK metric on X. If ¢ is a local minimizer
of Vol?, then
2 [ |/ Bebewn fy e

A< (1.56)
ve(C)
for every ¢ € £\ {0} (with || =1).
Conversely, if we have
3 < 2] J e (157)

ve(C)

for every ¢ € €\ {0} (with || = 1), then £ € £is an isolated local minimizer of
the functional Vol*. (Note that 2 [y [¢72e%w™ ) [ e%w™ depends on the p-
cscK metric w and so on A. ) Especially, ¢ is an isolated local minimizer
when A < 0.

Moreover, let A; be the first eigenvalue of the weighted d-Laplacian 0, — &7
(restricted to the space of -invariant real functions) with respect to the p-
cscK metric w and suppose A < 2\, then £ € £ is an isolated local minimizer.

Proof. If ¢ is a local minimizer, then we should have (d/dt)?|,—oVol*(¢ +
t¢) = deDVol*(¢)(¢) > 0 for every ¢ # 0. On the other hand, if we have
(d/dt)?,=oVol* (& + t¢) = de DVol*(¢)(¢) > 0 for every ¢ # 0, then ¢ is an
isolated minimizer. Then the first two claims follow by the second variational
formula of Vol*. The last statement follows by the Poincare’s inequality. [

Note that the origin 0 € £ is a critical point of Vol* if and only if the usual
Futaki invariant Fut vanishes, which is independent of A\. So we also obtain
the following corollary, which will give a non-uniqueness of critical points in
the next subsection.

Corollary 1.3.11. Suppose Fut = 0. Then the origin 0 € ¢ is an isolated
local minimizer of Vol if

Jx((s = 8)02 + 2[¢7*)w"/ [y w"

A (0)
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and 0 € ¢ is a local minimizer only when

Jx((s = 5)02 + 2|¢7P)w"/ [ "
Vo(C)

for every ¢ € £\ {0}, where the right hand side is independent of the choices
of the Kahler metric in the fixed Kéhler class and the moment map.

A<

Proof. Note 8y = s — 5. The claim follows by the second variational formula.
We can express [ ((s —5)6Z +2|¢7|*)w™ by the integral of equivariant closed
forms as

/X (s—8)02+2¢" P = —2

n+1

which proves the independence from w. As for the independence of the
normalization of the moment map, it follows from Fut = [, (s — §)fw" =

0. [
For a Kahler manifold (X, [w]) with Fut = 0, we put

Aoo (X, [W]) :=sup{A € R | Vol* is locally minimized at the origin } (1.58)

Jx((s = 8)0¢ + 2|¢7 P
= min
cl=1 Vo(C )
Note that for every A < A (X, [w]), Vol[w] is locally minimized at the origin.
By the Poincare’s inequality, we have the following lower bound:
sup (H}%n s(w) + 201 (w)) — § < Ao (X, [w]), (1.59)
wew]

where \;(w) denotes the first eigenvalue of OJ,,.

Now suppose X is a Fano manifold and there is a Kahler metric w in a
fixed Kéahler class on X with a lower bound on the Ricci curvature Ric(w) >
dw for 6 > 0. Then by Lichnerowicz-Obata’s theorem, we obtain a lower
bound on the first eigenvalue A(w) > 520 (note that O = A). On the
other hand, we have s(w) > on. It follows that if the Futaki invariant of X
vanishes, then by (1.59) we obtain a lower bound Ao (X, [w]) > 6(n+ 522 ) —S5.
So in particular, in this case, the origin 0 € ¢ is an isolated local minimizer

of Vol* for all A < 0if § > =5,
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As for [w] = 27 (X)), we can explicitly compute as
Moo (X, 21 (X)) = 2. (1.60)

This follows by the equality of equivariant classes [Ric + 6] = [w + ;] and
the formula in the proof of the above corollary. We can also deduce this by
using s — 5 = —Uh and 00, — ¢'h — 0, = 0 as in (1.19).

Question 1.3.12. Is Ao (X, [w]) positive for every Kéhler manifold X and
Kéhler class [w]| with vanishing Futaki invariant?

Properness of Vol*

Now we show that Vol* is proper for general X, not necessarily a Fano
manifold, and thus always have a critical point.

Lemma 1.3.13. Let M be a closed manifold and f be a Morse-Bott func-
tion. Normalize f so that max f = 0 by adding a constant and suppose
/71(0) is connected of codimension k. Then for any smooth measure dm,
the parametrized measure t*/2¢!/dm converges to a non-zero finite measure
supported on f~1(0) as ¢ tends to +oo.

Moreover, the parametrized measure (—1)Pt*/2+? fPetf dm converges to a
non-zero finite measure supported on f~1(0) for every non-negative integer
D.

Proof. On any compact set K C M \ f7'(0), the parametrized measure
tk/2et dm, converges to zero in the order o(t*/!e~) as f is smaller than some
—e<0on K.

For a point p of f71(0), we can take a local coordinate of p so that f(z)

can be written as = — (22 4 --- + 27). Then we can write t*/2¢"/dm as

26t dm = 42t Dy (1) dy - - - day,

for a positive function m(z) on this coordinate. It suffices to prove that
the parametrized measure t*/ Qe_t(f‘f%*"'fcﬁ)dxl -+ -dx, converges to a non-zero
finite measure supported on {z; = --- =z = 0}. As we only need to check
the convergence of the integration of all the test functions of boxes, the claim
follows by the Gaussian integral.

As for (—=1)PtE/2+p fretf dm = t4/2P (a3 ad)Pe M@t o0 () dxy - - - day,
we have

k
2 2 _ 2 ... 2 20; — 2
P PR B ) g L dy, = o e i day
1 k %
i=1
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for p; with p; + - - - 4+ pr. = p. Integrating by parts, we obtain
/a wPie ™t dg; = —ia2pi_1€_m2 + i /“ 222t g,
— . =o(e )+ Ot / e~ dr; = o(e) + Ct Pt~/
0

This proves the claim. Il

Proposition 1.3.14. Let X be a compact Kéhler manifold and K be a
compact Lie group acting on X. The limit lim,_,o ¢! log Vol (t£) exists. It
is moreover independent of A € R and is strictly positive for each ¢ € €\ {0}.
In particular, Vol* is proper on £ for each \ € R.

Proof. Recall that the Hamiltonian potential 6 is a Morse-Bott function
with only even indices and co-indices. In particular, 6 (c) is a connected

submanifold for every ¢ € R (cf. [MS]). As Vol* is independent of the
normalization of ¢, we can suppose max 6y = 0. Note that we have 0, = t0;
for ¢ > 0 with respect to this normalization, while it is not linear on £. Let
2k be the real codimension of ¥ := 95_1(0).

We can write the log of the pu-volume functional as

log Vol*(¢) = .§2 + )\log/ e — )\/ 49569%}”// s,
X X X

As for the first term, we can write as

S?E/t:/(s(x)/t)ewgwn// ewﬁwn—{—/ D@gew&w”// etfe m.
X X X N

Since max,ex |s(x)/t| goes to 0 and e'cw™/ [, ecw™ is a probability measure
for any ¢, the first term converges to zero as t tends to infinity. Thanks to
the above lemma, the second term converges to the integration of (Jf; with
respect to a non-zero finite measure supported on ¥. Since ¢¢ is a Morse—-
Bott function, the Hessian at critical points are non-degenerate to the normal
direction, so that we obtain a strict positivity of (8 on . It follows that
5%/t converges to a positive constant limy_,o [ O0ctketcwn/ [, thetew™ =
J O0cdmeog/ [y dmio.

It suffices to show the rest terms converge to zero as t tends to infinity.
Again by the above lemma, t* [ X e'%w™ converges to a positive constant, so
that we have

t log/ e = O(t ' logt) — 0
X
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as t — oo. Similarly, we have

tl/ thegfﬁw"// el = tl/ tkﬂﬁgetefw”// theleum = O(t™1) = 0
X X X X

as t — 00. [
We obtain Theorem B (2).

Corollary 1.3.15. There exists a vector ¢ € £ for which the p-Futaki invari-
ant Fute restricted to € vanishes.

Remark 1.3.16. From Corollary 1.3.11 in the last subsection, we conclude that
critical points of Vol* are not unique for a Kihler class [w] with vanishing
Futaki invariant Fut = 0 and sufficiently large .

Proposition 1.3.17. For each A € R and ¢ € €\{0}, the limit of ¢ ' Futy (t£) =
Futg\g(f ) as t — oo exists and is strictly positive. In particular, the functional
& Futg\(f) is proper on £ for each \ € R.

Proof. Remember that Futf‘g(tf) = [y 8Ocelew/ [ ePewn. As thefrewn
converges to a positive measure, it suffices to prove that ¢! f X §g\59t§eef€w”
converges to a positive constant for any £ € £ (k depends on ). Similarly as
before, we can suppose max 6 = 0. Put X := 95_1(0). We can compute as

tk_l/ §?§0t569t5w” = t’”l/ (s/t + 00¢)0eePewm —I—tk/ Dfceewm
X X X
— )\tkH/ f2e W™ — " (S ft — )\Htg/t)/ Oce'fewm.
b b

By the above lemma, the third term and b/t = [, Oce®w™/ [ eew™ con-
verges to zero, so that the limit can be computed as the limit of

/ (S/t + |j95 — §t§/t)tk+19€et9gwn + / Eegtkewgwn'
X X

Let dw denote the probability measure on X given as the limit of the
measures e%cw"/ [ efewm = thePewn/ [\ tFewm. Then the integrand s/t +
00 — 54/t of the first term uniformly converges to 06 — [, Ofcdeww. Again
thanks to the above lemma, we have non-zero finite measures dm’, = lim;_, . (—1)t*10cetw"
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and dm., = lim,_,o, t*e?sw™ supported on ¥. (We have do = dmq,/ fz AMs .-
) It follows that the limit is given by

- / (Eef— / Edi@)dmgovL / D0 dm .
b by b

Since we have v/—19(06¢) = i¢sRic(w), O is constant along each connected
critical manifold. It follows that (J6¢ is constant along ¥ (thanks to the
connectedness of X, as we noted in the proof of the last proposition) and so
the integrand of the first term is identically zero. So the limit is fz O0cdm.,
which is strictly positive as ¢ has a non-degenerate Hessian to the normal
direction. [

Now we obtain the following expected result, which shows that critical
points of Vol must converge to the origin as A tends to —oo as we observed
in subsection 1.2.2.

Corollary 1.3.18. The set {£ € €| A\¢ <0} is compact for the functional A¢
considered in section 1.2.2. As a consequence, {{ € ¢ | F uté\ = 0 for some A <
0} is compact.

Proof. 1t follows from
{¢ € & Futy =0 for some A < 0} C {€ € €] Ae <0} = {€ € £| Futd(¢) < 0}.
O

The following is a partial evidence for the uniqueness of the candidates
of ¢ for p*-cscK metrics.

Corollary 1.3.19. For each A < 0, the set {¢ | Jw € [w] is a p@-cscK metric }
is finite and is in the centralizer of €. In particular, Aut¢(X/Alb) C Aut’(X/Alb)
is a maximal reductive subgroup if there exists a u?—cscK for some A < 0.

Proof. The set k of isolated local minimizers of Vol* with the non-degenerate
Hessians is a zero dimensional compact submanifold of £ and thus consists
of finitely many points. As we saw in the last subsection, a vector ¢ of a
,ué\—cscK metric must be an element of kK when A < 0. This proves the first
claim.

For each g € K, we have Fut;\*g(C) = Fut?(g;lo. It follows that K
fixes the set x and thus x must be in the centralizer of £. We can see the
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maximal reductiveness of Autg(X /Alb) from Corollary 1.3.5 and by taking
a maximal compact subgroup K. We already know that the properly O-
Hamiltonian vector & must be tangent to the centralizer of a maximal com-
pact subgroup K. (It is essential that p-Futaki invariant is defined on ho(X)
rather than on ho¢(X) and vanishes on ho(X) rather than on the complexifi-
cation ¥“ C ho(X) of the Lie algebra ¥ of the isometry group of the ,ug‘-cscK
metric. It is a priori not evident that we can find a K-invariant ,ug—cscK for
a maximal compact subgroup K C Aut®(X/Alb), however, the claim indeed
holds from this corollary and Corollary 1.3.5 as for A < 0. ) Therefore,
the subgroup Autg(X /Alb) contains the complexification of K, which is a
maximal reductive subgroup of Aut’(X/Alb). O

1.4 pK-energy and pK-stability

1.4.1 upK-energy functional

We introduce pK-energy functional and observe some fundamental properties
of it.

Space of Kahler metrics and geodesics

Let w be a Kahler metric on a Kahler manifold X and & be a properly
0-Hamiltonian vector field preserving w. We denote by H. ¢ the space of
§-invariant smooth Kahler potentials with respect to w and H, ¢ the space
of {-invariant Kahler metrics in the fixed cohomology class [w]. Namely, we
put

Hue ={¢ € CZ(X;R) | w + V—109¢ > 0}, (1.61)

Hee i={wy € W] | wp = w++/—100¢ > 0, ¢ = 0}. (1.62)

We consider the following Riemannian metric on 7:[%5:

(1, 1h2)e = /Xwﬂ/& @z, (1.63)

where we identify the tangent space T%’z':lw,g with {¢) € C¢°(X) | Jx ¥ 695(¢)wg =
0}. This pairing is real-valued as wy is £-invariant.
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A path in 7:[w,§ corresponds to a path of {-invariant functions ¢; normal-
ized as [, ope’ (¢t)wgt = 0. The energy of a finite path {¢; };cjqp With respect
to the Riemannian metric (-, )¢ is given by

b
E(Cbt):/ / |¢t|2695(¢t)wzt.
a X

A geodesic is by definition a critical point of the energy functional on the
space of paths with fixed initial and terminal points. Computing the first
derivative of the energy functional shows that geodesic paths precisely cor-
respond to paths satisfying the following equation

V(g — 0]}, ) = 0 (1.64)

under the normalization [ x éteef(‘bt)wgt = 0. As the equation does not change
by adding a function depending only on ¢, we can find a geodesic ¢; by solving
the equation

$r—10¢il5, =0

ot

and putting ¢, 1= ¢, — fot dt [ ¢re?w - Note that the geodesic equation
itself does not depend on &, however, the normalization of paths does depend
on &.

uK-energy
Define the uK-energy M? on the space H,, ¢ of smooth Kéhler potentials by

1
MZ(¢) = —/0 dt/X§é\(g¢t)¢t e(’d%)wgt, (1.65)

where ¢; is a path connecting 0 and ¢, i.e. ¢9 = 0 and ¢, = ¢. It is
independent of the choice of the smooth path ¢; connecting 0 and ¢. Indeed,
let ¢ o and ¢,; be two paths connecting 0 and ¢ and take an interpolating
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path ¢ s of paths, then we can calculate as

d ! ¢ts ets
— dt | s s
5] 2

1 dQZ)ts _ d¢ts dgbts
. 0% M A
-/ dt/X(( DLt + (P52 00e)) 75

d? ¢t s AN d¢t 5 /= J d(bt s\ ob°
< 502 0, )0 Sy
dsdt 8{ (gt ) dt ( Jt,s 5 ) ds e wt,s

+ §é\ (gt,s)

ds ’ dt dtds dt

! dts dts A d2 t,s *d t,s *d t,s
= [t [ (- 0L DL ) (G - (0% 0
0 X

dgb 1,s dgb 0,s
A\ 1,s 0 AN 0,s @
= [ st e, — [ s e,

Here the third equality follows by the symmetry of the second expression
with respect to s and ¢ and the last equality follows just by (d/ds)¢1s =
(d/ds)po,s = 0. )

The pK-energy /\/lé\ descends to the space of Kéhler metrics ‘H,, ¢ and the
critical points of ./\/lg‘ precisely correspond to ué\—cscK metrics.

In the proof of the finite dimensional Kempf-Ness theorem for a moment
map pu : X — ¥, we make use of the convexity of the Kempf-Ness func-
tional /€, — R to prove that x~'(0) N z.K¢ = x.K, which is analytically
analogous to the uniqueness of (u-)cscK in a given Kéhler class and geo-
metrically corresponds to the injectivity of the map to the GIT quotient

“10)/K — X** J K¢ In order to study the uniqueness of p-cscK in the
same spirit of the Kempf-Ness theorem, we should have the following result.

Proposition 1.4.1 (Convexity along smooth geodesics). The pK-energy Mg\
is convex along smooth geodesics.
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Proof. For a smooth path ¢; in 7:[%5, we compute

dt?Mg (¢r) = % /X 52 (90,) Pre” P
_ /X (= DI Didh + (%52(90,)) (1) ) e,
_/ 52 (96, ) e P, + /X%(gast)@@t = &)dne"
/ [Dignl, e, — /X§2<g¢t>< — 1042, ey

It follows that for a smooth geodesic ¢;, we have

M) = [ Dy, 0

Extension to C'"'-potentials

We show that ./\/lg can be extended to the space

Hie = {0 € CXN(X) | w+ V=1006 > 0}

of C™-smooth sub-Kihler potentials, which generalizes the result of [Chen2)]
known as Chen-Tian’s formula.

It is known by [Chen| that for any two smooth Kéhler metrics there
always exists a unique connecting C'*!'-smooth geodesic in ”Hilg, where one
interprets the geodesic equation as a solution of a Monge-Ampere equation
on the complex manifold X x {a < |z| < b} with boundary. Using the C'*!-
extension of the usual K-energy, Berman and Berndtsson [BB| proves the
uniqueness of cscK and extremal metrics.
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Proposition 1.4.2. The pK-energy /\/lg can be expressed as follows.

M log 2 %@y _ 1dt % (Ri 0,0 )eor H0e(91)
20) = og — e Pwg —nl ¢e(Ric(w) + Lybe e
X 0 X

1
+ 5 / dt / eI 4 / dt( / Oc (60 duecs @, — B / ¢t696<¢t>wgt>.
0 0 X X

0¢ (¢) 1 ' B )
= / loge : we fe(@),, n!/ dt/ gbt((Ric(w) —V—1000;) + (0,6 — ¢’ )) W, +0¢ (61
X erewm 0 P%
(1.66)

1 1
+5 / dt / eI 4 A / dt( / Oc (9 ue’s @, — B / gbteeﬁ(@)wgt),
0 X 0 X X

where we put ¢ := [, 6ce’w"/ [, e’ w™ (independent of ¢;).

Proof. Recall the definition

52(960) = (5(g6,) + 0, 0e(00)) + (0,0 (1) — 70 (1)) — Mg () — (5¢ — M),

Firstly, we transform s(g,,) as follows:
5(g,) = trg, (v —1001log det ws,)

_ wh _
= [y, log wit + trg, (V—190log det w)

_ |j J 1 wgt Jl wgt t Ri
= (0, — &) og -+ & log "+ rg,, (Ric(w)).
For the second term, we have

wg
Les (W—J : w”) _wp, Legw"

n n n
Wa w W

We, w
& log é"( ) - 0, 0(60)+ 0.

The integration of the first term yields the following entropy term
[ (@0 -0 22 by g, — [ 1022 (0, - €2)6) e
X
d wyg, " _ .
d Wor oe( / e
= —— 1 RGO g(0)
dt ( /X 08 n w” §lone
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The second term of the last expression removes the following second term of
the minus of the uK-energy

1 .
/ dt/ (O, 0e(01) — £76: (1)) 605(@)”;2
0 X

1
_ / dat / (B8:(61). Bd)gy, <Ot
0 X
1
= / dt / ¢y PPy
0 X

Thus we have the following expression of the minus of the uK-energy:

_M2<¢) / log _605 wg + / dt/ Dg¢ Oc () + Oy 0¢ + trg,, (Ric(w ))>¢t €95(¢t)wg

+ / dt / O, 0c(¢0) e’y — 5 / dt / p e’y
0 x 0 X
1
_)\/ dt(/95(¢t)¢t605(¢t)wgt_55/qbtee&(%)wgt)
0 X X

and obtain the first expression of the uK-energy by try, (Ric(w))wy, = nRic(w)A
wgfl. The second expression follows by

5 qbee& ¢)0Jn — dt— €J¢ 69£(¢t
S
:/ dt/§J¢t€9§(¢t)wnt_/o dt/Xf‘]gbt(D@—fj)qbtee&(d)t)w
= [ [ a0 - i
=n! [ dt | (—/=1000 — €70 )exs 090
”/0 t/X( V—=1000; — &'0)e

where we applied

/ §lpe My, = / (9b¢, Dp)e’ Py, = / (O, 06 () =70 (1)) pe” Pu,
X X X

and Oy, Ocw)) = trg,, (—\/—1859§)wgt = —ny/—1900, A wzt_l

44



The first term in the second expression (1.66) of M3 is known as the

entropy
/ — log du

_ 1 0 — L0
for the probability measures v = Ee Oc ( )w¢, = €

w™. Here, for general
probability measures, dv/du denotes the Radon— Nykodlm derivative, which
is a measurable function, and the value of the function (dv/du) log(dv/du) is
defined to be zero on which dv/dy is zero. The total mass Ve = [ edewn =
) X e (¢)wg is independent of the choice of ¢ as the Duistermaat—Heckman
measure is an invariant of [w + u|. Applying the Jensen’s inequality with
respect to the convex function ¢(t) = tlogt on [0,00), we get

/—log d >¢(/ Z:du>:¢(1):0.

For any Cll'-smooth path of C*'-smooth sub-Kéhler potentials ¢;, the
current w,, is just a differential form with L>-coefficient and 6¢(¢;) and ¢,
are Lipschitz functions on X. As for Ric(w), v/ =109, 0,0 and £76,, they
are constructed from the initial smooth metric w, so are smooth. Thus we
obtain the following corollary.

Corollary 1.4.3 (Extension to the space of C'''-smooth sub-Kahler poten-

tials). The pK-energy Mg‘ can be uniquely extended to the space Hilé of

C"'-smooth sub-Kéhler potentials so that Mg‘ — H, is continuous, where H,
is the lower-semi continuous function

60§(¢)wn
He(o) = /Xlog n¢ 695(¢)wg

11
on st.

1.4.2 A prelude to uK-stability

In this section, we discuss on ‘uK-stability’ which should fit into the existence
problem on p-cscK metrics.

For a geodesic ray ¢ : [0, 00) — ’ng, we put
MA

Mg"NA(gb) := lim inf £(¢t),
t—o00 t
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which might take the value oo for a general geodesic.
For a vector ¢ € ho(X), the following path ¢, gives a smooth geodesic:

/—_185¢t = frw —w, / ¢t€9§(¢t)(ft*w)n =0,
X

where f; is the one parameter subgroup generated by the vector field J{. As
for this geodesic ray ¢, we can easily see that Mg\ ’NA(¢) exists along this ray

and is nothing but the u-Fuatki invariant —Futg‘(g ).
If the pK-energy is bounded from below, then we must have Mg ’NA(¢) >

0. The most naive and pretty analytic formulation of pK-stability is that
we call a quadruple (X, [w],&, \) pK-semistable (with respect to geodesics)

if we have M?’NA(qb) > 0 for all geodesics ¢ and call it pK-polystable (with
respect to geodesics) if it is uK-semistable and we have Mé’\ ’NA(QS) =0iff ¢ is
a geodesic given by a vector ¢ € ho(X). Then we conjecture there exists a ué\—
cscK metric in the Kéhler class [w] if and only if the quadruple (X, [w], &, A)
is pK-polystable. (cf. [Lah, Theorem 7])

Of course, it is desirable that we can reformulate this quite naive uK-
stability notion to fit into a more algebraic formalism. Namely, we should

e exhibit M 2‘ ’NA(gb) for a geodesic ¢ associated to a test configuration by
an equivariant intersection formula using the equivariant polarization
L and the equivariant relative canonical sheaf w g /p1 of the compactified
test configuration. (cf. [Lah] and [Ino3])

e detect the candidate vector £ for the solution of the p-cscK equation
uniquely in a torus action, in order to formulate a sensible notion of
families of puK-semistable T-varieties enjoying the separation property.

The detection of the candidate (called K-optimal in [Inol]) vector £ fol-
lows from, for instance, the uniqueness of local minimizers of Vol* when
A < 0. If this is the case, we can formulate the p*K-stability for a 7-
equivariant polarized manifold (X, [w]) by using the local minimizer £ of
Vol*. Tt is interesting to ask if there is a wall-crossing phenomena, namely,
if the p*K-stability of (X, [w]) with a torus action jumps at some \ < 0.
We will see in the next section the behavior of the existence of the p*-cscK
metric when perturbing .
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1.5 Perturbation and propagation

1.5.1 Perturbation of Kahler class and )\
Regularity

We firstly check an elliptic regularity for constant p-scalar curvature Kahler
metric. Remember that the p-scalar curvature of a Kéhler metric wy =

w + v/—100¢ can be written as
se(wg) = (Og — fJ)<10g(695(¢) det(gs + Cbkl’))) + Z 0;€'.
i=1

Using this, the equation of constant p-scalar curvature
s§(w + v —185¢) - )\95(¢) = 55 - )\ég
reduces to the following coupled equation

F=1Io "6 det(gyr+d41)
& e’ det 9kl

(O — &) F = 3¢ — M + Me(¢) — (O — €7) log(e” det g) + 371, 9i€"
(1.67)

Take a C*°-smooth initial Kahler metric w and a C*®-smooth function ¢
so that wy = w + v/—199¢ is a C**-smooth Kihler metric. Then 0(¢) =
0 — &7 ¢ is a C1*-smooth function and the equation (1.67) makes sense for
a C%-smooth function F.

Suppose F' € C? satisfies the equation (1.67). By differentiating the first
equation in (1.67), we obtain a local equation

O5(050) = O:F — 0,(&7¢) — 5 (Bigiy) + 9" (Ds911)- (1.68)

Since the right hand side of this equation is C%®-smooth and the elliptic oper-
ator Oy has C%-coefficients, the elliptic regularity shows that 9;¢ should be
C%%-smooth. By taking all the derivative 9;, we obtain the C*“smoothness
of ¢. Then the right hand side of the second equation in (1.67) becomes
C'*-smooth and the elliptic operator E¢ — &7 has C1coefficients, so again
the elliptic regularity shows that I is actually C**smooth. Now the boot-
strapping argument shows that the function ¢ and F' must be C"*°-smooth
functions.
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Perturbation

Let w be a u?—cscK metric on a compact Kéahler manifold X. By Corol-
lary 1.3.5, the metric w is preserved by some maximal closed torus 7" C
Autg(X /Alb) containing the torus generated by £. The centralizer of T in
Autg(X /AlDb) is the complexified algebraic torus 7°¢. We denote by H1! (X, R)
the space of harmonic real (1,1)-form with respect to A, = d*d + dd* asso-
ciated to the metric g = wJ, i.e. HM(X,R) = {a € QV1(X,R) | Ayja = 0},
which is isomorphic to H%'(X,R) by the projection. The action of the max-
imal torus 7" on H'(X,R) is trivial as the action extends to the action
on H?*(X,R), which is trivial as it preserves the integral lattice and T is
connected, so that each o € H'*! is T-invariant.

Let U C HYY(X,R) x C*42(X,R)T be an open neighbourhood of the
origin on which we have w + a + /~199¢ > 0. For (o, ¢) € U, we denote
by g, the Kahler metric associated to the Kahler form w, 4 = w + o +
V/—100¢ and by 0;’;"1’ the real-valued function satisfying \/—_159167“?5 = U Wa,¢

o

and [y 9;‘7"(‘5695 wp e = 0. (This normalization is well-defined since for any
0%+ . 9%

constant ¢ € R we have [, 0®%e"c "W = 0 iff [ 0% Wl = 0. )

The function 93’¢’ linearly depends on 7, so that #*¢ is a moment map with

respect to wq . Now consider a smooth map LV?‘ RxtxU — CF(X,R)T
defined by

F20,¢ 0, 0) = sgjg(w + a4+ V/—1009) (1.69)
= (5(gas) + O 06:7%) + Ty, e — (§ 4 Q7057) — (A + )02,

The linearization of this smooth map 5@ at (0,0,0,0) € t x U is given

by
(0,¢,0,0) = 2(0— €7)f — A, (1.70)
(0,0,0,0) = —D Dyt + (58 (w)) (@) (1.71)
with respect to a general T-invariant initial metric w, which is not necessarily
a ,ug—cscK metric. We do not need the derivative to the directions (4,0, 0, 0)

and (0,0, «,0).
Now we show the following Theorem E.

Theorem 1.5.1. Let w be a p-cscK metric on a compact Kahler manifold
X with respect to £ and A € R. Suppose we have A\ < 2)\; for the first
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eigenvalue \; of the weighted 0-Laplacian O, — &7 restricted to the space
C>(X)", where T is a maximal torus contained in yIsom¢(X,w). Then there
exists a neighbourhood U of [w] in the Ké&hler cone and a positive constant
e > 0 such that for each A € (A — €, A +¢), every Kéhler class [0] in U admits
a p-cscK metric w5 with respect to some vector é;\ € t and the given A. The
vector & is in the center of a maximal compact of Aut’(X/Alb) when A < 0.

Proof. Let &2 : R x t xU — C**(X,R)”/R be the projection of /2. By
the implicit function theorem, it suffices to show that the derivative operator
do-S2 - R x t x HM(X,R) x CF42(X,R) — C**(X,R)/R is Fredholm and
surjective when restricted to {0} x t x {0} x CF*4o(X R).

As w is a /LE‘—CSCK metric, we have d05@(0,0,0,¢) = —D%D¢. Since
DD is an elliptic operator and R x t x H(X R) is finite dimensional,
both dO(Vg‘ and dojzg‘ are Fredholm operators.

The cokernel (the L?(e%wm)-orthogonal complement of the image) of the
operator —D%D is given by

{¢p € CP(X,R)T | / (DD e’sw™ = 0 for all ¢ € C*(X,R)"}
X
={Y e C**(X,R)T | DY =0} =R @,

where the last equality holds as 7' is maximal. For each non-zero element
fc € t, which is normalized as [y 0ce%w™ = 0, we have

/ (do-72(0,¢,0,0))0ce’w" = / (2100c[* = MZ)esw™ > 0

b's b's

by our assumption A < 2\; and the Poincare inequality. Therefore the image
dOLS’gA (0,¢,0,0) is non-constant and the composition D = pOdOcy%)\‘{O}xtx{O}x{O} :
t — R @ t with the L?(e%w")-orthogonal projection p : C**(X,R)T — R& t
is injective. It follows that R@& ImD = R @ t and so doﬁ? is surjective when
restricted to {0} x t x {0} x Ck¥*42(X | R). O

The perturbed vector € is a local minimizer of Vol[xgj] by Corollary 1.3.10
in the above theorem.

Remark 1.5.2. As a cscK metric w is a jy-cscK metric for every A € R, we
in particular obtain a ug\—cscK metric for every A < 0 and in every Kahler
class [@] in a neighbourhood U, of [w].
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It is proved in [LS] that there is also a neighbourhood U_, of [w] such that
0] admits an extremal metric. Note that a p2-cscK metric (or an extremal
metric) is not a cscK metric iff [©] has non-trivial Futaki invariant Futg # 0.

In the next section, we show that we can take such a neighbourhood U_,
so that U_., C U, for every A < 0.

1.5.2 Propagation from infinity
p~volume functional and Mobius bundles

Consider a funcitonal W (&, \) = W(€) = log(Vol*(€) /([ w™)*) — 5 on £ x R.
When k — 0, we have the limit of k™ 'W (kn, k™!) as follows

W o) = ( [+ o] [ )
H (fo et [ osn g [ ] [ )
(/X(s + Dem)e@w"// e — s)
o (fomer ] [t = [ [ o)
I W// = [ o) [ )
feromn] [ [oemn] [ o)
e ( eneew// s [ ] [ )
() (o for [ o)
3 ([ </9“/w— /m)
3 (@) [erg [msrer] [

_>_
dr

50



The limit functional is nothing but —2C'(n) in subsection 1.2.2. So we get a
well-defined continuous map

W txR =R (n,k) = W k) =Wn) =r"W(kn,s").

The limit functional W° = —2C' is proper, concave and its unique critical
point gives the extremal vector. By a similar calculus, we can easily see that
this map is at least C*-smooth.

Proposition 1.5.3. There exists a constant Ay € R such that Vol* has a
unique critical point for every A < Aq.

1

Proof. The derivative of W* at ) € £ is given by Futzg , so the critical points
of W* for k # 0 are precisely x'-times that of Vol* . Tt suffices to show
that there exists some s < 0 such that W* admits a unique critical point for
cach € (Ko, 0). As we already see, the set K := {\{ € £ | Fut? =0, < 0}
is compact (moreover, {\¢ | Futg‘ = 0} converges to e as A — —00). Since
WO = —2C is strictly concave, a small C*-perturbation of it is again strictly
concave on K, so that there exists ko < 0 such that W* has a unique critical
point on K for every k € (ko, —kg). Thus for x € (ko,0), W* has a unique
critical point on £ as there is no critical points outside K. O

Remark 1.5.4. We saw in the above proof that W* is strictly concave around
Eext- Omn the other hand, we have proven in Proposition 1.3.14 that the slope
at infinity lim; . t 7' W*(tn) = lim,_, signs - (ts]) " log Vol“il(t|/i|(sign/< :
n)) exists and its sign is that of x for each x # 0. This in particular implies
that for a positive & close to 0 (A = x~' > 0), the functional W* is a
‘mexican hat potential’ on €, so that the critical points are not unique for
these k > 0 (A > 0).

We can understand the relation of W* and W* as local indications of a
map between Mobius bundles. Let V' be a vector space over R. We construct
a circle S' by gluing two copies of R, which we distinguish as Ry = R and
R(x) = R, by the diffeomorphism R \ {0} = Ry \ {0} : A = A7! and
denote by co € S* the point corresponding to 0 € R(). We construct a
vector bundle Mob(V) over S! by patching two copies of the trivial bundle
V % R(o/00) = R(oo0) Over the charts by the isomorphism V' x (R \ {0}) =
V X (Ris) \ {0}) : (&, A) = (A&, A7) of vector bundles.
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We can construct a smooth map MobW : Mob(€) — Mob(R) over S?,
which behaves non-linearly over the fibres, by patching the following two
horizontal maps via the vertical gluing maps:

£ x R(O) — R X R(O) (57 )\) — (W(gv )\)7 >\)

HEN=OEAT) ()= OeAT)

EX Ry — R X R (1, k) —— (K" W(kn,x7"), k)

The fibrewise derivative DMobW : Méb(8) — Hom(Méb(€), M6b(R)) =
£V x S! of this map is given by

B x R(o) — Y x R(O) (f, )\) _ (Futg" )\)
HEN=(EA) i(¢ N (d A1)
£ x R( ) — BV x R(OO) (77, /f) (Futzn s )
From extremal metric to p-cscK metrics
Consider the following for n € £ and x € R:
§p(w) == (s(w) + 00,,) + (00, — (/@7))‘]6’,{”) —0,. (1.72)

When k = 0, we have
Sp(w) = (s(w) = 0y),
so that 30 (W) is constant if and only if w is an extremal metric with respect

to the vector field . On the other hand, When k # 0, we have §; = sm] ,
so that §7(w) is constant if and only if w is a ug -cscK metric with respect to
A=r"tand £ = k.

Let w be an extremal metric on X and 7' C ylsom] (X, w) be a maximal
torus containing the extremal vector n = Imd*s(w). Take an open set U C
HUL(X,R) x CH+4o(X,R)T as in section 1.5.1. We define a map .%. : R X

tx U — Ck(X,R)T by

T (kX 0, 0) = 5y (w + o+ V/=1009)
= ( (ga,¢) + Dga ﬂz(fﬂ ) + (Dga ¢6: f;—l—x) ( (77 + X))JQ:(:?-FX )

where (o, ¢) € U C HY (X, R) x Cit4(X,R)".
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The linearization of this smooth map 5’270 is given by

(0,%x,0,0) — —0, (1.73)
(0,0,0,¢) = —D*D¢ + (950 (w))(9) (1.74)

By applying the implicit function theorem similarly to the proof of The-
orem 1.5.1, we get the following theorem.

Theorem 1.5.5. Let w be an extremal metric on a compact Kahler manifold
X with the extremal vector n. There exists a neighbourhood U of [w] in the
Kahler cone and constants A_, Ay € R such that for each A\ € (—oo,A\_) U
(A4, 00), every Kéhler class [w] in U admits a p-cscK metric wy with respect
to some vector &, € t and the given A. The vector &, is uniquely determined
when A < 0.

1.6 Examples

Here we observe explicit examples of Kahler classes admitting u-cscK metrics,
using the method of Calabi ansatz. While we get some expected results for
A <0, we also find some strange phenomenon when A > 0.

1.6.1 Phase transition of ;*-cscK metrics on CP!
p-volume functional of CP!

We firstly compute the p-volume functional of CP!. Consider a U(1)-action
on CP! given by (z : w).t = (2t : w). We denote by n € u(1) the positive
generator of the U(1)-action.

Let us consider the following variant of p-volume functional:

A
pt(—2€) := —log ?%75)53 (1.75)

The critical points p* are precisely (—2)-times of the critical points of Vol
Then since ¢ = p1_9¢, the functional p* can be expressed as the integration
of U(1)-equivariant closed forms:

Ric, + Op)ev W+ p)ewtH
NA:_fX( u) +)\fX< u) —)\log/ €w+u.
fX ewti fX ewti X
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When w € mmei(X), we can normalize the moment map p so that [w + u| =
cllj(l)(X ) = 2[Ric, + Oy| as equivariant cohomology classes. Under this
normalization, we have

_ 2
/ (Ricy, + Op)e ™ = = / (w+ p)et”
X m Jx

since the integration of equivariant closed form depends only on its equiv-
ariant cohomology class. Thus the functional p* for [w] = mmcy(X) can be
expressed as follows:

2 + p)esth
/1')\: ()\__)IX(W M)e —)\lOg/ ewtH
X

m f ewth
2 “w n
m fxeﬂn! X n!

We can compute these integrals using the Duistremaat-Heckman measure
DH = u.(w"/n!) on u(1)¥ = R.pY.

When X = CP!, the Duistremaat-Heckman measure is nothing but the
Lebesgue measure restricted on [—mm, mn] C R. So we explicitly compute
p* for CP! as

2 f (1+ at)e™dt mr
W) = (- ) fm S Ao [ et
2 mnx sinh(mmz)

Put x = mmz. Then the derivative is given by

—p(==n)=—""--(—(x"— h hy) — A(x* — h )
dx <m7r ) X (sinh x)? (m(X xsinh x cosh x) (X" — (sinb ) >)

As long as A < 4/m, x = 0 is the unique critical point of u*. However,
once A exceeds 4/m, u? yields three distinct critical points. In this case, non-
zero critical points of p* maximizes p* (minimizes Vol%), while the critical
point £ = 0 turns into a ‘metastable/supercooled’ state.

p*-cscK metrics on CP! for A\ > Ageese Which are not cscK metrics

Any U(1)-invariant Kahler metric on CP! can be written as

1
w= §u”(p)d,0 A df
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on the open set C* C CP! for some strictly positive smooth function u on

R, using the coordinate (p,6) € R x S* +— (e?*V=1% : 1). For this metric

and £ = x.n = 27?33% € u(1), we can compute the ingredients of p-scalar

curvature as follows:
Ric(w) = —%(log u")'dp A df, s(w)=—(u")"(logu")",
0c = —(2mx)u’ + const., 0 = (u") ' 2ra)u”, €0 = (2mz)*u".
Thus we get
sp(w) = —(u") " (logu")" + 2(u") " 2mx)u"” — (27x)*u” + A(2mx)u’. (1.76)

We put [ := Im(u') and x = 27rx. We denote by p : I — R the inverse
map of 7:=u : R — [ and put ¢(7) := u"(p(7)). Using
d drd d - ,d+2d2
dp dpdr ir dp® ar TP ar

S w 90 T.

We can recover u (modulo linear function) from ¢ since they are related
by the Legendre transform U : I — R of u: if we put

U(r) == p(r)7 = u(p(7)),

then we have o(7) = 1/U"(7). Thus solving the equation of z2-cscK metric
on C* reduces to finding a positive function ¢ on I which solves the equation

d
—(= =)+ AT =c

dt
for a constant c. When y # 0, the equation is
d 9 A 2\ —¢
(%—X) (90—;7— 2 )

we can see the solution is given by

A 20\ —
90;(7) =aeX” +breXT + —7 + ¢ (1.77)

X x>
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for some a,b,c € R.

Now we impose boundary conditions on ¢ to get a metric on CP. We
may assume [ = (0, 2m) for some m by adding linear function to u. Since mu/’
gives a moment map, we have [, w = 7 [, dr = 2mm. To get a solution with
w € 2mc(O(1)), we assume m = 1. As usual Calabi ansatz (cf. [Sze-book,
Section 4.4]), we can see that the following boundary conditions on ¢ asserts
that the metric 3u”dp A df on C* extends to CP":

(0)=0, ¢(2)=0,
¢'(0)=-2, »(2)=2

If we have a solution ¢ satisfying this boundary condition, then ¢ is auto-
matically positive on I since ¢ has at most one inflection point:

" (1) = (b*T + ax® + by)eX".
By the first three boundary conditions, we must have
_ 2\sinh x — 2xeX b= (2—2\)sinhxy A

~ x(sinh y — xeX) X
~ 2XAxsinhy — 2y 2eX

’

sinh y — yex X

c + 2

sinh y — yex

We can reduce the last boundary condition ¢’'(1) = 2 to the following equality
on x:

A(x* — (sinh x)?) — 2(x® — x sinh y cosh x) = 0, (1.78)
which is equivalent to %;ﬁ(x.n) = (. From the observation in 1.6.1, it has a
solution x # 0 when A > 4. Thus we get ,ug‘—cscK metrics in the Kahler class
c1(X) for a non-zero £ when A > 4r.

To see the limiting behavior of these pu*-cscK metrics as A — 400, we
see A as a function on x and observe the limit cpi(X) as |x| — oo. Using
Ax) = 2x + O(x?e™X) from (1.78), we get aeX™,beX™, (2\ + ¢)/x* — 0 and
A/x — 2 for each 7 € [0,2). Thus we see gpi(X) — 27 on [0,2) as x — oc.
The metric tensor g corresponding to ¢ is expressed as

1 1
g= 590(7)_1d7 Qdr + §<p(7)d9 ® do

on (0,2) x S, which we identify a metric on R x S' = C* via the diffeomor-
phism U'(1) = [ ¢(7)~*dr : (0,2) — R. Thus the limit metric is expressed
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as
1
g:4—d7‘®d7‘+7d0®d9:dr®dr+r2d0®d0
-

n (r,0) = (/7,0) € (0,4/2) x S*, which is the flat disk of radius /2.

Since ¢§\<(X) converges locally uniformly on [0,2), the diffeomorphisms UJ :

[0,2) — [—00, 00) converges to a smooth map U’ (1) = Llog, which is not

— 2
a diffeomorphism onto [—o0, 00).

1.6.2 p-cscK metrics on Py (L @ O)
The case A >0

Let L be an ample line bundle on a curve ¥ of degree £ > 1. Let F be a
fibre of the ruled surface X = Py (L & O) — ¥ and B denote the section at
infinity: B := {(z,(0 : 1)) | * € X}. The second cohomology H*(X,R) is
spanned by these divisors, whose intersections are given by
F-F=0, F-B=1, B-B=k.
The Kéhler cone is given by
k
{aF +bB | b>0, %> -}

Now we show the following.

Proposition 1.6.1. Every Kéhler class in the cone {aF + bB | a,b > 0}
admits a p*-cscK metric for every A > 0.

Since the existence of p*-cscK metric depends only on the ray of Kihler
class, we may assume the Kéhler class is represented by 27(F + mB) for
some m € (0, 00).

As in [Sze-book, Section 4.4], we consider metrics of the form

prws, + V—100u o s

for a function u : R — R, where wy, is the Kahler—Einstein metric on ¥ with
Jsws =1 and s is the function s : L\ ¥ — R : z — log|z|} defined by
a metric h on L with curvature kwy. Taking a local trivialization w of L
around zy € ¥ so that (0h/0z)(z) = 0, we have

w=(1-k)ws +u'vV-1———
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on the fibre L,,. Thus the metric is positive iff 1 — kv’ > 0 and «” > 0. Since
Jrw =2m(u(00) — u'(—00)) and [,w = 27(1 — ku/(—00)), we have

[w] = 2m((1 = ku'(00)) F' + (u'(00) — u'(—00))B).
When u/(00) = 0 and u/(—o00) = —m, we have [w] = 27 (F + mB).

We put 7 := v : R — (—m,0) and denote by s : (—m,0) — R its inverse
map. Using the function ¢(7) := v”’(s(7)) and [, := 2 — 2g, we can express

— 1 " lg
0 = —4naT,
- ko — (1 — k)¢
00, = —4dmx il 7)¢ ,
1— k71

€0 = (—4ma)’p

for & = 2mx0/060. Thus we have

1 d [
A
se(w) = — . /{ZT(% —4mx)?((1 — k7)) + 4T AT + N —ng'

Putting x = 4rz, the problem of the existence of p*-cscK metric under
the Calabi ansatz reduces to solving the following equation

(% —X)?((1 = k1)) = —xAbT? + (XA + k)T + (I, — ) (1.79)

on [—m, 0] together with the following boundary conditions (cf. [Sze-book,
Section 4.4]):

©(0) =0, @(—m)=0, (1.80)
SDI(O) =—1, @/(_m) =L

The solutions of (1.79) is given by

1 Ak AX + ke — 4Nk 22+ 1, — 2ke — 6k
(1) = <a6XT+bT€XT——T2+ X ke T+( Ty = €)X + 2ke >
1 —kr X x? X3
Suppose we have a solution ¢ with A > 0, x < 0. Then since ((1 —
ET)o(1))" = (bx?T + ax? + 2bx)eX™ — 2k satisfies one of the following:

X Y
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1. If b > 0, then ¢ has at most inflection point.

2. If b < 0, then ¢ may have two inflection points a, b € (—m,0). However,
¢ is convex on the intervals (—m,a), (b,0) and is concave on (a,b).

In both cases, (1) = (1 — k7)p must be positive from the boundary condi-
tions ¢(0) = 0,1 (—m) = 0 and ¢'(0) = —1,¢(—m) = 1.

From the first three boundary conditions, we get
X =2k (=20 —l)x + 6Mk

—x+k 2+ (A1) — 20k
X X "

x> X2

a==¢c

, b=c

and
(=mx A mA 41X+ (A + 1 — 20km)x — 6Ak)e” X
B (mx?+ (1 —mk)x — 2k)e=™ — (1 + mk)x + 2k
(m2X + mA)x? — (dmAk + 2\ + 1) x + 6Ak
(mx2 + (1 — mk)x — 2k)e=™ — (1 + mk)x + 2k

Regarding a, b, ¢ as a function on x, we can see that

, 6+ 3mly,
tim 00 = 3 ek
6 + 3ml 6 + 3ml
Ya() = (= 2ol 4 60k) + (= 2A = hy ) ’
x“a(x) ( s 12k O+ i W T3 X+ 0%,
6 + 3ml 6 + 3ml
2b(y) = (k;—g —2/\k> </\ I ——9) 2
X“0(x) 3m + m2k + Tl 3m + m2k X+0(7)

around y = 0. Using this, we can see

lim ) (—m) = lii%

20k
(axe‘mx + be™"X —mbyxye "X + —m —ax — b — 1)
X

x—0 1+ km

) 1 ax? + 2bx? — 2 \ke7"™X — 1 e "X - mye "X — 1
= lim ( — by

x—=0 14 km X X X2

—mx 1
N VAl St 1)
X
1 6 + 3ml 6 + 3ml m?

= ly— ———2)(—m) — (k———L — 2)\k)(——

1—|—I<:m<(g sm e ™ T =3

2
+2Ak(m7) - 1)

B lklgm2 +4km + 6

C2k2m2 4 4km + 37
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In particular, ¢/ (—m) extends continuously across x = 0.

From the above explicit calculus, we can see that lim, .o ¢} (-m) < 1,
which is equivalent to mk((2k — l;)m +4) > 0, as we have m > 0,k >
1,l; < 2. Thus if we have lim, , o ¢} (—m) = +o0, then there must be
some y € (—o00,0) satisfying ¢} (—m) = 1, which solves ¢ satisfying all the
boundary conditions.

As x tends to —oo, we can see the following:

1L —mk +mA+ml,

c(x) =—x+ m
1/ 1—mk+m)\+ml
_(_ mK—+m +m9(1_m/{)+2)\+lg—2)\k‘m—2k>X_l+O(X_2>
m m

and ya(x) — —1,xb(x) — —% (xa(x) — mxb(x))x — 0. Using this, we
obtain
/ _ mx o
gox( m)xe™ — —

Thus ¢/ (—m) tends to +o00 as x goes to —oc. Similarly, we can also see that
¢ (=m) = 0 as x — —o0, but we do not use this fact as we already have
lim, 0 ¢} (—m) < 1.

From the above observation, we get a positive solution ¢ of (1.79) sat-
isfying all the boundary conditions (1.80), which shows the existence of a
pr-cscK metric in the Kéhler class 2 (F + mB) for every A > 0.

Connecting Kahler—Ricci soliton and extremal metric via p-cscK
metrics

Consider the case X = Pcp1(O(1) @ O) = CP?*#CP2. We have Kx =
Ox/s(—2) @ 7 (Ky ®det(O(1) & O)Y) = 2(kF — B) —I,F — kF = —F —2B.
It is known that there are both Kahler-Ricci soliton and extremal metric
in the Kéhler class 27(F + 2B). Now we show that there exists p*-cscK
metrics also for (—oo,0) with x < 0, which converges to the extremal metric
as A — —oo and to the u%cscK metric we constructed in section 1.6.1 as
A — 0. Thus we get a continuity path of p-cscK metrics which connects the
Kahler-Ricci soliton (p'-cscK) and the extremal metric.

In this case, since —A\/x < 0, (1 — 7)¢(7) might have two inflection
points a,b € (—2,0) such that (1 — 7)p(7) is concave on (—2,a), (a,0) and
is convex on (a, b), which might make ¢ negative at some point in (—2,0). If
this happens, we must have ((1 — 7)p)"”(79) = 0 at some point 75 € (—2,0).
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Since ((1—7)p)" = (bx>7 +ax®+3bx?)eX™, we have 7y = —% —)—3< for y <0
solving ¢ (=2) = 1. To see the positivity of ¢ on (—2,0), it suffices to show

To > 0. To achieve this, we explicitly compute the following:

1. For x < 0 solving ¢} (-2) = 1 with A € (-00,0), we have x €
(—1,0). Here the lower bound —1 is not effective. We actually have
X € (—0.265...,0).

2. The function 19(x) = —% — % is positive on x € (—1,0) for every

A< 0.

For the second item, we explicitly write down as follows:

a(x) L3 a(x) + AB(x)

bix)  x  x(vO0) +A(x))’

where
alx) = (=2x" + x>+ 2x* — 6x)e” X + 9x® — 14x° + 6,
B(x) = (4x* 4 6x — 6)e” X +6x° + 5x* + 28y — 6,
Y(x) = (=X +2x% — 2x)e X + 3x° — 6x% + 2y,
6(x) = (—x*+4x — 2)e” X +7x* +8x — 2.

We can see that a(x),v(x) > 0 and 5(x),0(x) < 0 for x € (—1,0). So we
have 79(x) > 0 for x € (—1,0). Since a(x) is not necessarily positive for
more smaller y < 0, we must bound x. In fact, we have a(—1.5) < 0.

To see that xy € (—1,0) for A < 0, we observe A as a function on y. We
can reduce ¢} (—m) = 1 to the following equality:

(9x% — 6x — 2)e®X + (—x? +2x — 2)e” X + (=12x3 + 16x% + 4x + 4)
(9x2 — 12x + 2)e2X + (x2 — 4y + 2)e X + (—12x* + 16x3 — 2x2 + 16 — 4)°

A=X

), M(—1) > 0

We can see that A is monotonically decreasing for x € (—o0,0
< 0 implies x €

and lim,_, ¢ A(x) = —oo, thus we conclude that A(y)
(—1,0).
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Chapter 2

Equivariant calculus on
u~-character and pK-stability of
polarized schemes

We introduce and study pK-stability of polarized schemes with respect to
general test configurations as an algebro-geometric aspect of p-cscK metric
we introduced in the last chapter. There are two fundamental ingredients.
On one hand, we develop a framework on ‘derivative of relative equivariant
intersection’, which we name equivariant calculus. As a part of equivariant
calculus, we establish convergence results on some infinite series of equiv-
ariant cohomology classes given by relative equivariant intersection, based
on a basic observation on the Cartan model of equivariant cohomology. On
the other hand, we derive an equivariant character u* called u-character for
equivariant family of polarized schemes from the equivariant intersection for-
mula of the log of the p-volume functional. The derivative of the u-character
not even yields p-Futaki invariant, but also produces an analogue of the
equivariant first Chern class of CM line bundle, which is irrational in our
general pK-stability setup. The product invites us to approach the compact-
ification problem on the moduli space of Fano manifolds with Kahler—Ricci
solitons, which we study in chapter 4 of part II.
The content is based on the article [Ino3|.
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2.1 Main results

The aim of this chapter is to justify the following definition of u-Futaki
invariant by Theorem A and to unveil its GI'T nature by Theorem G. We also
propose an approach to the compactification and the algebraization problem
of the moduli space of Fano manifolds with Kéhler—Ricci solitons constructed
in [Inol], as an application of these results.

Throughout this chapter, we denote by T an algebraic torus over C or its
closed real torus and by t = N(T') ® R its real Lie algebra. All schemes and
varieties are finite type over C.

Definition 2.1.1 (p-Futaki invariant). Let (X, L) be a T-polarized pure n-
dimensional scheme. Fix parameters A\ € R and £ € t. For a T-equivariant
test configuration (X, £) of (X, L), we define its p-Futaki invariant by

Futg (¥, £) =  Bre((h e ) - (€17) — () - (1))

(Bve(c) 7
™ Bve((Lr.ef) - (¢b7) = (Ly.etr) - (7))  Bve(efr)
(Eve(efr))? Eve(efr)

Here we denote

e by ’ig/cpl e HY'(X,Q) and k% € Hy',(X,Q), the T-equivariant
(relative) canonical classes derived from the equivariant homology todd
class 72(Ox). These are well-defined for general (non-reduced, non-
irreducible, non-normal) schemes of finite type over C and are natural
in view of the equivariant Grothendieck—Riemann—Roch theorem, while
we do not have a general prescription associating a T-equivariant Weil
divisor K% to the T-equivariant dualizing sheaf wx when X is not
Gorenstein in codimension one (or not normal). See section 2.4.2 for
more information. We indeed deal with general schematic families in
our application of Theorem G to the moduli problem.

e by (eET),(E_T.eET),(KE/CPI.eET),(eLT),(LT.eLT) and (k%.elT), abso-
lute equivariant intersections, which are a priori elements of the ring
StV =TI, S*tY of formal power series. See the last paragraph in

section 2.4.1 for the precise definition. We verify in section 2.3.1 that
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these elements are indeed Taylor expansions of real analytic functions
on t, so we can regard these as elements of C“(t).

e by Evg, the evaluation map Eve : C¥(t) — R valued at —2¢ € t.
The factor —2 is essentially due to our convention on ,ug‘-cscK metric
introduced in [[no2]. It is the ratio of the d-Hamiltonian potential @
to the moment map p. Namely, for pe and 0, satistying —dpe = iew,
V=100, = icsw for & = JE + /1€, we have 6 = —2u modulo

constant.

Our p-Futaki invariant will be compared with the following established
Futaki invariants (see Proposition 2.3.13):

e Donaldson-Futaki invariant: Fut) (X /C, £) is equivalent to the Donaldson
Futaki invariant DF (X, £) for every test configuration (X, L) of a po-
larized scheme (X, L).

e Modified Futaki invariant (cf. [Xio, BW]): Suppose X is a Q-Fano
variety and L = —A"'Kx for A > 0. Then Fut?”’\(X , L) is equivalent
to the modified Futaki invariant Fute (X', £) for every test configuration
(X, L) of (X, L) with £L = -A""Ky/c.

Lahdili [Lah] proved the weighted K-semistability of weighted cscK man-
ifolds with respect to smooth test configurations by establishing the slope
formula and the boundedness for weighted Mabuchi functional . We also see
in Proposition 2.3.13 that our definition of p-Futaki invariant is equivalent
to Lahdili’s definition of weighted Futaki invariant for smooth test configu-
rations in our p-formalism.

We enhance his result to pK-semistability with respect to general test
configurations.

Theorem F. If a smooth Kahler manifold (X, L) admits a ué\—cscK metric,
then (X, L) is %\K—semistable with respect to general test configurations.
Namely, the u?—Futaki invariant is non-negative for every T-equivariant test
configuration.

To reduce Theorem A to Lahdili’s result, we establish basics on absolute
equivariant intersection in section 2.3.1 and show the following fundamental
lemma. The proof is reminiscent of arguments in [BHJ] and [DR] for the
usual K-stability.
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Fundamental lemma (Theorem 2.3.16).

1. A T-polarized normal variety (X,L) is p¢K-semistable (resp. K-
polystable, %\K—stable) with respect to general test configurations iff it
is ug\K—semistable (resp. ,ug‘K-polystable, /J?K—stable) with respect to
normal test configurations.

2. A T-polarized manifold (X, L) is ,ué\K-semistable with respect to gen-
eral test configurations iff it is %\K—semistable with respect to smooth
test configurations with reduced centrals fibres and ample L.

Since the p2-Futaki invariant Fut? (X, £) is continuous on (X,§) € R x t,
Theorem D (1) of [Ino2] implies the following.

Corollary. If a smooth polarized manifold (X, L) admits u*-cscK metrics for
every A < 0 in the Kéhler class ¢; (L), then (X, L) is relatively K-semistable
with respect to general test configurations.

The Yau-Tian—Donaldson conjecture for extremal metric predicts that
there exists an extremal metric in ¢; (L) when (X, L) is relatively K-polystable.
We proved in Theorem D (3) of [Ino2] that if there exists an extremal metric
then there exists a p*-cscK metric for A < 0 in the same Kihler class. It
is natural to ask if one can show the estimate in Theorem D (2) under the
relative K-polystablity, which must hold if the YTD conjecture is true.

Next, we consider a relative version. Throughout this chapter, B denotes
a connected smooth variety with an algebraic action of an algebraic group
G over C. We always identify H2(B,R) with R. We denote by NS¢ (B, R)
the subspace of HZ(B,R) spanned by the G-equivariant Neron-Severi group
which consists of G-equivariant first Chern classes of G-equivariant algebraic
line bundles.

Theorem G. Fix parameters A € R and £ € t. There exists an equivariant
characteristic class

,Dﬁl-'l’%"XG(X/Bv E) < NSG(Bv R)

associated to a T' x G-equivariant family (X /B, L) of polarized schemes on a
smooth G-variety B with the trivial T-action such that it enjoys the following
properties.
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1. Naturality: Suppose we have a morphism G’ — G of algebraic group
and a G'-equivariant morphism f : B’ — B from a smooth G’-variety
B'. Let (X'/B’, L) be the T' x G'-equivaraint family given by the base
change of (X/B, L) along f. Then we have Depuy, o(X'/B', L) =
[ Detid (X /B, L)

2. p-Futaki invariant: When the family (X' /C, £) © C* is a T-equivariant
test configuration, then we have

Dt (X/C, £) = Fut) (X, £) " € HE.(C,R),
where 1" denotes the positive generator of H2.(X,Z) = Z.

3. CM line bundle: When £ =0 (t = 0), we have

dr
(L)
for the CM line bundle CM(X /B, £), independent of A € R. (cf. [PT])

Dopigy(X /B, L) = — < (CM(X/B, L))

4. Parameter: The function D.pyyo(X/B,L) : t x R — HZ(B,R) :
(&, N) = Depty (X /B, L) is real analytic. It is moreover affine with
respect to A € R for each fixed & € t.

We detect this characteristic class D¢p? (X /B, L) based on the follow-
ing step-wise observation:

e We observe in section 2.2.1 the localization formula on equivariant inte-
gration yields Odaka—Wang’s intersection formula of Donaldson—Futaki
invariant (for product configuration) directly from the differential geo-
metric definition of Futaki invariant (for product configuration), which
we can easily generalize to our p-cscK setup since the invariant comes
out of Donaldson-Fujiki type moment map picture as explained in
[Wangl]. We can also detect the equivariant first Chern class of the
CM line bundle by the same idea.

On the other hand, while we have a differential geometric definition
of u-Futaki invariant fitting into the u-cscK setup, we can not readily
derive an intersection formula of p-Futaki invariant, obstructed by the
vector £ € t turning up in the p-Futaki invariant Futg\(n) (see the
equation (2.4)).
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e There is a functional p* on t (the log of the p-volume functional we in-
troduced in [Ino2]) whose differential at £ € t to the direction n € t gives
the p-Futaki invariant Futé\(n). Contrast to the p-Futaki invariant, we
easily find an equivariant cohomological expression of this functional.
The expression enables us to interpret pu* as a formal series of equiv-
ariant cohomology classes p) (X, L) € HY (pt, R) := [T, H7(pt, R),
which is nothing but the Taylor expansion of the functional under the
identification H*»(pt,R) = StV := [I=ot. It is easy to generalize
this to an equivariant characteristic class uy(X/B, L) € H3**(B,R)
for a G-equivariant family (X /B, L).

e We introduce ‘the differential operation D on ]:Ig(B,]R)’ and study
its basic properties. We design the concept so that the differential
Depyoe (X, L) € HE (pt,R) of (X, L) at £ € t gives the p-Futaki
invariant in the sense that we have Dep?., ¢ (X, L) = Futg\(n).nv for the
positive generator n € HZ.(pt,Z) = Z. We must show some conver-

gence results in equivariant cohomology in order to justify the definition
of the differential operation Dg : H3*% (B, R) — H2(B,R).

By our construction of Depd, (X /B, L), the property (1) reduces to a
problem on the base-change behavior of the eqiuvariant relative canonical
class kx/p, which is in general regarded as a problem related to singularities
of families. Since we only need the base-change stability of the equivari-
ant intersection of eqiuvariant relative canonical class with equivariant line
bundle, it suffices to employ the equivariant Grothendieck—Riemann—Roch
theorem by Edidin-Graham [EG2] to see the property (1).

Finally, we explain in section 4 an application of Theorem B the compact-
ification problem on the moduli space of Fano manifolds with Kahler—Ricci
solitons constructed in [Inol].

2.2 Preliminaries

2.2.1 Briefreview on p~-cscK metric and p-volume func-
tional

Weighted scalar curvature and p-cscK metric

We briefly explain some basic notions around p-cscK metric. The author
introduced p-scalar curvature in the last chapter (cf. [Ino2]) to establish an
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inclusive framework of both cscK metric and Kéhler—Ricci soliton based on
the moment map picture observed in [Inol]. On the other hand, Lahdili [Lah]
also considered a generalization of Donaldson—Fujiki type moment map pic-
ture and introduced weighted scalar curvature as a far extensive framework,
which includes p-scalar curvature. The moment map picture on weighted
scalar curvature yields a version of Yau-Tian-Donaldson conjecture which
states that the existence of weighted scalar curvature on a given manifold
must be equivalent to a proper notion of ‘weighted K-stability’. Lahdili in-
troduced the weighted Futaki invariant for test configurations with smooth
total spaces and proved that every weighted cscK manifold has non-negative
weighted Futaki invariants for all smooth test configurations. Since we reduce
our Theorem A to his result [Lah], we begin with his framework.

Let X be a compact Kéahler manifold with a Hamiltonian action of a torus
T. Let w be a T-invariant Kahler metric and g : X — t¥ be a moment map.
Since X is compact, the moment polytope P = u(X) (and even the measure
pxw™ on t¥ supported on P) depends only on the equivariant cohomology
class [w + p] € HA(X,R) (cf. [GGK, Section 2.3-2.4]).

For a smooth positive function v on P, Lahdili [Lah] defines the weighted
scalar curvature s,(w) by

) 1= 5(@)- (op) + Awo )~ £ 3 (e - (G op). (21)

v * 2 YRS N Qi O S

1<i,j<k

Note we follow Kéahlerian convention on the scalar curvature s(w) = tr, (Ric(w)),
so it is the half of the Riemannian scalar curvature.

When v is of the form v(z) = v({(z, )) with some smooth positive function
v on R and € € t, we can simplify it as

) = 5(0) - (50 1) + (B ( 0 1) — (Vg Vi) - (7 0 1)) — 5 (TEWE - (" 0 )

1
= s(w) - (Vo pg) + Bupg - (070 pig) + S(JE)pg - (0" 0 4ig)

In particular, when v(z) = 0({x, —2¢)) with v = €', we derive the p-scalar
curvature s¢(w):

su(w) = ((s(w) + 00) + (O — (JE))) " = se(w)e”

with 0 = p_g¢, which satisfies \/—1505 = 1gsw for the holomorphic vector
field £/ = J¢ + /—1¢€.
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For a real number A € R, we put
82(0.)) = 85((#) — )\9{ = (S(CL)) + 595) + (E@g — (J§)95) — )\95

and call it u?—sealar curvature. We call a Kahler metric w has constant
,ug\—scalar curvature if sg\ (w) equals to a constant. When A = 0, the constant

seim [ sitw)etan ] [ et (2.2

depends only on the cohomology class [w] and the parameters A € R and
& €t. When A # 0, the constant

Eg‘ = 8¢ — )\/ Qgeeiw"// e (2.3)
b X

depends further on the normalization of x. Since moment maps are unique
modulo constant, the notion of ug‘—CSCK metric is independent of the choice
of the moment maps.

The ,ug‘—CSCK metric is equivalent to Kahler—Ricci soliton when L = —Kx
and A = 27 as observed in [Inol]. The claim is as follows. Let X be a
Fano manifold and w be a Kéhler metric in the Kihler class 2mA~te;(X)
for A > 0. Then the Kahler metric w satisfies the equation of Kahler—Ricci
soliton Ric(w) — Ljew = Aw iff w has constant ,ug—scalar curvature.

The moment map picture on p-scalar curvature inspires us to introduce
the following u-Futaki invariant

Futé\(n) =— /X(sé\(w) - sg‘)eneeﬁw"//Xe%w". (2.4)

for n € t. It depends only on the cohomology class [w] € H?(X,R) and hence
vanishes if there exists a ,ug‘—CSCK metric in the cohomology class [w]. The
sign is reversed from the definition [Ino2, (49)] so that it coincides with the
slope of the ,ué\-Mabuchi functional along the geodesic ¢, = (exp tJn)*6,,.

On the intersection formula of Donaldson—Futaki invariant

Before studying uK-stability, we give a simple observation on Odaka—Wang’s
intersection formula. Donaldson [Don4] firstly introduced Futaki invariant for
test configurations as a generalization of differential geometric Futaki invari-
ant introduced in [Fut], using a polynomial expansion given by equivariant
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Riemann—Roch theorem. Odaka [Odal] and Wang [?] showed a cohomo-
logical expression of Donaldson—Futaki invariant via Donaldson’s definition.
Here we observe that Odaka—Wang’s cohomological expression (for product
configurations) directly follows from the differential geometric definition of
Futaki invariant just by applying the localization formula in Example 2.4.6,
which is essentially Stokes theorem. This observation even yields an equivari-
ant cohomological expression for the equivariant first Chern class of CM line
bundle for smooth family. The author believe that this observation will help
the readers to understand the construction of the cohomological pu-Futaki
invariant Dept (X /B, L).

Let X be a compact Kdhler manifold and A : C* — Aut(X) be a one
parameter subgroup such that the U(1)-action on X is Hamiltonian with re-
spect to a Kahler metric w in a cohomology class L. Let nx be the associated
real holomorphic vector filed:

d T A<€27r\/j19)'

nx(r) = 10 lo—o™

Fix a moment map p : X — u(1)¥. We denote the equivariant cohomology
class [w + p] by Lyq).

We denote by X the product C x X endowed with the C*-action given
by (z,2).t = (2t,z.A(t)). Let 7 : X* — C and px : &X* — X be the
projections. The projections m and px are C*-equivariant. Consider the
pulled-back 2-form Q := piw on XA Then the map py : X* — u(1)V
defined by px(b,z) := u(x) is a moment map with respect to the restricted
U(1)-action on X* and €.

As usual, we compactify X* by gluing the product C x X with a C*-action
(z,2).t = (t7'2,7) via the C*-equivariant isomorphism (C\ {0}) x X —
XA\ 7710) ¢ (u,2) = (vt 2.A(u™!)) and denote the compactification by
XA We denote the glued morphism X* — CP! by the same symbol 7.

Let

jrxXh s XY, jiCx X — XN
i:C—CP':2+(2:1), 1:C—CP' 1w~ (1:w)

be the associated immersions and

Jo=Jeo X = XY s XN =7 X - Cx X — XN,
ig =i : Pt = CP' 1ig(pt) = (0: 1), s =1ip: pt — CP* :ip(pt) = (1:0).
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be the embeddings of the central fibres and the origins.
By the equivariant Mayer—Vietoris sequence for X* = X4 U (C x X), we
have the following exact sequence:

0 — Hé(l)()EA) JO@]OO HQ( )(X)EB(u(l)v@H2(X)) [a+u]€9(c7[m)'—>[a]—[m> HQ(X) -0,

where we identified H7 ;) (X") with H7, ) (X) and H ;) (Cx X) with H?(CP>x
X) =u(1) & H*(X) in natural ways. (Note the C*-action on the central
fibre of C x X is trivial. ) In particular, we have the isomorphism

Hiy oy (XY = Hp gy (X) @ uw(1)Y s [a+v] = jila+v] @ (v o i),
where v o j, is regarded as a constant. (Indeed, v o j is a constant function
on X as d(vy 0 joo) = jldvy = —jiin.v = 0 by ngljx) = 0. ) Let
ZU(l) € Hé(l)(é?A,R) be the equivariant cohomology class corresponding
to [w+p] ®0 € Hppy(X) ®u(l)” and £ € H*(X™ R) be the associated
cohomology class.

Now we see that the following.

Lemma 2.2.1 (Intersection formula). In the setting as above, the cohomol-
ogy class Fut(ny).nY € HE 1y({0}) is given as the image of the following

cohomology class along ;) : H2 y(CPY) — HE ) ({0}) = Ry

_ U(1) n (_KX-L( )) v(n+1)

As a consequence, we obtain the following well-known Odaka—Wang’s
intersection formula:

Fut(ny) = 47T<(K/—\?/CP1.E%) +

) € H2,)(CP).

n —Nx. (n—1) S (1
n+1( K(L[;) )(E(n+))>-

Proof. Since j5Lyy = Luq) = [w+ p] and j5K5 v KU(I) —o=[Ric,, +
Olp], we compute

—Fut(nx).n’ = / 0,8, W'’ = (n/ fi—oyRic, Aw" ™ — s/ ,u_gnwn>.nv
X b X

=2 /X(Ricw + Op) A (w =+ p)" + zi/ (w+ )"+

- 2-/ (— Rico +0u) A o+ 4" + o+ 4)
X +1
_ (n—1)
B s U i n —Kx.L S (nt1)
_47T'/XJO<KX/(CP1 ,C n+1 T ’CU(l) )
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Then the first claim follows by the formula [ ji = i, for the submersion
.

For the second claim, we employ the localization formula. By the local-
ization formula [.,, u = —(igu —i%u)/n" on u € Hf ) (CP', R) in Example

2.4.6, we have
/v :/ v = —igmo/n’
X cp?

forv e Hg’(‘BQ(/‘E,R) with jZ v = 0. Since j% Lya) = [@+0] and j:ng%Pl =

[Ricg + 0], we have
i L™ = [@ror=o
X
iZom(qu;alc)pl — Liw) = /X(Ricw +0)(w+0)" =0,

so that we get

" Ul n n —Kyxyw® =n
Fut(nx) = —4m - igm, (Kxﬁc)pl Lot T o LUE))/"v

. n —Kxw®
" /x x/CP e u(1)

w-n
n _KX-W.(n_l) (Z.(nJrl)))'
n—+1 wm

_ 47T((K;3 e L) +

Equivariant cohomological interpretation of y-Futaki invariant

Here we give an essential observation for Theorem G.
The p-volume functional Vol* : t — R

Vol () = €% ( /X e%”)A (2.5)

was introduced in [Ino2] so that the derivative satisfies D¢(—log Vol*)(n) =
Futé\(n). The functional is designed so that it generalizes Tian—Zhu’s volume
functional [y e’w™ introduced in the study of Kahler-Ricci soliton [TZ2].
Indeed, we have 57" = 2mn when (X, L) = (X, —Kx) is an n-dimensional
Fano manifold.
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We proved in [Ino2] that the p-volume functional tends to 400 as |£| — oo
for each A € R, so that the functional always admits a critical point and the
critical points are unique for A\ < 0, but always not unique for A > 0.
Moreover, the set of vectors associated to some p-cscK metric is (empty or)
finite for each A < 0 and is contained in the center of t. The author expects
that the critical points are indeed unique for A < 0.

Now we note the following equivariant intersection formulae

/X(s(w) + 00¢)ePew™ = nlEve /X(Ricw + Op)e ™ = —2an!Bve (k% .eM1),

/ (n + 0¢)elw™ = n!EV§/ (w4 p)et = nlEve(Lr.e™),
X X

/ el = n!EV5/ et = nlEve(elT)
X X

for Ly := [w+ p] and k% = —cf (X) = —5=[Ric, + Op]. Here we identify
the canonical class k% with its equivariant Poincare dual —c! (X) just for
simplicity.

See Appendix 2.4.1 and 2.4.1 for the precise definition of the notation in
the last expressions. Here we just note that the equivariant push-forwards
(K%.eFr), (Ly.ePr) and (e"7) along p : X — pt are elements of HY*"(pt, R)
and the evaluation Eve = ev_y of these elements are by definition the infi-
nite series Eve(a.efT) := 377 LEve(a.L7") € R for o = k%, Ly, [X]". The
Cartan model of equivariant cohomology explains the equality Eve(a.L7%) =
S (A + voge)(w + pge)® with [A+v] = a € Hip (X, R), so the the con-
vergence of the infinite series follow by the convergence of the infinite series
S o m (A4 voge) (w+ p_2e)*)™ of 2n-forms on X to the above integrands.
We discuss the convergence in more general setups in section 2.3.1 based on
a preliminary in section 2.4.2.

Now we can express the following variant

Vol* (& B 1 .
pr(€) == —log (nO!TTE)g = —5; + An — Alog (5 /X ePew ) (2.6)

as
21 Eve (k% .e"7) - (Eve(er))™ + AEve(Ly.e™T) - (Eve(eh7)) ™! — Aog Eve(e7).

Since p* differs from — log Vol* by a constant, we have

d
Futg‘('r]) = —

A _ A
7| Hxa) (€ +t0) = Debtiy ) ()- (2.7)
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On the other hand, since the degree zero part (e/7)® = (L'™)/n! of the
equivariant cohomology class (ef7) € ﬁ%"en(pt,R) is positive, we can also
regard (el7)~! log(elT) as equivariant cohomology classes in H®(pt, R).
So the following gives a well-defined equivariant cohomology class

wr(X, L) = 2r (k%€ - (eXT) ™ + N(Lp.et) - (eF7) ™! — Nlog(elT). (2.8)

If we replace the equivariant lift [w + u] € H2Z(X) of the cohomology class
(w] € H*(X) to another lift Ly + ¢ := [w + p + ] by a constant ¢ € t, then
(el1), (Ly.efr), (k% .elT) are replaced as

(e"77) = ("),

((Lp + ¢).e"7%¢) = e*(Lp.e™T) + cef(elT),
(kh.efTTe) = ¢

respectively. So p3(X, L) depends only on the cohomology class L = [w] and
the equivariant canonical class k%.

If we take a base {z1,..., 2z} of £V, we can identify HZ(pt,R) =
StV with the ring of formal power series R[z1,...,x;]. Then the element
py(X, L) is identified with the Taylor expansion of the functional p*(—3-)
on t at the origin. Since the functional p?* is real analytic, the differential
Dep () must be recovered from the formal series p) (X, L) when £ is close
to the origin. Moreover, the derivative Du* away from the origin must be
recovered from p3.(X, L), since p* is real analytic on the whole t. This is our
strategy for detecting an equivariant cohomological expression of u-Futaki in-
variant. We will introduce a differential operation on equivariant cohomology
to arrange this idea in section 2.2.2.

2.2.2 Differential operation on equivariant cohomology

Here we introduce a differential operation on equivariant cohomology. We use
this notion to construct the cohomological u-Futaki invariant Df ug(X /B, L).

Let GG be a topological group, B be a connected (for simplicity) topolog-
ical space with a G-action and T" be a (closed/algebraic) torus acting on B
trivially. (We can also deal with the case when B is T-equivariantly homo-
topically equivalent to a space with the trivial T-action, such as B = C with
a linear C*-action. ) From the assumption on the T-action, we have the
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following decomposition

HY (B R) =[] @ st @ HY (B, R). (2.9)
k=01i+j=k

For an element a of HE%(B,R), we denote by a7 the S%t¥ @ Hg (B, R)-

component of a:
o = ia% — i ( Z a<m’>> '

k=0 k=0 \i+j=k

As our formulation around ué\—cscK metric fits into the d-Hamiltonian
0¢ = p1_9¢ rather than the moment map pe, we may better to prepare our
notation by a factor of —2. First of all, we put

Eve :=ev_ye : HY o(B,R) = P HL(B,R). (2.10)

0<I<k

Definition 2.2.2 (Differential operation on equivariant cohomology). For
an equivariant cohomology class of even degree o € HY% (B, R), we define
the formal k-derivative D*a (on T to the direction G) to be the element of
StV @ HZ(B,R) = [[2, St ® HZ(B,R) defined as:

Dk = k:'Za (k) e HS’tV ® H¥(B,R).
=0 1=0
For k = 0,1,...,00, we say that a is of class €¥ around & € t if for each

| € Z>o with I < k (or I < 0o when k = 0o) the sum Y o Eve(al®?) is locally
uniformly absolutely-convergent around { € t with respect to some (hence
any) norm on HZ(B,R). In this case, the sum (—2)*k! Y% Eve(a'™) is
unconditional convergent in H2¥(B,R). We denote the limit by

Dfa = (— k'ZEv (k) e H2F(B,R) (2.11)

and simply denote it by Do for k = 1.

The following example illustrates the way to regard this operation as
differential.
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Ezample 2.2.3. Consider the case G = C*, T' = (C*)*™ and B = pt. In this
case, an equivariant cohomology class « € HY¥L(B,R) = R[vy, ..., v, n"]
is identified with the formal power series

1 1 N
o= (X gese))0) R
j=0 = (i1 veerim)
with some a; ; € R foreach @ = (i1, ..., i) € ZZ,. Here we put 4! = iy!---ip,!

and (vY)* = ()" -+ (1Y) Since

b 1 N ()
Oé< J) — F ( Z aai7j.(yv)z) ‘(77\/>]7

=

we have

So we formally get

Dia= (Y %a@k(—Qm)’) (=2
foréE =xv=xv1+ -+, €L
Now we consider a group morphism A : G — T : t — (M, ... t*) and
treat the case when « is the pull-back (idpx A)*f of some § = 3, +b;. (V)" €
He(B,R) = R[vY]. The pull-back @ = (idy x A)*8 € HY%(B,R) =
RvY][n"] is expressed as

1 i
a= 3 bl O )

.....

|
=
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So we formally get

k!
Dha = ( 3D ﬁz),€+,(—2>\)’<(—2:z:)’>.(nv)’f.
lk|=k 1
The coefficient can be identified with the usual differential: suppose the
power series fg(x) = >, %bzwl is locally uniformly absoulte-convergent on
R™, then for Fs(x) := fs(—2x) we have

k
(%)’ Fy(m +tA) = szbk” o) (—2a).
l

In particular, the pull-back o = (idy x A)*f3 is of class €. This is the reason
we call D*a the formal derivative on T to the direction G.

Proposition 2.2.4 (Leibniz rule). We have the following formal Leibniz rule
for a, f € HSSA (B, R):

k [es)
Dfa—B) =) <Z)Dla — Dpe [[ S @ HF(B,R).  (2.12)
=0 i=0

k

Suppose « and [ are of class €* around ¢ € t, then so is @ — f and we have

the following Leibniz rule:

k _
Di(a—B) =) (Z)Dgavpg '8 € H¥(B,R). (2.13)
1=0
Proof. The first claim follows directly by
) o0 k
Do — B) =kl Y (a— B)*" = Z Y alth gl
i=0 i=0 p+q=i 1=0
LS

Il
o

q

k=101 (“io‘M) G l>!i5<q’k_l>>

p=0 q=0

(f;)ﬁmw.
=0
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The second claim on the absolute convergence follows by Tonelli’s theorem.
Indeed, we may take the norms {|| - ||;};<x on {HZ(B,R)};<x so that ||u —
vl < lull; - |v]|e—; for every u € HZ(B,R) and v € HQ(k Y(B,R). Then
since

[Eve(a®? — e[|, < [[Evea® ;- [[Eves @ 0,

we have
0o k
Z [Eve(a — 5)¢ Z S 3 [Eve(a®h — gk,

=0 p+qg=1i =0

k 0o
ZZ 3 Evea®d| - [[Eve StV

=0 i=0 p+q=i

k 00 0o

= (Z ||EV£O{<p’l> Hl> <Z HEV§5<q’k_l>||k_z)-

=0 p=0 q=0

]

Suppose the degree zero part o'® € H9 (B,R) = R is not zero (resp.
positive), then we can define an element o' (resp. log o) of HY% (B, R) by

0o k
1 1 —1\! N
-1 ._ = = - (k) even
N ) a<0 Z Z <a<0>> Z a € Hrlo(B,R) (2.14)
k=1 \ =1 keN |k|=k
and
o) k 1
log o := log o Z Zf<_> Z o® | e HYL (B, R). (2.15)
=1 \ I=1 ke, [k|=k
Here we put |k| := ky + - - + ky, and of® = a0 ... o) ¢ B2¥ (B R) for

the set of [-tuples of positive integers and for k = (kq, .. kl) € Nl These

definitions are based on the following expansion; for instance as for a™ !,

1 1 -1  [— 1 I
-1 __ _ _ = L R P
a = (1 +(ga 1>> =50 ZZ;( 1) <a<0>0‘ 1)




and for [ > 1,

(Z&w)’ _ i S oW

o0
k=1 k=l keN! |k|=k

I
Note here for each k € N, the sum 31, <a_<—3>> D kent, ki a'® in H2 (B, R)

is a finite sum.

Proposition 2.2.5. We have

D(a™") = (D) € [[ S'", (2.16)
=0
D(a™') = —Da- (D’a)? € [[ 5t ® HZ(B,R) (2.17)
=0

for v € H%(B, R) with of% # 0 and have

D°(log @) = log(Da) € H S, (2.18)
=0
D(loga) = Da - (D’a)~! € [[ St ® HE(B,R) (2.19)
=0

for a'® > 0.
If moreover « is of class €” (resp. €') around the origin, then a~! and
log o are also €° (resp. €') around the origin (possibly on a smaller ball) and

0 1

DY) = (Dla) ' €R, (2.20)
(resp. De(a™) = —Dea - (Dia)™? € HE(B,R)), (2.21)
DY(loga) = log(Dfa) € R, (2.22)
(resp. De(logar) = Deav - (Do) ™' € HE(B,R)). (2.23)

around the origin.

Proof. First of all, we have (a™1)%% = (a/2)~! ¢ H2(B,R) = R and
(@10 — L Z (T5) X ol e s o HYB.R)
a0) al0) AR

I=1 iEN |4|=i
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for ¢+ > 1, which is a finite sum. So we compute

A = 1 I S~/ -1y
0 -1\ __ —1\(%,0) - - - (,0)
D) =Y (@)= =+ =33 (5) D a
i=0 i=1 I=1 €N |i|=
I o=/ —-1 <2 . .\! 1 -1
- - (3,0) _ (4,0)
@<o>;<a<o>;a > a<o< ZO‘ )
o0 ] 71 R
- ()" -
1=0

in the ring [[>2, S7t".
Suppose « is of class €°. To show that o~
that the infinite series

Z\Z(a%)l > Eveal) (2.24)
=1 =1

ieN [i|=i

1 0

is also of class €”, we must see

converges uniformly around the origin. We can bound this by

5 () S =5 (o S )
=1 =1 ieN [i|=i
This converges when WZ?L [Eveal™®] < 1. Since Y37, [Evoa®™®| = 0

and > |Eveal™?| is continuous with respect to & around the origin by its
uniform convergence, we can achieve the convergence condition when ¢ is
sufficiently close to the origin, so that we get the uniform convergence of
(2.24).

To see D¢(a") = (Da)~" for £ close to the origin, we put

l
fg(l l) = (a_<_(}>> Z'LENZ JEl= ZEVEO[“ 0> l S Z ‘
0

[ >1
Since
S Ui <3 () X X v
=1 i=1 =1 i=1 4eN! |i|=i

— Z <|a<0>| ; ‘Evéa(zp)’) :



fe(i,1) is integrable on N? by Tonelli’s theorem. It follows that

DY) = 5+ 3D feli) =~ + SO felin) = (D)

i=1 [=1 =1 =1

by Fubini’s theorem.

Similarly, we have (a=!){h = —(a(®)~2a(%1) and
@i LSS (LY S e [ € st e HA(BR)
= am 2 \qm) " N al;
=1 1€Z>0x NI |4]=4 p=2
for ¢ > 1, where we put H;:2 alr® =1 when [ = 1. We compute
N( 1 1y oY L oaym oLy (i1,1) : (ip,0)
-1y _ —1\(,1) _ i1,1) ip,
Dlal) =) (o )" = (@) RN >0 <a<0)> l > @ [[o"
i=0 i=1 I=1 1€Z>oxNI—1 |g]|=i p=2
N1 1 -1
_ (i) (4.0)
(>oat) CRE (o 2 0)
=0 =1 1=
A 1 1 < -2
— _ (3,0)
Do o (1+—5 ;a )
= —Da - (Da)~2

in St ® H%(B,R). By the same argument as above, we see that a~! is of

class ! around the origin when « is so. There is no essential difference for
log . So we obtain the claim.

]

2.3 Equivariant calculus and p-character

2.3.1 Equivariant calculus
On the absolute equivariant intersection (a.et)

Let X be a pure n-dimensional scheme with a T-action. Here we consider
the differential D(a.e*) of the absolute equivariant intersection (a.e”) €

ﬁ%vf?l} (pt, R) of a second equivariant locally finite homology class « € H. ;;’T(X ,R)
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and a second equivariant cohomology class L € HZ(X,R). Since the decom-
position (2.9) gives the identification H:’}fo{‘l}(pt, R) =[12, St ® H°(pt, R),

we have
1 —(i+(n—
(a0 = e (@D ) k=0
0 E>1'

so that D¥(a.eX) =0 for k > 1 and

(av.e” :Zl L),

 j!

For a pure n-dimensional G-scheme X, we denote by H. ;,Ilg_’g(X ,R) the sub-
space of HE% (X R) = HY,\ 519 dime By (E2G X @ X, R) spanned by divisors
on FyG xg X. Here the scheme F)G is as in Appendix, i.e. a G-invariant
Zariski open set of the subset {v € V | v.g = v <= g = 1} of a G-
representation V' with dimc (V' \ ExG) > 2. This is a well-defined subspace
of HY% (X, R) by [EG1]. Note that H2*$ (X, R) is larger than the subspace
{>°, ailE2G x¢ Zi] | Z; C X : G-invariant divisor} spanned by G-equivariant
fundamental classes of G-invariant divisors. (See the case G = C* and X is
a point for example. ) We firstly note the following lemma.

Lemma 2.3.1. Let X and Z be pure n-dimensional G-schemes and f : 7 —
X be a proper surjective G-equivariant morphism. Then the push-forward
maps f. : HyS(Z,R) — Hy5G(X,R) and f, : HY:C(Z,R) — HY:C(X,R)
are surjective.

Proof. Since the induced morphism id Xg f : EsG Xg Z — EyG Xg X is
also proper surjective, the claim reduces to the trivial case G = {1}. By the
reduction and the irreducible decomposition, we may assume that X and Z is
irreducible. (For each irreducible component X; of X, there is an irreducible
component Z; of Z with f(Z;) = X;. ) For any prime divisor Y C X,
f YY) C Z contains a prime divisor of Z. Indeed, if not, then f~'(Y) is
(n — 2)-dimensional, so that f(f~'(Y)) # Y as Y is (n — 1)-dimensional,
which contradicts to the surjectivity. O

Now we prove the following fundamental on absolute equivariant inter-
section.
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Proposition 2.3.2. Let X be a pure n-dimensional proper scheme and L
be a second equivariant cohomology class on X. If o € Hy'' (X,R) or o €
H2%T (X, R) the infinite series

is locally uniformly absolutely-convergent on t. When L is semi-ample and
big, Eve(el) = Eve([X].e¥) is positive.

Proof. Take the irreducible decomposition of the reduction X — Xred — X
and a T-equivariant resolution of singularities X — X™. Let f : X — X
be the composition of these morphisms. By Lemma 2.3.1, we can pick an
element & € H2%T(X R) (resp. & € Hy'(X,R)) with f,a@ = a for a €
H2T (X R) (resp. a € HET(X,R)). Since we have (a.eX) = (a.ef"L) by
the projection formula, we may assume X is smooth.

Suppose a € H;f,’zQ(X ,R). Pick equivariant 2-forms A + v in the equiv-
ariant Poincare dual PDr(«) and ©Q + p in L. We have

Eve(a.L™) = Evg /X(A +v)(Q + p)?

. .7 j—(n—1) n—1 .7 i—nyn
_/X((n—l)M% ANQT + (n)y_gg,uj%ﬁ >

Now the infinite series of 2n-forms

— 1 J j—(n—1) ne1, (J j—nn
]Z:; ﬁ<<n " 1> I o¢ ANQ + " V_%/LQ&Q )

is locally uniformly absolutely-convergent on t with respect to the C'-norm
for every | € Z>q, to the limit 2n-form

1
2 n—1 H—2e )N
(n—l)!e CANQ +n!1/_2§e 0",
It follows that by Corollary 2.4.12 and Lemma 2.4.13, the infinite series

Z;io %Evf (a.L=7) is locally uniformly absolutely-convergent to the integral

1 1
/ <(n 1)'6M§A AT 4+ g’/ﬁse“”ﬁﬁ”) = / (A + vy ez,
X - : !

X
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(In the absolute case, we may apply the usual harmonic analysis to see the
continuity of the form-to-cohomology proper push forward (2.49) of p : X —
pt. )

We similarly obtain the claim for o € Hy'" (X, R). If L is semi-ample and
big, then we can pick a 2-form 2 so that it is semi-positive and is strictly
positive on some open set of X. Since e#—2¢ is positive,

PD ,
Bre(aeh) = 3 ERrl00x) | e,
X;

: n!
is positive if the Poincare duals PDr(a|x,) € R =2 HY%(X;,R) are positive
for each irreducible component. Here X; are the connected components of
the smooth X. This proves the claim on the positivity as the Poincare dual
([Xd)T ~)"1([X]T) of the fundamental class of an irreducible scheme X is
the length of Ox/Oxrea at the generic point, which is positive. n

The following is a key proposition to prove Theorem A.

Proposition 2.3.3. Let 5 : X' — X be a T-equivariant morphism of pure
n-dimensional projective schemes and L be a T-equivariant Q-line bundle on

X.

1. If B is an isomorphism away from a codimension one subscheme of the
target X, then we have

EVg(eﬁ*L) = EVg(eL), EVg(,@*L.e’B*L) = Ev§(L.eL)

2. If moreover (3 is finite away from a codimension two subscheme of the
target X & L is semi-ample and big (resp. if moreover g is an isomor-
phism away from a codimension two subscheme of the target X), then
we have

Eve(kx.e? ) < Eve(kx.e¥) (resp. Eve(kxr.e? ) = Eve(kx.eb))

Proof. The first claim follows by 3,[X’|” = [X]” and the equivariant projec-
tion formula

[T~ rrye = [ a e e — [ )7 e e st
X’ X X
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By the equivariant Grothendieck—Riemann—Roch theorem, we have 3,7%,(Ox/) =
7L(B8Ox:). Since S is finite away from a codimension two subscheme of X,
the supports of the higher direct images of Oy is contained in the codimen-
sion two subscheme. So we have

(7% (B10x)) n—1) = (Tx (B Ox/)) -1y = (7% (B:O0x// Ox) + 75 (Ox)) (n-1y.

Since 3 is isomorphism away from a codimension one subscheme of X, we
have

(TX(/B OX’/OX Zmz z )

where m; > 0 are the multiplicities of 5,Ox//Ox along T-invariant prime
divisors D; contained in the codimension one subscheme. It follows that we

have
Bk = Ky — 2277%[1) T
By the equivariant projection formula, we have
[ R R e T
X/
:/liX/\Lvn—Hc 1) QZmz/ ) ALVTL-FIC I)Eskt\/
b's

So we have

Eve(kxr.e’ ') = Eve(rx.e") —QZmE\% (eFlpi).

Take a resolution of singularities §; : D; — D;. Since 07 L|p, is semi-ample
and big, we can pick an equivariant 2-form w + p so that w™ ! > 0 with
W™ (p) > 0 at some point p € D;. Applying the first claim, we obtain

1
EV/ DiTAeL:—/ I |
< Jp =11 /s,

as the function e#-2 is positive. ]
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The relative equivariant intersection (a.e‘)p is of class

Now we study the relative case. Let G be an algebraic group, T be an
algebraic torus. Let X be a pure dimensional T' x G-scheme, B be a smooth
G-variety with the trivial T-action, 7 : X — B be a T x G-equivariant proper
morphism. Let £ be a T" x G-equivariant second cohomology class on X.

Theorem 2.3.4. If « € H%%9(X,R) or o € HY&XY (X, R), then (a.e)p €
H'T*G(B R) is of class € on t.

Proof. We put n := dim X — dim B. As in the proof of Proposition 2.3.2, we
may assume that A" is smooth. Let K be a maximal compact subgroup of G.
Pick an equivariant 2-from Q + pu = Q+ (u? + ) in £. We firstly compute
(Evj)g’k>. Comparing the degree, we have (ﬁvj)g’k> =0 when j—n#i+k.
For j =n + 1+ k, we compute

(ﬁvn+i+k)g:k> = (PDpyg [ (Q + M)n+i+k])<i,kz)

n-+i+k .
_ Z (n + 1+ k) (PDTXK['/T* (ﬂn+i+k*pr)])<i,k>

p=n p
SLontitk n4i+k—p
— PDry o X Tyi( K \ntk—pQp
;(nHM_p) v | (") m G )
n+i1+k Gy n+k
— PD y , T\ Kn+kprp
I LX) S QM IO R

so that we obtain

; 1 : ; 1 1 -
E £ (i,k) — E —n+titky(@,k) — PD e T i 0 Ky\n+k )
Vel = PR e PR G e () )
We pick a collection of semi-norms {|| - ||;}/cz., on Q%Mk)()( ) so that

it defines the Fréchet structure of Q%”Jrk)()( ). For instance, we may put
el := ll¢lp, |l using an exhaustion {D; C X'}z, by compact sets. Now
we easily see the infinite series of K-equivariant forms

[e.e]

]' 7 n
(1 lag) (2 4 )™
i=0
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is locally uniformly absolutely-convergent on t with respect to the semi-norm
|| - ||; for each I € Z>g, to the limit K-equivariant form

Since m, (5 (") (Q+ p)"t*) are K-equivariantly closed forms, the infinite
series of 2k th K-equivariant cohomology classes on B

S Bre(ef)*) = sy S Pl (G0 (@ 1))

is locally uniformly absolutely-convergent on t by Corollary 2.4.12 and Lemma
2.4.13. The limit is given by

1

MPDK[W*M% (Q -+ pF)mh).

Similarly, for o € H;fd:fnfg (X, R), we pick an equivariant 2-form A+v =

A+ (vT 4+ vE) in the second equivariant cohomology class PDyy g (o). We
compute

(CE eﬁ)gk) (n — —: T 1>‘ (PDTXK [W*((A + V)(Q + M)n—&-i—i—k—l)} )(i,k:)
(M PPk m((n + k:) (A + v )(Q + uK)Hk*l)} i=0

By the same argument as above, we obtain that the infinite series

= i PDg 1 .
ZEvé(a'ecTXG)ék = Z m( —2& (M 2¢) (4 pf )t
= i=0

(n+k)!
+(n+k)g (u 2¢) (A + V) (Q + pf) )]

is locally uniformly absolutely-convergent on t to

1

mPDK[W*(VT%e“TQS(Q—|—MK>n+k+(n_i_k)eMT%<A+VK)(Q+MK)H+]€1)].
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Thus we obtain

(=2)*

De(e) = Gy P DAlm (72 @+ 1) +)] (2.25)
Df(ave") = % PD [ (1 e =2 (2 + u)™+) (2.26)

+ (n + k)e! =2 (A + ) (Q 4 p)m Y
]

Lemma 2.3.5. Suppose 7w : X — B is moreover flat and £ is in the equivari-
ant Neron-Severi group N Srxq(X,R). Let £, € H2(X,, R) be the restriction
to the fibre of a point b € B. Then we have

DY(e")p = Eve(e™) € R, (2.27)
Dg(nX/B.eE)B = EV&(HXb.eﬁb) € R. (228)
In particular, Dg(ec) p is positive when L is relatively semi-ample and big.

Proof. The claim on Dg(nX/B.eﬁ)B is nothing but Corollary 2.4.16. The case
Dg(e‘:) p follows similarly from the equivariant Grothendieck-Riemann-Roch
theorem. [

2.3.2 p-character, p-Futaki invariant and pK-stability
Now, our main theorems are just the application of the equivariant calculus
we developed in the previous sections.

p~-character and its derivative

We introduce a relative version of the p-entropy (2.8), imitating its equivari-
ant intersection formula.

Definition 2.3.6 (u-character). When £ € NSg(X,R) is relatively semi-

ample and big, (eﬁ);ﬂ” = (L") € R is positive. In this case, we can define

the following equivariant cohomology class in ]:Ig"e“(B ,R):
pui(X/B, L) = 27r(f£§/3.eﬁ)3~(6£)§1+)\(£.e£)3-(e£)§1—/\log(eﬁ)B. (2.29)

We call this the p-character of the G-equivariant family (X'/B, L).
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By Theorem 2.3.4 and the basic properties of the differential operation,
we obtain the following.

Theorem 2.3.7. The element p, (X/B, L) is of class > around the ori-
gin. The derivative D¢p?., (X /B, L) extends to the following analytic pro-
longation on t:

De(ry)5-¢“7%¢)p - Eve(e) — Evg(rk, ) - De(e“¢)p

27

(Eve(efr))?
A Dg(ﬁTxg.eﬁTXG)B : EVg(eﬁb) — EV&(,Cb.eﬁb) : Dg(@ﬁTXG)B B Dg(@LTXG)B
(Eve(et))? Eve(ef)

for £ close to 0.

We define the second cohomology class D¢, (X /B, L) for £ € t away
from the origin by the above analytic prolongation.

Remark 2.3.8. In the construction of the characteristic class De 3, (X /B, L),
we assume the smoothness of the base B in order to ensure the Poincaré dual-
ity between the equivariant cohomology HZ (B, R) and the equivariant locally
finite homology H;f(’jiGm 5_o(B,R). So there is a room for extending our result
to some singular bases, or perhaps to general singular bases by using other
cohomology theory, if we can establish equivariant calculus for such coho-
mology theory as we did it for singular/deRham equivariant cohomology.

As another viewpoint, our construction works even for families of almost
complex manifolds. (In this case, £ is just a T' x G-equivariant cohomology
class. ) As a consequence, we can define Dy, (X /B, L) for a Kuranishi
family of T-polarized manifold with a singular base B by pulling back the
equivariant cohomology class D, (X /B, L) € H?*(B,R) associated to
the Kuranishi slice B — 7 which we take when constructing the Kuranishi
family. The author suspects this idea allows us to construct Dep? (X /B, L)
for a global base B by gluing these characteristic classes in some canonical
way.

It is preferable for gluing that we realize the characteristic class Dy, (X /B, L)
as a geometric object whose category forms a stack (namely, has a natural
criterion for the descent of objects), as an analogy of the CM line bundle.
Such a geometric realization is also important when descending it to a co-
homology class on the moduli space. Indeed, since in general we a priori
know the moduli space does not admit a universal family, our Theorem B
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constructs nothing on the moduli space, at present. Since the cohomology
class Depy (X /B, L) continuously deforms in HZ(B,R) as £ varies, it does
not make sense to realize it as a complex line bundle on B, imitating the
CM line bundle. On the other hand, real line bundle on B endowed with
pluri-harmonic transition functions may serve as such geometric object, but
the actual construction is out of the author’s consideration at the moment.

Test configuration

By a G-equivariant Q-line bundle on a scheme X, we mean a G-equivariant
Neron-Severi class L € NSq(X,Q) € HA(X,Q). We call a G-equivariant
Q-line bundle L ample (resp. semi-ample, big) if some multiple of the corre-
sponding Neron—Severi class L € NS(X, Q) is the first Chern class of some
ample (resp. semi-ample, big) line bundle. Here the bigness means that the
volume (L|z) 4™ 7 is strictly positive on each irreducible component Z of X.
We call a pair (X, L) of pure dimensional projective G-scheme (resp. variety,
normal variety) X and a semi-ample and big G-equivariant Q-line bundle
L a semi-polarized G-scheme (resp. wvariety, normal variety). When L is
ample, we call it polarized G-scheme.

A (T-equivariant) test configuration (X, L) of a semi-polarized T-scheme
(X, L) consists of the following data:

e A T x(C*-scheme X with a T' x C*-equivariant projective flat morphism
7 : X — C, where we define the T" x C*-action on the base C by
z.(t,u) = zu for z € C and (t,u) € T x C*.

e A T x C*-equivariant Q-line bundle £ € N Syyc+(X,Q) on X which is
(relatively) semi-ample and relatively big.

e A T x C*-equivariant isomorphism ¢ : X x (C\ {0}) = X \ X, over
the base with ¢*L = p L € NSp.c+(X x (C\{0}),Q), which we often

reduce from our notation.

We call a test configuration (X, L) ample if £ is (relatively) ample. In this
case, the compactification (X, £) possesses relatively ample L.

As in section 2.2.1, we can construct a test configuration X* from a one
parameter subgroup A : C* — Auty(X).

When X is normal (hence X is normal) and is isomorphic in codimension
one to some product configuration X, then the isomorphism automatically
extends to the whole space.
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p-Futaki invariant

To compare Depryy (X /C, L) of T-equivariant test configuration with the
p-Futaki invariant Futg‘(ﬁ, L), we show the following.

Proposition 2.3.9. For any test configuration (X' /C, L), we have

De(e£7%¢ )¢ = 2Eve (57",
De(Lyxce.€“7<¢" ) = 2Eve(Lr.e5).n",
De(r)c €77 )c = QEVS(ﬁg/«:Pl-QET)'UVa
where we identify Hc-(C,R) with R[p"].
Proof. Since j* Lrwcs = Ly € NSryc+(X,R), we have
B L e = (meo)udf Lt = (L") € HER. (bt R)
and

(ke ~ Lriet?) = (W5 L") € HERZ (pt, R)

by Corollary 2.4.16. In particular, we have (iiow*ﬁﬂggzﬂ)) = 0 and

(i%, m(nﬁjg* ~ LGN — 0. So we compute

—(n+i+1)\(3,1) _ ax —(n+it+1)y(i,1) _ - A —(n+i+1 A (ntit1)N (4,
(oL bY@ = (g, Lo NN = (2, L7 — o, L7 D) 6D

o n+z+1 i —_ n+z+1 i
(S )8 = (g

and
(m(myje ~ L") = <z0m<n§7€ ~ L)Y
~—(n+1 ~—(n+1 7
— (2 m (ke L)) —igm (kR ~ L))y
* S—(nt+e i (n+i)\ (s
= —<<f~e£7é€ LN ) oD = — (k% o L7 )0 v

by the localization formula. Thus we obtain
De(Lyyet' e = 2Bve (L7 ")

and
* o (n+it+l ~»—(n+i
De(rkc L) e = 2Bve (k0. L7 "),

which proves the claim as all the cohomology classes we treat here are of
class . n
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As corollaries, we get the following.
Corollary 2.3.10.
Do (X/C., £) = Futd(X, £).n"

Corollary 2.3.11. For the product configuration (X*,£*) associated to a
one parameter subgroup A : C* — Aut(X, L), we have

Futg (X4, £%) = Fut? (ny).

Proof. As both Dep* (XA /C, £L*) and Futg\(nx) are real analytic with respect
to &, the claim follows from the construction of Deu?. (See also seciton 2.1
and 2.3. ) O

Now we prove the rest claim of Theorem G.

Proof of Theorem G. The property (1) is a consequence of Corollary 2.4.16
and our construction of Dep?, (X /B, L). From the expression (2.25) and
(2.26), the maps D.(e“), D.(a.e) : t — HZ(B,R) extend to holomorphic
maps between the complexification t ® C and HZ(B,C). Hence the map
Duy,o(X/B,L):t— HZ(B,R) is real analytic.

Recall the definition of the CM line bundle CM(X/B, L): we put

n (—Kx.L'(n1)

CM(@/B.L):= A1 7 @ (8 @A)
where \; are line bundles on B in the Knudsen—-Mumford expansion
ok (n51) o ()
det(m (L27) 2 A0 @AWY @ - ® Ao

for £ > 0. So we have

eStaer(m() = (|} )efOmn) + ()0 4+ €00)

n+1
k,n+1 1 kn
RECES)] 1)!0?(/\%1) - 55(”09()\%1) — 267 (M) + -
On the other hand, the equivariant Grothendieck-Riemann-Roch shows
1 1 1
cf(det(w*(L®k))) = kn+1<__22)0(ec)3) - 576"(_—22)0(“/?/3-@6)3) + o
knJrl 1 1 km 1
_ - (n+1) B n .
T (n+ 1) (SPoe™ ) = 577 (S Polays-L7)s) +
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Thus we get

n (—Kx.L'D)

& (CM(X/B, L)) =

n+1 (L)
1 (L.n)Do(/’iX/B-eﬁ)B - Evo(efr) — Evo(mﬁb.eﬁb) -Dy(eX) B
2 (Evo(efs))?
(L™) 0
= — D, X/B
e okc(X/B, L)
by Evg(eft) = L(L™) and Evo(kk,.e®) = (n 1 (Kx.L'™Y). The inde-
pendence of A follows from Dy(Lg.€¢)p = SDo(Ls (DY 5, Do(ele)p =
(n+1) —=Do(Ls D) 5 and Evo(Ly.e5) = ﬁ([/n)

Do(Lrxg-eT%¢) p - Evg(e£r) — Evo(Lp.€5?) - Dy(e£7%¢ )

DOH — Dop” = X

(n + 1)!(_12%(&)3) + n!(_%??o<m/3-€£>3)

B ’Do(e»CTxG)B

V()(
(Evo(ef))?

n
n+1 DolLg )

1
n+1

(Dol )5 - D(£5"))

")

I
‘O/'\

Relation with established Futaki invariants

Here we check that our definition of p-Futaki invariant is compatible with
the following established notions.

Definition 2.3.12. Let (X, L) be a (semi-)polarized scheme and (X, L) be
a test configuration of (X, L). The following Futaki invariants are studied in
the literatures.

1. Donaldson—Futaki invariant for the usual K-stability (cf. ): We put

n (Kx.L'™ )
n+1 (L™

DF(X, L) = (Kg/cpr.L™) — (L)) (2.30)

2. Modified Futaki invariant for the modified K-stability of Q-Fano variety
(cf. [Xio, BW]): Let (X, L) = (X, —Kx) be a Q-Fano variety with a
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torus 71" action and (X, L) be a T-equivariant test configuration with
Q-Gorenstein X and £ = —Ky/c. For £ € t, we put

Fute(X, L) := —/ (=2t)e™ 2 DH x ¢y (7, 1), (2.31)

tV xR
where the Duistermaat-Heckman measure DHx ) on t¥ x R is given

by

DH(XJ;) . lim n'k:_" Z dim HO(XO, £|Xo)(m,l)5k*1(m,l)-

- k—o00
(m,1)EMXZ

When the central fibre A is a Q-Fano variety, we may express it as
Fute (X, L) = —/ O efewm = / n’(h — 0¢)eew™,
Xo

Ao
which is the expression in [Xio, BW]. Here the 9-Hamiltonian potential
0 is normalized as [f*w — $5%0] = —B*K;COXU(I) € H%XU(l)(éf’o,R) for
some/any resolution [ : X, — X,. This normalization is equivalent
to the equation 06, — n’h = 6, for the Ricci potential h: /—190h =

Ricw — w.

3. Weighted Futaki invariant of smooth test configuration (cf. [Lah]) for
weighted K-stability: Let v and w be smooth positive functions on the
moment polytope P := pu“(X) C t. For a T-equivariant smooth test
configuration (X, £) with ample £, we pick a Kihler form € in £ and
the moment map u% with [Q + %] = L7 and put

2 Jx so(w)w” 2y On+1
Fouw(X, L) = _"—H/X (SU(Q) - W(w o[ ))Q -
2.32

+87T/(vouw)w”.
b

We consider the following variant of weighted Futaki invariant for T-

equivariant smooth test configuration with ample L:

2\ f [T el
Flooe) (X, L) = Fotor26) gtw—26) (X, L Q, — 2Xr o2 gt
el@, §>( ) ) e{®,—28) e(z, 25)( ) )+ n+1 /X (M*2§ fX eP=2eyn )6
(2.33)

2 w
= / (s2(€) — §2(w))66?9"+1 + 87T/ % wn.
X

n+1 ¥
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Though it seems not explicitly claimed in [Lah] for this variant case, we easily
see that the above invariant is the slope of ug\—Mabuchi functional along a
smooth subgeodesic of a test configuration, using computations in [Lah]. Asa
,ug\ cscK metric is a (proportionally) extremal weighted cscK metric, we have
the boundedness of ,ug -Mabuchi functional if there exists a u§ -cscK metric
by [Lah]. As a consequence, a polarized manifold is ,ug‘K semistable with
resepct to smooth test configurations with ample £ if there exists a ,ué\—cscK
metric.
Now we compare them with our u-Futaki invariant.

Proposition 2.3.13. We can compare the p-Futaki invariant with these
established Futaki invariants as follows.

1. When (X, L) is a normal polarized variety, Futy (X /C, £) = 4 (L") 'DF (X, L)

for every normal test configuration (X, L) of (X, L).

2. When X is a Q-Fano variety and L = —\"'Ky for A > 0, we have
Futy™ (X, L) = 2rAn!(Eve(e))™ 1Fut§(X L) for every test configura-
tion (X, L) of (X, L) with £ =—-X"Kx/c.

3. Let (X, L) be a T-equivariant smooth test configuration with ample
L. We ple a Kihler form © in £. Then we have Fut£ (X, L) =

er € 1]-2‘1,_25 (X, L).

Proof.
(1) We compute Fut)(X/C, L) as

i (Evo(el)? (Evo(eh)?

EVo((/‘W/CPI-ez) (") = (kx ") - (e£)> o Evo((ﬁ_.ez) (el) — (L.et) - (ei)>

—n () (e ) ) - ) L)

")

(n+ 1)!

nl O\ 2 (L)Y (L) (L") (L0 (L) (L)
+2A((L”)) ( o nl (=1 (n+DI nl (n+1)
_ A n (KxL'™D) o
_ )((KX/Cpl.c R ))
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(2) We compute Fut?”’\(é\?/(c, L) as

Bve ((Rejcmef) - (¢) — (x.b) - (c5) i Eve((£.e5) - (¢!) = (Let) - (f

i (Eve(el)? (Eve(eh)?

B [ bt 0] [ e Dt
EV&(G ) VxR tv

(3) Since

Eve (27 (k% .€"7) + A(Ly.e"7))
Ev(elr)

= —5 (w) + An,

we can express Fut?(X , L) as

2Eve (27 (k5.€£7) + A(L.5)) +2(52(w) — AM(n + 1)) Eve(ef7) — dnEve(m* K1, .€57)

Eve(efr)

Then the claim is a consequence of the following calculations:

_ L 1 _
EV5(27T(H§.@£T> + A(L.e£)> - / Q)M 4 \n + 1)Eve(ef7),
n+1)! J5
; 1 Q
E Ly _ O Qn+1
ve(”) (n+1)!/je !
47rEv§(7r*K(CP1.eET) =47 Kcepr ',Dg(eET)(Cpl
cp!
8 w
= —87Eve(e'T) = SR
n! Jx
[

nK-stability
Now we define the uK-stability of a T-polarized scheme in the usual way.
Definition 2.3.14 (uK-stability). We call a T-(semi-)polarized scheme (X, L)
. M?K—semistable if Futg‘()(, L) > 0 for every test configuration (X', £) of
(X, L).
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o 3 K-polystable if it is p}K-semistable and we have Futg (X, £) = 0 for
big test configurations (X, £) only when (X, £) is C* x T-equivariantly
isomorphic in codimension one to some product configuration over the
base C. Namely, there is a one parameter subgroup A : C* — Auty(X)
such that the C*-equivariant isomorphism X'\ Xy — X\ X away from
the central fibre extends to an isomorphism X \ Z — XA\ Z4 away
from T-invariant subschemes Z C X and Z* C X of codimension
> 2, respectively.

o 3 K-stable if it is 2 K-polystable and Aut’(X/Alb) =T.

Remark 2.3.15. The p-Futaki invariant Futg\(/'\? , L) is invariant under the
addition of a T' x C*-equivariant cohomology class ¢ € H2, ..(C,R) of the
base: Futg‘(/'\f, L+ 7*c) = Futg‘(X, L).

Now it is the turn to apply the results in section 2.3.1.
Theorem 2.3.16.

1. A T-polarized normal variety (X, L) is p}K-semistable (resp. pugK-
polystable, u?K—stable) with respect to general test configurations iff it
is M?K—semistable (resp. ug‘K—polystable, /A?K—stable) with respect to
normal test configurations.

2. A T-polarized manifold (X, L) is ug\K—semistable with respect to gen-
eral test configurations iff it is ug‘K—semistable with respect to smooth
test configurations with reduced centrals fibre and ample L.

Proof. Pick a semi-ample test configuration (X', £) of (X, L). As L is ample
and L is relatively semi-ample, we have a unique ample test configuration
(Xemp LamP) of the same (X, L) associated to (X, L) as in [?, Definition
2.16]. The associated morphism g : X — X*™P is an isomorphism away from
a codimension one subscheme of the central fibre, which is a codimension two
subscheme of the total space. It follows that Futg‘(X amp | Lamp) — Futg\(X , L)
by Proposition 2.3.3. Thus we may assume L is relatively ample. By the
above remark, we may further assume that £ is ample. We apply Proposition
2.3.3 (2) to the normalization v : X — X and obtain the first claim.

Now, we may assume (X, L) is a normal ample test configuration to
prove the second claim. Since X is normal, there is a T' x C*-equivariant
resolution 8 : X — X of singularities which is isomorphism away from a
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codimension two subscheme in X'. Then we have Fut?(.)? ,PRL) = Fut?(.)( L)
by Proposition 2.3.3.

By the reduced fibre theorem, there is a positive integer d such that the
normalized base-change f, : XY — X along the morphism f(z) = 2¢: C — C
has the reduced central fibre. Let f . X; — X be the base change morphism
along f. Since Depy e (Xa/C, f*B*L) = f*Depd o (X /C, B*L) and f*n¥ =
d.nY, we get

Fut (X, f*B°L) = Deptye (Xa/C, [*B°L) 1"
= d.f*(Deptyoc- (X /C, B°L) /") = d.Futd(X, 8°L) € H.(C,R).

Thus we get Fut} (XY, f;8*L) < d.Fut?(X, *L) by Proposition 2.3.3 (2).
Put Lo = fiB°L — €3 pepyosEITC for € > 0. Then (Xy, L) is a

smooth test configuration with reduced central fibre and ample £.. We have

Fut?(??, L) — Futg\()(, L) as € — 0 from the proof of Proposition 2.3.3. Now

suppose (X, L) is uK-semistable with respect to smooth test configurations
with reduced central fibre and ample £. Then since Fut%\()( L) >0, we get

Futg(X,£) > 0. Thus (X, L) is pK-semistable with respect to general test
configurations. The converse claim is obvious. O]

The above theorem reduces Theorem A to Lahdili’s result [Lah, Theorem
2]. Thus we obtain the following.

Corollary 2.3.17. If a smooth Kéhler manifold (X, L) admits a pg-cscK
metric, then (X, L) is p2K-semistable.

Remark 2.3.18. By [Lah, Proposition 4], we can express ug—Futaki invariant
of toric test configurations of a toric polarized manifold as an integration on
polytope, similarly to the usual Futaki invariant. For the toric test config-
uration (Xy, Ly) associated to a convex piecewise linear function f on the
polytope P, we have

c.Futg (Xy, Ly) :/ap f€<x’_2§>d0—/P(A<x,—2€>+8?)f6<x"2§>du

for some uniform positive constant c¢. We may also have such expression
even for singular (X, L) as ,ug‘—Futaki invariant is expressed via an equivariant
intersection formula.
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2.4 Appendix: Preliminaries for equivariant
calculus

Here we (re)arrange background materials on equivariant cohomology and
equivariant locally finite homology to fix our notations and sign conventions
in equivariant cohomology. The sign arrangement is crucial when computing
the right sign of (u-)Futaki invariant via equivariant cohomology.

We also briefly explain some advantage of Cartan model, which employs
differential forms as its chains. While there is an analogous equivariant the-
ory for Chow group, which works also for schemes not even over arbitrary
characteristic field but also over Z, we prefer to use the singular/de Rham co-
homology with R-coefficient to benefit from the Cartan model when proving
the convergence of some sequences in equivariant cohomology.

2.4.1 Equivariant cohomology & locally finite homol-
ogy

Singular equivariant cohomology & locally finite homology

We firstly review singular equivariant cohomology and locally finite homology
as these work also for singular spaces. Let X be a topological space with a
continuous action of a topological group G from the right. Using a classifying
bundle EG — BG of GG, which can be constructed for instance by Milnor
construction, the singular G-equivariant cohomology H} (X, Z) is defined to
be the singular cohomology of the Borel space EG xg X := (EG x X)/G =

{lp,] | [p,x] = [pg, zg], Vg € G} :
Hi(X,Z) .= H*(EG x¢ X, 7). (2.34)

Let Y be another topological space with a continuous action of a topological
group H, ¢ : G — H be a topological group morphism and f : X — YV
be a continuous map satisfying f(x.g) = f(z).p(g) for ¢ € G. Then we
have a pulling-back map f* : H(Y,Z) — H{(X,Z). We usually define
the equivariant cohomology in this way among another possible candidate
named as ‘equivariant cohomology’ so that it enjoys the homotopy invariance.
Considering the case H = G and Y = X with different choices of classifying
bundles EG — BG and E'G — B'G, we find that (2.34) gives a well-
defined contravariant functor independent of the choice of the classifying

bundle £FG — BG.
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Since E'G is infinite dimensional in general, it is possible that Hg (X, Z) #
0 for infinitely many p > 0 even if X is finite dimensional. We put H oNX,Z) =
H;O:o Hép(X, Z) and denote by o) € Hép(X, Z) the degree 2p-part for an
element o € ﬁgven(X ,Z). When the action is free, we have a natural isomor-
phism H}(X,Z) = H*(X/G,Z), so that H:(X,Z) = 0 for * > dim(X/G) in
this case.

For an almost connected locally compact group G (i.e. the quotient G/G"
by the identity component is compact), we have a maximal compact sub-
group ¢ : K — G by Iwasawa’s theorem. It admits a K-equivariant defor-
mation retract H, : G — K. Thus the induced natural map ¢4 : EK —
FK xx G — EG coming from the homotopical universality of BG is a
K-equivariant homotopy equivalence, so that we obtain the induced isomor-
phism H}(X,Z) = Hj}(X,Z). Since g4 : EK — EG is a K-equivariant
homotopy equivalence for any inclusion ¢ : K — G, the above isomorphism
is independent of the choice of the inclusion ¢. We often identify these two
equivariant cohomologies.

For a G-equivariant complex vector bundle £ — X, we have the as-
sociated vector bundle EG xg E — EG xXg X. We define the equivariant
Chern class ¢¢(E) € H}(X,Z) to be the Chern class of the associated bundle
c(EG xg E) € HY(EG x¢ X,Z) = H.(X,Z). The equivariant Chern char-
acter chg(L) € HY™(X,Z) = | Hép (X,Z) of a G-equivariant complex
line bundle L is defined as

che(L) Zl‘ )P e HY(X,Z) HHQ” (X,Z).
0 p=0
Note the highest degree of chg (L) is not bounded in general as it is possible
that H ép (X, Z) are non-zero for infinitely many p.
We denote by the element 7Y € HZ.(pt,Z) corresponding to the class
c1(O(1)) € H*(CP®>,Z) via the canonical isomorphism HZ.(pt,Z) = H?(CP>,Z)
and call it the positive generator.

Ezample 2.4.1 (Weight and positive generator). Here we compare the sign
of the weight of C*-action and the generator of HZ.(pt,Z). Let X be a
point and denote by L; the trivial line bundle C on X endowed with the
nontrivial C*-action z.t = zt. The classifying bundle EFC* — BC* is nothing
but C> \ {0} — CP. In this case, the associated bundle EC* x(c* L; on
BC* x X = CP> is the tautological line bundle O(—1), so that ¢ (L;) €

HZ2.(X) is identified with the negative generator c;(O(—1)) € H?*(CP>).
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For m € Z, the trivial line bundle L,, = C with the C*-action z.t = 2t™ is
the m-tensor product of L, so that we have

& (L) = —mn¥ € H2.(pt,Z). (2.35)

If we employ the left G-action on EG in the definition of the equivariant
cohomology, the sign reverses. Indeed, the Borel space is given by X x¢
EG = {[z,p] | [x,p] = [xg,97'p], Vg € G}, so L_; x¥ EC* = O(-1) on
EC* = CP*>.

When T acts on X trivially, we have a canonical isomorphism H% . (X, R) =
D, i 5Pt ® HEP(X,R). For £ € t, we define the evaluation map

eve : Hi o(X,R) — @D HL(X,R) (2.36)

0<i<k

via this isomorphism as

eve : SPY @ HLP(X,R) —» HEP(X,R) : p®@c— p(€).c. (2.37)

For a locally compact Hausdorff space X, the locally finite homology
HY(X,7Z) is defined to be the homology of the chain complex CY of the
locally finite chains, i.e.

ol .— {a . Map(A?, X) = Z VK C X : compact set }
b ; , :

#{c € o™ (Z\{0}) | H(K) # 0} < o0

where Map(AP, X)) denotes the set of continuous maps. We usually denote
its chain by a formal expression  c\r.a» x)0(c).c. The boundary map
0 : C’Ilf — C;f_l is given similarly as the usual homology. The locally finite
homology HY(-,Z) gives a covariant functor from the category of locally
compact Hausdorftf spaces with proper continuous maps to the category of
Z-modules. The functor is not a homotopy functor, but only invariant under
proper homotopy. For example, H) (X,Z) % H) (X x RY,Z) while we have
H;f(X, 7)== H})ﬂrq(X x R, Z).
We have the following cap product:

~ HY(X,Z)® HY(X,Z) — H,_,(X,7Z), (2.38)
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which makes the anti-graded module H" (X, Z) into a (H*(X,Z), —)-module
and enjoys the projection formula:

fllo ~ f¢) = fio ~ ¢ (2.39)

for every proper continuous map f : X — Y and o € Hllf(X, 7), ¢ €
HYY,Z).

When X is a connected n-dimensional oriented manifold, we have an
orientation preserving triangulation ) ., A? of X and obtain a generator
[X] € HY(X,Z) called the fundamental class of X, independent of the choice
of the triangulation. The map ([X] ~ ) : HY(X,Z) — H)"_ (X,Z) gives an
isomorphism of Z-modules for each ¢ € Z. We denote its inverse ([X] —~ -)!
by PD : H;f(X, Z) — H" P(X,7Z).

The following are key properties for the well-definedness of the equivariant
version of locally finte homology:

e For any closed subset Y C X, we have a long exact sequence

o HY(Y,Z) — HYNX,Z) — HY (X \Y,Z) - H [(Y,Z) — - .
(2.40)

In particular, when dimY < [, we have the isomorphism H}f(X L) =
HY (X \Y,Z) for p > 1.

e For a vector bundle 7 : ' — X of rank r, we have an isomorphism

T H;,f(X, 7) = HY

ptr

(E,Z) (2.41)
for each p € Z.

Now we explain the equivariant version of locally finite homology. Let
X be an n-dimensional locally compact space with a continuous action of
an almost connected Lie group G. For an almost connected Lie group G,
we have a ‘finite dimensional approximation’ { ;G — B;G} ey of classifying
bundle EG — BG of G which enjoys the following properties:

1. For each | € N, E;G is a G-invariant Zariski open set of the subset
{veV |vg=v < g=1} of a (complex) G-representation V; with
dimg(V \ E,G) > 1 + 1.

2. G acts on F;G freely and E;G — B;G is the quotient.
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For example when G = C*, E;C* := C"*! \ {0} with the diagonal C*-action
on C'*! gives such a finite dimensional approximation. In this case, we have
B,G = CP'.

Using such a finite dimensional approximation, we define the G-equivariant
locally finite homology H;,f’G(X, Z) of degree p € Z (negative degree allowed)
by

HY (X, Z) == H), iy 5, 0(EnpG X X, 7). (2.42)

p

For example, we have

0 p>0orpodd

If,C* _ it —p 7\ _
Hy ™ 04 2) = Hy ) (P, 2) = {Z p <0 and p even .

By the key properties of locally finite homology, we can show the above
construction is independent of the choice of a finite dimensional approxima-
tion of classifying space by the similar argument as in [EG1] for equivariant
Chow group. For a G-equivariant proper continuous map f : X — Y, we
have the proper push-forward f, : H)"“(X) — H)“(Y) induced from the
map f: E, ,G xgX = E,_,G x¢Y with n = max{dim X, dim Y}

When X is a smooth oriented manifold and the action of G on X is
orientation preserving, X xq E,,_,G is again a smooth oriented manifold and
its fundamental class of X x ¢ E,,_,G defines a homology class [X x¢E,_,G| €
HYC(X 7). Along the above proof, we can easily check that this homology
class is independent of the choice of the finite dimensional approximation,
thus we get the equivariant fundamental class [X]% € HYC (X, Z).

Definition 2.4.2 (Equivariant fundamental class of complex analytic space
and the equivariant cycle map). Let X be a pure n-dimensional complex an-
alytic space with an orientation preserving action of an almost connected Lie
group G (not necessarily holomorphic). Along the irreducible decomposition
X = U,e; Xi, the exact sequence (2.40) induces the canonical isomorphism
HyC(X,7) = Hy, O (X\ X8 7) = @), Hy O (X;\ X[***"¢, 7). We define
the equivariant fundamental class [X]° € HYC(X,7Z) by

[X]9:= ) miX[*"E)9 € H,,0(X,2), (2.43)

el

where m; is the length of O, /Oy at a general point and [X[°*""¢]¢ denotes

the equivariant fundamental class of the oriented manifold Xj.
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Since we have HL(X,Z) = HYE,G x¢ X,Z) for | > ¢, we have the
equivariant cap product:

~: H'"(X,Z) ® HY(X,Z) — Hy$(X,Z), (2.44)

which is also independent of the choice of the finite dimensional approxima-
tion. When X is an oriented manifold with an orientation preserving action
of an almost connected Lie group G, the map ([X]¢ —~ -) : HL(X,Z) —
H}f’_cé(X ,Z) gives an isomorphism for each ¢ € Z (as we can take E;G as
a manifold). We denote its inverse ([X]9 ~ -)~' by PD¢ : Hy¢(X,Z) —
H. (X, Z).

Using the equivariant fundamental class, we can define the homology-to-
cohomology push-forward map f, : Hy (X, Z) — HE™ Y 7P(Y,Z) (rvesp. the
cohomology-to-homology push-forward map f, : Ho(X,Z) — H;f;Gdim Y, Z),

the cohomology-to-cohomology push-forward map f. : HA(X,Z) — H, g_dim(x/ Y)(Y, 7))
for a G-equivariant proper continuous map f : X — Y to an oriented mani-
fold Y (resp. from a pure dimensional complex analytic space X, from a pure
dimensional complex analytic space X to an oriented manifold Y'). When X
is compact, we denote by [ « the (co)homology-to-cohomology push-forward
map to the point, using the equivariant fundamental class [X]“ defined in
(2.43).

Let 7 : X — B be a G-equivariant proper continuous map to a manifold
B and £ € H%(X,R) be a G-equivariant cohomology class on X. For a
G-equivariant locally finite cohomology class a € H-¢ (X R), we denote by

even

(a.eX) g the G-equivariant cohomological formal series
00 1 .
S omla ~ L7 € Hg™(B.R)
k=0

on B, which we call relative equivariant intersection. We abbreviate ([X]¢.e£)p
as (ef)p and ([X]9.L — ef)p = ([X]® ~ L.eX)p as (L.e5)p. When B
is a point, we usually abbreviate (a.e“)p as (a.ef) and (e£)p, (L.eX)p as
(e£), (L.e%) respectively, which we usually identify as elements of S(g¥)¢
and call absolute equivariant intersection. We also abbreviate (a.ec?(ﬁ)) B as
(a.e’)p for a G-equivariant line bundle £ on X.

Cartan model of equivariant cohomology & locally finite homology

Now we turn to the Cartan model. The Cartan model of equivariant coho-
mology behaves well when the action is proper. Let X be a smooth manifold
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with a smooth action of a compact Lie group K and & be the Lie algebra of K.
Put CP4 := SPEY @ Q47P(X). Identifying elements of the symmetric product
SPEY with the degree p-homogeneous polynomial maps on €, we regard CP4
the space of p-homogeneous polynomial maps from € to Q9 P(X). Consider
the subspace of K-equivariant maps:

Ch1 = (SPEY @ QT P(X))K. (2.45)

Then C%? becomes a double complex by giving the differentials d : CP? —
CPatl . CP1 — CPHH by (d,)(€) = d(Ppe)) and

(00,)(8) = ic(Ppie))

for ¢, = p®¢ € CP? regarded as a map ¢, : € — Q97P(X) and ¢ € £. Indeed,
we have (dd + 6d)(¢,)(§) = Ledpe) = dp(e,e) = 0 by the K-equivariance.
The Cartan model Hig x(X,R) of equivariant cohomology is defined to be
the cohomology of the total complex (5 (X), dk) := (D, . CR*, d+9) =
Dy (S @ Y (X))" of the double complex CF’. We call elements of
Ok (X) K-equivariant k-forms.

This cohomology Hg x(X) is known to be naturally isomorphic to the
equivariant cohomology Hj;(X,R) for any (non-compact) X and compact
Lie group K (cf. [GS, Section 2.5 and 4.2]).

We have a chain-level pulling-back map f* : Q% (V) — Ok (X) along
any K-equivariant smooth map f : X — Y which induces the pulling-back
map f* : HE(Y) — HE(X). We also have a chain-level cup product A :
O (X) @ Q(X) = QXD : (01 @ ¢1) @ (p2 @ ¢2) = (p1 - p2) © (1 A )
which induces the cup product A : HE(X) @ HY (X) — HEP(X).

When X is a smooth n-dimensional oriented compact manifold, we have
an integration map [, : Q) (X) — S®=/2¢¥ for p > n with even p—n given
by the integration of the component in S®~/2¢¥ @ Q" (X).

Ezample 2.4.3. A dg-closed equivariant 2-form is given by a pair (w, ) =
w+p of a K-invariant 2-form w and a K-equivariant smooth map p : X — €V
satisfying the ‘moment identity’ —d(u,§) = iew for every & € €. On a 2n-
dimensional X, the integration [, (w -+ p)"** of equivariant 2(n + k)-form
(w+pu)"** is then expressed as ("zk) [ wFw™ € S¥eY. Conversely, for instance
we can regard the map £ - R : & — fX 8w as an element of some
‘completion’ of the ring of polynomials St = @, , S*¢".
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For a K-equivariant complex line bundle L on X, a representative w +

in the equivariant first Chern class ¢f (L) € Hig (X, R) is given using a

connection form 6 € QY(P,/~1R) as /—1n*w = df and (u, &) = /—Lig,0:
the equivariant cohomology class [w + ] is independent of the choice of con-
nection and is identified with ¢X(L) € H%(X,R) in the singuar equivariant
cohomology via the canonical isomorphism Hgg (X, R) = HE (X, R) to the
singular equivariant cohomology. Note that adding a constant ¢ € (€)X
gives another moment map p + ¢ for the same w, but its equivariant coho-
mology class differs from the original one. The moment map p is normalized
appropriately by this construction so that we have [w + u] € & (L).

Ezample 2.4.4 (Weight and the value of moment map). Consider the U(2)-
equivariant line bundle O(—1) = BlyC? — CP! with the U(2)-action induced
from the right action on C? by the matrix product. We have a connection
form 6 = Loz log(|z]? + |w|?) = L2299 with the curvature w_ =

2 |22+ wl?
YL prdcpr log (|2 + |w]?).
For A : U(1) — U(2) : u — diag(0,u™'), the associated U(1)-action
on O(—1) is given by (z,w).u = (z,wu') and the fundamental vector

field np,c2 = 4 tio(z,w)et" for n = 2nv/—1 € u(l) = v/—1R is given by

27 (Imw ) Opewy — 27 (Rew ) Oppy- Then the moment map p : CPY — u(1)Y with
w_ + p e TI(O(=1)) is given by p(z : w) = %nv with the dual basis
nY € u(l)Y of n € u(1).

Pulling it back along the map iy : {0} — CP! : ig(0) = (0 : 1), we
obtain i%(w + p) = u(0 : 1) = 7Y, which represents the equivariant Chern
class clU(l)(z'SO(—l)) € HgR,Uu)({O}’ R). On the other hand, the pulled back
equivariant line bundle ifO(—1) is nothing but L_; in Example 2.4.1, so
that we have c?(l)(ig(’)(—l)) =n' € Hé(l)({O},Z), which is the positive
generator. Our conventions for n¥ are compatible in this sense.

We in particular obtain that the value of the moment map p, associated
to L,, is the minus of the weight m.

Ezample 2.4.5 (Equivariant Chern class of canonical bundle). Let w be a
K-invariant Kéahler metric on a Ké&hler manifold X and p : X — €Y be a
moment map with respect to w. Then the equivariant first Chern class of
the canonical bundle K is represented by —5-(Ric(w) + Op).

Example 2.4.6 (Localization formula). Consider the U(1)-action on CP' de-
fined by (z : w).t = (2.t : w). There are two fixed points: ip(0) = (0 :
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1),7(0) = (1 : 0) € CP'. For every u € Hig ;;,y(CP',R), we have the
following localization formula:

/ u = (igu —igu)/n". (2.46)
cp!
Here the division /n" shifts the degree of equivariant cohomology:

/n" : Hiy(pt, R) = Hiy)(pt, R) = R.

The localization formula is just a paraphrase of Stokes theorem in this
setup. Pick an equivariant 2-form w + g in the cohomology class u. Us-
ing the coordinate z = e/tV=1 on C* = P1 \ {i0(0),7(0)}, we may write
Wlep\{io(0),00y = f(p)dp AN db = fp t)dt.df). On the other hand, as we
have dyu,, = —i,w = 2n f(p)dp with n = 27r
as

55> We can express the function u,

log |2|
() =27 [ Fp)dp -+ miof0))

—00

Using Stokes theorem, we compute

/C = lin ( /| . /_ ; F(t)dt.do — / o /_ o: f(t)dt.d@)
P /_ Z F(t)dt

= i (10(0)) — 1 (i0(0))
The sign can be checked with the above example: [, (w-—+p) = =1, ifp = 1,

i1 = 0. See [GGK, Appendix C. 7] for a general localization formula.

The advantage of the Cartan model for our purpose is that when we
consider an action by a product group T x K, we have the following chain-
level evaluation map

eve : SP(Ex £)Y @ QTP(X) —» € S @ QTP(X) (2.47)
0<r<p
Yoo @e= Y oA @6
0<r<p 0<r<p

for each vector £ € t, which we can treat on the fixed finite dimensional
space X. This map is T'x K-equivariant and compatible with the chain-level
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proper push-forward map which we will define for equivariant currents. The
map eve in general does not preserve the dgx-closedness of equivariant forms,
however, it holds when T acts on X trivially. In this case, the evaluation
map descends to the evaluation map on the equivariant cohomology eve :
HE (X, R) = @yeier, H (X, R) defined in (2.36). We will use this to
show the convergence of a sequence in the K-equivariant cohomology of a
base B of a T x K-equivariant map « : X — B with the trivial T-action
on B. The sequence is constructed as the evaluation of the integration of a
sequence of T' x K-equivariant cohomology classes on X.

Next we consider the dual construction, which corresponds to the equiv-
ariant locally finite homology. Firstly we review the current homology. Let X
be a connected n-dimensional smooth manifold. For a compact set B C X,
let 2 denote the space of smooth p-forms supported on B with the C-
topology. We denote by DP(X) the space of compactly supported smooth
p-forms on X endowed with the weakest topology which makes the natural
inclusions 5(X) < DP(X) continuous for all compact sets B C X. Then
DP(X) is an LF-space. Let D (X) denote the space of continuous linear
functionals on D?(X). We have a boundary map J : D,(X) — D, ;(X)
adjoint to the differential map d : D,_1(X) — D,(X) (with an appropriate
sign) and get the homology group HI®(X,R) of this complex (D.(X),d).

A smooth p-chain ¢ : AP — X defines an element of D, (X) by the
integration ¢ — [,,c*¢ and this gives a linear map C) — D/ (X). It is
known by [deR] that the homology HI®(X,R) is isomorphic to the locally
finite homology H}(X,R) via the map C)f — D} (X) given as above.

For a proper smooth map f : X — Y, we have a chain-level push-forward
map f. : D,(X) — D,(Y) adjoint to the proper pull-back f* : DP(Y) —
DP(X). This induces the push-forward map f, : Hi%(X,R) — HI*(Y,R).
The cap product

~: HI(X,R) @ Hip(X,R) = B (X, R)
is induced from the chain-level map
D(X)@Q(X) =D, (X):0@dp—a(dA-).
When X is oriented and the action is orientation preserving, the closed cur-

rent [, : D"(X) — R gives the fundamental class [X] € HI¥(X,R). All
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of these constructions are compatible with those counterpart of the locally
finite homology HY(X,R).
In the equivariant setup, we consider the double complex

CK = (S @ D,_ (X)" (2.48)

with the differentials 0 : Cf, — CF _,, 6 : CF — CJ,  defined by

(00,)(6) i= (~1)" 70, (d6) and (35,)(@) €) = (~ )"0 o (ic), which
are compatible with (C}%?,,d) under the inclusion Cp* — C* . for ori-
ented X. Here we put S77¢V = 0 for p > 0. We define the Cartan model
HI®E(X R) of equivariant current homology to be the homology of the to-
tal complex (D)E(X) := @, ,—, Cpy = B0, (58 @ Dj(X))*. For a
K-equivariant proper smooth map f : X — Y, we have a chain-level push-
forward map f, : (D)K(X) — (D)E(Y) induced from f, : Di(X) — Di(Y),
which induces the push-forward map f, : H™% (X, R) — HV5 (Y, R).

The equivariant cap product ~: H™ (X, R)®Hlg (X, R) = H%M (X, R)
and the equivariant fundamental class [X]¥ € HI®E(X R) are given simi-
larly as the non-equivariant case and are compatible with those of locally fi-
nite homology. We also have the evaluation map eve : SP(tx¢)V®@D!  (X) —
Docye, S8 @ D, (X).

When X is oriented, the inclusion C}? — Ci{p,n— 4 &ives the isomorphism
((X]g ~ ) : Hig x(X,R) — HME (X, R). We can check this using the spec-
tral sequence associated to the double complexes C%¢ and C%? := Cr oy
(cf. [GS, Section 10.10 and 6.5]).

q+p

2.4.2 Equivariant proper push-forward
Topology on H{"*(B,R)

We consider the following topology on the space (D')f (B) = (B, _g—; St ®
Dj(B))*. We can naturally regard each element of (D');(B) as a sum of
K-equivariant i-homogeneous polynomial maps p' : ¢ — @ Dj_,;(B) for
— [=k/2],..., [(dim B—k)/2|. We say a sequence {3} d[lm,jQ MG N
converges to Zggfﬁik)m pi iff b (E)(d) — pl(€)(@) € R for every & € &,
¢ € D*?(B) and each i.
We show that the quotient topology on the current homology H SRJ( (B,R)
induced from the topology on (D)X (B) is Hausdorff, even for non-compact

=l
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B. We in particular show that the following form-to-homology push-forward
map is continuous for every K-equivariant proper C*°-map f : X — B:

fot Q0 0 ()7 (Kerldr - (D), (B) — (DY L0 (B)]) = HE,(B)
(2.49)
with respect to the unique Hausdorff topology on H% (X, R). Here we put
b := dim B and n := dim X — dim B. Note the space H{®**(X ,R) has a
unique Hausdorff topology defined by a norm since it is finite dimensional
for each p € Z, however, the quotient topology is a priori unrelated to the
norm topology. (Indeed, there is a non-Hausdorff cohomology theory such as
0-cohomology since Hodge decomposition does not work in the non-compact
case. )
We apply the following de Rham’s theorem and the spectral sequence of
topological vector spaces associated with the double complex of the Cartan
model.

Proposition 2.4.7. [deR, Chapter IV, Theorem 17"] A p-current o € D,(B)
is exact if and only if o(¢) = 0 for every closed compactly supported C*°-form
¢ € DP(B).

Corollary 2.4.8. The induced topology on the current homology HSR(B ,R)
is Hausdorff.

Proof. The space of exact p-currents 9D, ,(B) C D,(B) is a closed subset

of D,(B) since we have 0,,,(¢) — 0oo(¢) for every convergent sequence o,,, —
Ooo- ]

We use the following easy lemma in our spectral sequence argument.

Lemma 2.4.9. Let V; be a topological vector space and V5 be a Hausdorff
topological vector space. Suppose there is a continuous map p : V; — V4,
such that the induced topology on the subspace V := p~1(0) is Hausdorff,
then Vj is also Hausdorff.

Proof. The topological vector space Vi is Hausdorff iff {0} € Vi is closed.
The closure W := {0} in Vj is a linear subspace of V; and W NV, = {0}
as Vp is Hausdorff. The closure of {0} in the quotient space V;/V; is given
by (W 4 V5)/Vo. On the other hand, as V5 is Hausdorff and p is continuous,
Vo = p~1(0) is a closed subspace of V. It follows that the quotient V;/Vj
is Hausdorff, so that we have {0} = {0} = (W + V;)/V,. This proves W =
{0}. O
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Proposition 2.4.10. Let ({C??},>0 4>0, 6, d) be a first quadrant double com-
plex of (Hausdorff) topological vector spaces with continuous derivatives 9, d
whose F-page is a finite dimensional Hausdorff topological vector space with
respect to the quotient topology induced from CP4. Then the cohomology
H k(Hp g=e C71, 0+ d) of the total complex is a finite dimensional Hausdorff
topological vector space with respect to the quotient topology induced from

Hp+q=k con.

Proof. Let us recall the argument of spectral sequence. Put CF :=[]
There is a decreasing filtration

P,

p+q=Fk,p>1

HY ] ¢»6+d)=Hf>---D>Hf >---DH{ D0

ptg=e

on the cohomology H k(Hp g=e O, d +d) of the total complex derived from
the decreasing filtration {C} N Ker(§ + d)}F_, of Ker(d + d).

Now we consider the quotient topology on each H} induced from the sub-
space CFNKer(d +d) of the product [1,4=1 C?* (endowed with the product
topology). From the above lemma, it suffices to show the quotient topology
on EYF~1:= HF/HF, | induced from H} is Hausdorff. By the usual lemma of
spectral sequence, we can (algebraically) compute the quotient vector space
ELE=t by computing the cohomologies of E,-pages EY*~! successively. We
must see the successive computation of E,.-page also detects the Hausdorff-
ness. It is a general lemma that if we have a topological vector space V
and its subspaces W and V', W' with W’ C V', then there is a natural lin-
ear bijective homeomorphism (V/W)/(V'/W') — V/(W + V") of topological
vector spaces, where we take the usual algebraic quotient and sum. It follows
that we have a linear bijective homeomorphism

CF N Ker(d + d)
(Oﬁ N Im(d + d)) + (O{;l N Ker(d + d))

B : (2.50)

so that it suffices to show that the right hand side is Hausdorft.
Recall the definition of the E,.-page:

l+r

(Cﬁ N (6 + d)Cl’“gf_T) + <Czk+1 N+ d)_lgfjfl) |

(ctne+a et

Lk—l . _
EMk =
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We consider the quotient topology on EX*~! induced from CFN (6+d)~1C !
Then since E45~! for r > max(l, k — [) coincides with the right hand side in
(2.50) as topological vector spaces, the Hausdorffness of EL*~! follows from
that of EL*! for r > max(l, k — ).

Remember from the usual lemma on spectral sequence, we have a linear
map db? : EP4 — EPTHaTHL guch that d2t"H o P4 = 0 and a linear
bijection EFY, — Ker(dr?)/Im(dP~"4*"=1). The linear map d-F~" : Bl —
EL D74 i induced from the continuous map 6+d : Cin(s+d)'Citt —

CEHIN(0+d) ' Cl and the linear bijection EVY — Ker(d??) /Im(dP—"a+ 1)

is induced from the continuous inclusion Cf N (§ +d)~'Cf., ., — CFN (6 +

d)~'C}F,,, so that these maps are continuous linear bijection, while we do not
state here the continuity of the inverse map as there is no open mapping
theorem for general topological vector spaces. Thanks to the direction of
the continuous bijection E¥Y; — Ker(dP?)/Im(dP~"1t"=1), B is Hausdorff
when the quotient topology on Ker(d??) /Tm(dP~"4~1*") induced from EP is
Hausdorff.

Now our assumption that EP"? are finite dimensional Hausdorff spaces im-
plies every subspace of E"? is closed, so that E5? are again finite dimensional
Hausdorff spaces by the above general argument. Running the induction, we
conclude that EP¢ are finite dimensional Hausdorff spaces for every r > 1,

and so are the spaces EP9. ]

Proposition 2.4.11. The quotient topology on HngK (B,R) induced from
the weak topology on (D)X (B) is Hausdorff for every p € Z.

Proof. This follows by applying the above proposition to the double complex
of Cartan model with reversed index E{'? = (SP¢Y ® D;l_(erq)(B))K, whose
assumption is confirmed by Proposition 2.4.7 and the computation of Fi-
term: X
EPT = (SP(&) @ HyY,, (B, R))

pt+q

as topological vector spaces. Il

Corollary 2.4.12. The push-forward map (2.49) is continuous with respect
to the Fréchet topology on Q" (X) and the Hausdorff topology on Hf (B).

We apply this continuity result to the key construction in section 2.3.1,
together with the following lemma.
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Lemma 2.4.13. Let V be a Fréchet space and {|| - [|; }iez., be a collection of
seminorms on V defining its Fréchet structure. Let W be a Banach space and
F :V — W be a continuous linear map. Let {v;}3°, € V be a sequence such
that Y 2, ||lvs|i < oo for every I > 0. Then the infinite series > .~ F(v;) is
absolutely convergent with respect to the norm of W.

Proof. Remember that a linear map F : V — W from Fréchet space to
Banach space is continuous if and only if there exists a constant C' > 0 and
N € Z>( such that

I1E@)lw < C(lvllo+ -+ [lvllv)

for every v € V. So the claim follows by

o0 N oo
STIE@)Iw <SS Jluill < oo
=0

=0 =0

]

Equivariant homology todd class and equivariant Grothendieck—
Riemann—Roch theorem

Here we recall the equivariant Grothendieck—Riemann—Roch theorem for al-
gebraic schemes established by Edidin-Graham [EG2] as equivariant version
of [Ful]. The equivariant Chow group AS(X) is studied in [EG1] which is
defined in the same way as the equivariant locally finite homology. The
statement is as follows.

Theorem 2.4.14. Let G be an algebraic group. For each algebraic G-
schemes X over C (i.e. schemes locally of finite type over C), we can assign
a homomorphism

¢ 1 K(Coh® (X)) — AG(X)

from the K-group K(Coh®(X)) of G-equivariant algebraic coherent sheaves
on X to the G-equivariant Chow group A§(X) = [z A%(X) ® Q of Q-
coefficient enjoying the following properties.

1. (Grothendieck—Riemann—Roch) For any G-equivariant proper morphism
f: X — Y of algebraic schemes, we have f,7$(a) = 7¢(fia) for every
o € K(Coh®(X)). Here fia for an element o = [F] represented by a
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G-equivariant coherent sheaf F denotes the element Y (—1)"[R"f..F]
in K (Coh®(Y)), where the higher direct image sheaves R'f,F are G-
linearized in a natural way.

2. For every a € K(Coh®(X)) and 8 € K(Vect?(X)), we have 7¢(a ®
B) = 7¢(er) ~ chg(B).

3. For closed subscheme Z C X of pure dimension p, we have 7¢(0%) () =
[Z]c € AT(X).

4. When X is smooth, we have PD¢((7¢(Ox)) () = Tdg 7 (X).

Definition 2.4.15. For a pure n-dimensional algebraic G-scheme X over C,
we define the equivariant canonical class k§ € Hi%,(X, Q) by

n?} = —2ClG(T§(Ox))<n_1) (2.51)

under the equivariant cycle map el : AS(X) — Hy,“(X).

For a relatively pure dimensional G-equivariant proper flat morphism
m: X — B from an algebraic G-scheme X to a smooth G-variety B, we
define the relative equivariant canonical class kS /B € HYE . (X,Q) by

K55 = =2 (78 (0x) ~ 775 (08)) @im x-1) = K5 — [X]7 ~ 7 (K5),
| (2.52)
where we put 7 := 7* o PDg p : H)"%(B) — H2Im¥=!(x),

Let f: X — X be a G-equivariant proper morphism of pure dimensional
G-schemes which is isomorphic away from a codimension k + 1 subscheme
of the target X. (Namely, there is a subscheme Z C X of codimension
k + 1 such that the restriction f~'(X \ Z) — X \ Z gives an isomorphism.
) Then we have fu(7¢(Ox))amz_y = T%(Ox)@imx—sy for i < k as we
have f;(T)G( (03)) = 7¢(£.[0%]) by the equivariant Grothendieck—Riemann—
Roch and fi[Og] — [Ox] = [f:O%/Ox] + >~ (—1)'[R' f.O%] is supported
on Z. In particular, we have x§ = K¢ for ;my normal variety X, where
K¢ denote the locally finite homology class corresponding to the equivariant
frist Chern class c{(wxree) = —c§ (X™8) € HZ(X"™8,Z) via the isomorphism
H2(Xreg) = H}C (X)) = H'Y (X). If X has only rational singularities,
we have fiO; = Ox for any equivariant resolution f : X — X, so that
£79(05) = 7¢(Ox).
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Corollary 2.4.16. Let 7 : X — B be a relatively pure n-dimensional G-
equivariant proper flat morphism from an algebraic G-scheme X’ to a smooth
G-variety B, f : B — B be a G-equivariant morphism from another smooth
G-variety B'. Put X' := Xx 5B’ and denote by f : X' — X and 7' : X’ — B’
the projection to the first factor and the second factor, respectively.

For each G-equivariant line bundle £ on &X', we have

£ (malim ~ F0) D)) = (o~ e (F )70

in H?(B,Q).
In other words, the assignment
L (kS p.e“)p € HY™(B,Q) (2.53)
is base change stable.

Proof. By the equivariant Grothendieck-Riemann-Roch theorem, we have
7% (L9%) = PDGr%(m.[L5Y]) = 75(0p) ~ cha(m L)

in H'%(B, Q). Since 75 (0p) = [B]¢ —~ Tdg(B) and Tdg(B) has the inverse
element Tdg(—TB) with respect to the cup product, we obtain

ch® (7, [L%*]) = PDG (7,75 (L) ~ Tda(~TB)).
We compute

T, 7E (L) = 1, (1$(Ox) ~ cha(L5F)) = m (75(Ox) ~ eF54)

and obtain
im B— > ‘ % —i <dimB_Q>
(ch(ma[£24]) 7 = 37 2 (7§ (Ox) ~ 7 Td(~TB)) ~ £(£)™)
— il
dim X —p

=S B ((r§(0%) ~ TdG(—TB)) g ~ (L)),

|
—
It follows that
me(KS 5 — (L)~ P )

is the coefficient of degree n+p— 1 of the polynomial map (ch®(m,[£®*]))®) :
Z — HZ(B,Q). Now the claim follows from

(e (m [£5])) = b (f*m[LZ¥]) = eh(al[(f*L)*H)).
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We denote by NSq (X, R) C HE(X,R) the subspace spanned by {c¢§'(£) | £ €
Pic’(X)}. Since the map HZ(X,R) — HZF(B,R) : ¢ W*(Hg/B ~
cv(”ﬂj_l)) is continuous, the assignment ¢ — m, (/@G( B ec) is also base
change stable for ¢ € NSg(X,R).
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Part 11

Moduli space of Fano manifolds
with Kahler—Ricci solitons
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Introduction for Part 11

In this part II, we give a theoretical framework and methods for construction
of moduli space of Fano manifolds with Kahler—Ricci solitons. We begin with
backgrounds and motivations for this new-type moduli space.

In the celebrated paper [FS2], Fujiki and Schumacher constructed the
complex analytic moduli spaces of all compact smooth (polarized) Calabi-
Yau (Kx = 0) and canonically polarized manifolds (Kx > 0), as a higher
dimensional analogue of the moduli spaces of Riemann surfaces of genus
g =1 and g > 2, respectively.

In contrast to these cases, it is known that ‘the moduli space of all Fano
manifolds’ in a primitive sense behaves pathologically; it does not enjoy the
Ti-separation axiom, in particular, it does not admit any nice geometric
structure like a complex analytic structure. Indeed, the separation is ob-
structed by the existence of iso-trivial degenerations of Fano manifolds: there
are (many) families X — A of Fano manifolds which is biholomorphically
trivial over A* = A\ {0} and whose central fibre X is not biholomorphic to
the general fibres; for example, small deformations of the Mukai—Umemura
threefold (cf. [Tian-book, Chapter 7]) and the unique Ga-horospherical Fano
manifold with Picard number one (cf. [PP] and Example 3.5.4) give such
examples. In other words, the moduli space of all Fano manifolds does not
even exist in the complex analytic framework.

Still, in view of the work of [F'S2], one can imagine or hope that the exis-
tence of some ‘canonical metrics’ on Fano manifolds may play a role to ensure
the separation property of the moduli space or stack. For Fano manifolds,
Kahler-Einstein metric is a candidate for such ‘canonical metrics’. How-
ever, it is known that Fano manifolds do not always admit Kahler-Einstein
metrics, while Calabi—Yau and canonically polarized manifolds always ad-
mit Kéhler-Einstein metrics, as observed in [Matl, Fut]. We must exclude
‘unstable’ Fano manifolds in some sense.
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Detecting a geometric condition of Fano manifolds equivalent to the exis-
tence of Kahler—Einstein metrics was a long standing problem and a conjec-
ture on this concern was settled as the Yau-Tian-Donaldson conjecture for
these two decades. Recently, Chen-Donaldson-Sun and Tian [CDS, Tian2]
broke through this problem (for Fano manifolds): the existence of Kahler—
Einstein metrics on a Fano manifold is equivalent to the K-stability of the
Fano manifold, which is a pure algebro-geometric condition for polarized
variety.

After this breakthrough, in the spirit that the existence of canonical met-
rics plays a role for the separation, the (algebro-geometric) moduli space
of Fano manifolds with Kdhler—FEinstein metrics was constructed in [OSS,
Oda2, Oda3, LWX1] as an algebraic space within a unified theoretical frame-
work (not defeating one by one). Different from the case of [FS2], even the
dimension of the automorphism groups of Fano manifolds may jump along
deformation of complex structures. So they constructed the moduli space
of Kahler-Einstein Fano manifolds by rather different new technologies from
[F'S2], while sharing the same spirit with [FS2] on the philosophical reason
for the separation. After the construction of the moduli space, Li-Wang—Xu
[LWX2] proves the quasi-projectivity of the moduli space. There are also
more intensive studies as [SS, LiuXu] on the relation with a literal GIT con-
struction, which a priori depends on some ad hoc data such as an embedding
of varieties into a fixed projective space, for some special cases.

This additional stability assumption ‘with Kahler—Finstein metrics’ is
enjoyable for interest in particular examples: there are various important
examples of Fano manifolds admitting Kahler—Einstein metrics. However,
on the other hand, it is also known that there are many examples of Fano
manifolds who do not admit any Kahler-Einstein metrics; even the one point
blowing up of CP™.

Philosophically, constructing moduli spaces of varieties in the schematic
or complex analytic category within a unified theoretical framework can be
regard as giving a (schematic/complex analytic method for) classification of
them. From a viewpoint of MMP, Odaka and Okada conjectured in [OO]
that every smooth Fano manifold with Picard number one, which is one of
the final outcome of the MMP, is K-semistable, so that they are members of
the moduli space of Kahler—Einstein Fano manifolds and hence are classified.
However, (infinitely) many counter-examples of this conjecture are discovered
by Fujita [Fuj] and Delcroix [T. Del]. We face that the assumption ‘with
Kdhler-FEinstein metrics’ is restrictive for our interest on this classification
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concern.

In this part 11, we extend the moduli space of Fano manifolds with Kahler—
Einstein metrics to the moduli space of Fano manifolds with Kdahler—Ricci
solitons. Kahler—Ricci soliton, which consists of a Kéahler metric and a holo-
morphic vector field, is a natural generalization of Kéhler—Einstein metrics
from the viewpoint of Kahler-Ricci low. The uniqueness of Kahler—Ricci soli-
ton modulo the identity component of the biholomorphism group is known
by [TZ2] as in the case of Kéhler-Einstein metrics [BM], so that we can
regard Kéhler—Ricci soliton as a kind of ‘canonical metrics’ on Fano man-
ifolds. The equivalence with K-stability as developed in [DT, Tianl, Ber]
and [CDS, Tian2] for Kédhler-Einstein metrics are also covered for the case
of Kéahler-Ricci soliton in [Xio, BW] and [DaSz|]. There are large amount
of known examples of Fano manifolds admitting Kéhler—Ricci solitons; Del-
croix’s infinite series of counter-examples of Odaka—Okada conjecture admit
Kahler-Ricci solitons, while they do not admit Kahler-Einstein metrics.

We usually characterize moduli spaces in the schematic/complex ana-
lytic framework by a universal property. A category consisting of families of
which we intend to construct the moduli space, which is usually called the
moduli stack, is a convenient and essential tool for describing the universal
property. In our moduli problem, we do not work with the usual moduli
stack consisting of the usual families of Fano manifolds. In order to ensure
the separation, and technically in order to apply GIT method, we instead
consider another new moduli stack !C(n) consisting of some families of pairs
(X, &) of n-dimensional Fano manifolds and holomorphic vector fields, which
is natural in view of the theory of Kéhler—Ricci soliton. The moduli stack
IC(n) is furthermore divided into clopen (closed and open, but not necessarily
connected) sub-stacks ICr ., where the associated holomorphic vector fields
are deformed holomorphically. As we must review the theory of Kahler—Ricci
soliton (in section 3.2) before explaining this unfamiliar moduli stack, here
we do not explain the detail and postpone the precise description/definition
until section 3.2 and Definition 3.4.1. The author hopes that Appendix in
this chapter helps the readers unfamiliar to stacks to grasp some fundamen-
tal generalities on stacks over the category of complex spaces. Example 3.5.4
explains that this formulation of the moduli stack is essential and the rea-
son why the usual stack does not serve our purpose. The readers will see
in Remark 3.2.8 that the change of our moduli stacks does not affect the
sets of what we intend to parametrize (X or (X,¢’)) and these are naturally
identified to each other (only) as sets.
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Chapter 3

The moduli space of Fano
manifolds with KRs

We construct a canonical Hausdorff complex analytic moduli space of Fano
manifolds with Kéhler—Ricci solitons. This enlarges the moduli space of Fano
manifolds with Kahler—Einstein metrics. We discover a moment map picture
for Kéhler—Ricci solitons, and give complex analytic charts on the topological
space consisting of Kahler—Ricci solitons, by studying differential geometric
aspects of this moment map. Some stacky words and arguments on Gromov—
Hausdorff convergence help to glue them together in the holomorphic manner.
The content corresponds to the paper [Inol].

3.1 Introduction

Let KReu(n) be the set of biholomorphism classes of n-dimensional Fano
manifolds admitting Kéhler-Ricci solitons. We can endow KRgp(n) with
a natural topology induced by the ‘complexified” Gromov—Hausdorff conver-
gence (cf. [PSS]). Note that the set Ko gm(n) of biholomorphism classes
of n-dimensional Fano manifolds admitting Kahler-Einstein metrics forms a
clopen subset of KRgy(n). Our main theorem is the following.

Theorem H (Theorem 3.4.8 + Proposition 3.4.11). The Hausdorff topo-
logical space KRgy(n) admits a natural complex analytic structure which
is uniquely characterized by the following universal property of a natu-
ral morphism KC(n) — KRgu(n) from the moduli stack: any morphism
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K(n) — B to any complex space B holomorphically and uniquely factors
through KRau(n).

In contrast to the current known construction ([Oda2, Oda3, LWX1])
of the moduli space of Fano manifolds with Kahler-Einstein metrics, our
method for construction actually does not depend on the result in [DaSz|,
where they proved modified K-polystable Fano manifolds admit Kahler—Ricci
solitons. Although, as some of the readers might prefer algebro-geometric
formulation, we formulate things in terms of modified K-stability, which can
be translated into the existence of Kéahler-Ricci solitons via [DaSz].

Our main tool for the construction of complex analytic charts on Ry (n)
is the following moment map.

Key Observation (Proposition 3.3.1 + Proposition 3.3.2). Let (M,w) be a
2n-dimensional C'*°-symplectic manifold underlying a Fano manifold with a
Hamiltonian action of a closed real torus T'. For any £ € t, there is a moment
map

Se : Jr(M,w) — Lie(Hamz(M, w))”

on the space Jr(M,w) of T-invariant almost complex structures with re-
spect to the modified symplectic structure €2 (see subsection 3.3.1) and the
action of Hamg (M, w). Moreover, integrable complex structures in Sg*(0)
correspond to Kéahler—Ricci solitons.

We firstly construct charts on the quotient space (S;*)~"(0) /Hamy (M, w),
where Sént denotes the restriction of the moment map S, to the subspace
(M, w) C Jr(M,w) consisting of integrable almost complex structures.
The quotient space reveals to be identified with a clopen subspace of CR gy ().
To compare our constructions with [Oda2, Oda3, LWX1]|, we briefly re-
view their methods here. They firstly prove the Zariski openness of the set
of the K-(semi)stable points in any family of Fano manifolds. It follows that
the usual moduli stack is Artin algebraic, so that they can apply the es-
tablished theory of good moduli spaces of Artin algebraic stacks. Secondly
they construct étale local charts on this stack of the form [V/G], where each
V' is an affine scheme and G is a reductive algebraic group. Each quotient
stack [V/G] has the good moduli space V' J G. We can glue them together,
just applying the gluing theory of good moduli spaces developed in [Alp2].
Technically, the proofs of the Zariski openness and the existence of the étale
local charts rely on the argument showing that the set of K-(semi/poly)stable
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points forms a constructible set of the parameter space in the Zariski topol-
ogy. The CM line bundle, whose GIT weight equals to the Donaldson—Futaki
invariant ([PT]), is used to prove the constructibility. (Compare [Don2]| for
another proof of the Zariski openness. )

However, in the case of Kahler—Ricci soliton, as there is no candidate for
the CM-line bundle because of the irrationality of the modified Donaldson—
Futaki invariant, we face a problem with the constructibility. So we will
work with the real topology, in other words, with Artin analytic stacks. We
can still construct local charts on this Artin analytic stack with good moduli
spaces, however, the second nuisance appears when gluing the good moduli
spaces together: there is no well-established theory of good moduli spaces
for Artin analytic stacks so far. (At least to the author, it seems not so
easy to show the uniqueness (universal) property of good moduli spaces of
Artin analytic stacks, if it exists, which is obviously a key property for the
good gluing theory (cf. [Alpl, Alp2]). The lack of nice counterpart of ‘quasi-
coherent sheaves’ on complex analytic spaces seems critical. (cf. [EP-book,
Section 4])

Alternatively, we glue our charts by a ‘cooperation of virtual and real’.
We construct analytic charts not only on the stack /C(n), but also on the
topological spaces (Sg")~"(0)/Hamyq(M,w), which are related in a canon-
ical way. The latter ‘real side’ is studied in section 3.3 and is used to
show that the charts are actually homeomorphisms onto open subsets of
(S)~1(0)/Hamy(M,w). This is not treated in [Oda2, Oda3, LWX1] as
they could apply Alper’s gluing work of good moduli spaces, which works
‘without reality’. The former ‘virtual side’ is studied in section 3.4 and is
used to show that the coordinate changes are holomorphic. Finding holo-
morphic relations between the analytic charts are easier on the stack KC(n)
than on the topological spaces (§"*)~'(0)/Hamp(M,w). These holomorphic
relations of stacks descend to the actual holomorphic relations between the
analytic charts on (S*)~'(0)/Hamy (M, w) thanks to the universality of the
local moduli spaces and the fundamental (2-categorical version of) Yoneda’s
lemma: the natural fully faithful embedding of the category Can of complex
analytic spaces to the 2-category of complex analytic stacks.

Organization

The remainder of this chapter is organized as follows. In section 3.2, we
review some known results on Kahler—Ricci soliton and rearrange K-stability
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notion modified to the soliton setting so that it fits into our moduli problem.
It is explained that the pair (X, ') can be converted into the action X
T, where T is the torus generated by the holomorphic vector field . We
introduce gentle Fano T-manifolds as Fano T-manifolds inseparable from
smooth Fano T-manifolds with Kahler—Ricci solitons, which are expected
to be K-semistable. They form an adequate moduli stack in our moduli
problem. Finally, we propose Proposition 3.2.18, which states the uniqueness
of the central fiber of gentle degenerations. It will be proved after we complete
Proposition 3.4.7, and play an essential role in the proof of Theorem 3.4.8 in
subsection 3.4.2.

In section 3.3, we construct and study an infinite dimensional moment
map S whose integrable zero points correspond to Kahler—Ricci solitons. We
describe that local slices v : B — £ of the moment map actually give charts
v~1(0)/K ~ BK® )| K¢ on the topological space consisting of Kéhler—Ricci
solitons. To achieve this, we need to study Banach completions of Fréchet
manifolds, where we must pay attention to the treatment of the completions
of Hamp (M, w) as they are never Banach Lie groups. We also prove that, in
any family of Fano T-manifolds, the set of gentle Fano T-manifolds forms an
open subset in the parameter space of the family.

In section 3.4, the main theorem is proved. We introduce the stack ICr
of gentle Fano T-manifolds and show that it is an Artin analytic stack. We
prove Proposition 3.2.18 in subsection 3.4.4, using the results in the former
half of subsection 3.4.2. We use this proposition in the proof of the main
theorem. In subsection 3.4.3, we show that our moduli space is related to
the topological space KRgy(n) endowed with the ‘complexified” Gromov—
Hausdorff topology, which is studied in [PSS].

In section 3.5, we review some examples of Fano manifolds with Kahler—
Ricci solitons and propose some future studies. In particular, we find an
iso-trivial degeneration of a Kéhler-Einstein Fano manifold to another Fano
manifold with non-Einstein Kahler—Ricci soliton, which implies that the usual
moduli stack is not sufficiently separated and hence our new formulation of
moduli stacks IC(n) and ICr,, is essential.
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3.2 Kahler—Ricci soliton and K-stability

3.2.1 Kahler—Ricci soliton

A Kahler metric g on a Fano manifold X is called a Kdhler—Ricci soliton if
it satisfies the following equation:

Ric(g) — Leg =g

for some holomorphic vector field £’. The same term sometimes refers the

pair (g,¢').
A fundamental feature of a Ké&hler—Ricci soliton (g,&’) is that it gives an
eternal solution of the normalized Kahler—Ricci flow:

dig(t) = —Ric(g(t)) + g(t).

Namely, for the 1-parameter smooth family ¢; : X = X generated by Re(¢’),
the following holds:

9i(¢rg) = —Ric(¢i9) + ¢ig.
On a Fano manifold admitting K&hler—Ricci soliton, it is shown in [TZ3,
TZZ7, DeSz| that the normalized Kéhler-Ricci flow converges to a Kéhler—

Ricci soliton, starting from any Kéhler metric in 2wcy (M).
It is shown in [Zhu| that there is a solution g of the equation

Ric(g) — Lerg = go

for any initial Kahler metric go. Let us consider the following smooth conti-
nuity path for Kahler—Ricci soliton:

Ric(gt) — Lerge = tge + (1 = t)go. (3.1)
One can prove that
Re/(X) :=sup{t € [0,1] | a solution g; of (3.1) exists. }
is independent of the choice of the initial metrics gy and has the equality
Re(X) =sup{t € [0,1] | 3¢ s.t. Ric(g) — Lgg > tg}. (3.2)

The proof of this equality is in [Szé3] for ' = 0 and in Kazuma Hashimoto’s
master thesis [Has] for the general case (¢’ # 0). A related invariant is also

mentioned in [DGSW].
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Remark 3.2.1. Kazuma Hashimoto was a master student of University of
Tokyo supervised by Prof. Akito Futaki. He did not proceed to doctoral
course and quit his research position. The proof of the equality (2) in his
thesis is an analogy of [Szé3], using the functionals M, := p, originally
defined in [TZ2] and the following J, ¢ instead of M, 7, in [Szé3]:

1 . /
Me(9) =~ / dt / Ou(s(96,) = n = t1(, ) + € (hg,, — 0h(00)) )Wt
o
Tucl6)i= [ at [ Giltn, 0= n+ o),

where ¢, is a function with a — w = v/—100¢,.

The uniqueness and the existence results analogous to those of the Kahler—
Einstein metrics [BM, CDS, Tian2] (and ) hold also for Kahler—Ricci solitons.

Theorem 3.2.2 (Uniqueness, [TZ1, TZ2] (and [BW] for Q-Fano variety
with ¢t = 1)). If (¢1,&}) and (g2, &) are two Kéhler—Ricci solitons on a Fano
manifold X, then there is an element ¢ € Aut®(X) such that

g2 = gb*gla gé = gb;lgi?

where Aut’(X) is the identity component of the group Aut(X) of biholo-
morphisms of X. Moreover, a solution g; of the equation (3.1) is absolutely
unique for any initial metric go and ¢ € [0, 1).

Theorem 3.2.3 (Existence, [DaSz, CSW]). Rg(X) = 1 for any K-semistable
pair (X,¢). If in addition (X, ¢’) is K-polystable, there is a Kéhler—Ricci
soliton on X with respect to £’

We will see the definition of the K-stability of pairs (X,¢’) in the next
subsection. The above claim on K-semistability is also covered in [C. Li] for
the Kéhler—Einstein case, using [CDS, Tian2]. The opposite implication for
K-polystablity is proved in [Ber, BW] including the Q-Fano case as follows.

Theorem 3.2.4 ([Ber, BW]). Let X be a Q-Fano variety. If X admits a
Kahler—Ricci soliton (g,&’), then (X, ') is K-polystable.

In the Kéhler-Einstein case (i.e. & = 0), [Der, C. Li] shows that X is
K-semistable if R(X) = 1. So we can summarize as follows.
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e X is K-polystable <= X admits a Kahler—Einstein metric.

e X is K-semistable <= R(X) = 1.

Only the implication from the right to the left-hand side of the second item
is still open for general (X, ¢’).

There is a version of Futaki invariant suitable for Kahler—Ricci soliton
defined in [TZ2]. Let H°(X,Ox) denote the space of holomorphic vector
fields on X. Define a linear map Fute : H°(X,0x) — C by

Fute (v') == / V' (h — e )’ w™,
X

where w € 2mc; (M) is a Kéhler form, h is a real valued function satisfying
v —100h = Ric(w) —w and 6 is a complex-valued function characterized by

Lg/w =\ —18695/
fX elewn = fX w".

The function f¢ becomes real-valued when £ := Im¢’ is a Killing vector. This
linear function is independent of the choice of w, so it gives an invariant de-
pending only on X and &', which is now called the modified Futaki invariant.
This invariant obviously vanishes when X admits a Kahler—Ricci soliton with
respect to the vector field &'.

The following is a crucial fact in order to properly formulate our moduli
problem.

Proposition 3.2.5 ([TZ2]). Let X be a Fano manifold, which does not
necessarily have a Kéhler—Ricci soliton, and K C Aut(X) be a compact
subgroup. Then there is a unique holomorphic vector field ¢ with Im(¢') €
Lie(K) such that

Flltg(?}/) =0, Vo' € Lie(KC),
where K¢ C Aut(X) is the complexification of the group K.

Remark 3.2.6. In general, a reductive algebraic group K¢ does not uniquely
determine its maximal compact subgroup K, but only up to conjugate. When
K¢ is an algebraic torus, which is isomorphic to (C*)¥, its maximal compact
subgroup (U(1))* is uniquely determined. This fact allows us to get away
from a formulation relying on structures over the field R as we see in the next
subsection and to formulate things over even a field of positive characteristic,
which should be preferred by algebraic geometers.
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The total biholomorphism group of a Fano manifold X admitting a Kahler—
Ricci soliton (g,&’) is not necessarily reductive. Instead, we have the follow-
ing.

Theorem 3.2.7 ([TZ2] ([BW] for the Q-Fano case)). Suppose a Q-Fano va-
riety X has a Kihler-Ricci soliton (g,&’), then the subgroup Aut®(X,¢’) C
Aut’(X) consisting of ¢’-preserving biholomorphisms is a maximal reductive
subgroup of Aut’(X). Moreover, the complexification of the identity compo-
nent Isom’(X, ¢’) of the group of isometries preserving &’ coincides with the

group Aut’(X, ¢").

Remark 3.2.8. The reductivity of the automorphism groups of geometric
structures of which we intend to construct a geometric moduli space, is crucial
if one expect to apply local or global GIT to its construction and indeed
indispensable in the doctrine of Alper’s good moduli space (cf. [Alpl, Alp2]).

The uniqueness of Kahler—Ricci soliton implies that the set consisting of
the isomorphism classes of the pairs (X, ¢’) with Kéahler—Ricci solitons can
be naturally identified with the set consisting of the biholomorphism classes
of Fano manifolds X with Kahler-Ricci solitons. So there is no change in
the support sets of ‘the moduli spaces’ of the following two moduli stacks:
one is the usual moduli stack associated with Fano manifolds X admitting
Kahler—Ricci solitons, and the other is the moduli stack associated with Fano
pairs (X, ¢’) admitting Kahler—Ricci solitons.

However, there are nice geometric features in the latter stack compared to
the former stack, such as the separation property and the reductivity of the
stabilizer groups at K-polystable points, which is appropriate for the local
GIT construction of the good moduli space.

So we will work with the latter stack, and precisely define it in sub-
section 3.4.1, replacing the pairs (X, ¢’) with the Tg-action on X. This may
change the topology of the moduli space, but it turns out that the latter stack
is correct with regard to the ‘complexified” Gromov—Hausdorff convergence
considered in [PSS].

3.2.2 K-stability

Here we review the definition of K-stability and formulate it as the stability
notion of a Fano manifold with an algebraic torus action. This enables us
to introduce an adequate notion of ‘deformations of Fano manifolds with
Kéhler—Ricci solitons’ and leads us to the proper definition of the stack IC(n).
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Recall that a Q-Fano variety X is a reduced irreducible normal complex
space X with the following property: there is a positive integer ¢ such that
the sheaf i, ((det © xree)®), which is denoted by O(—¢Kx), is isomorphic to
the sheaf of sections of an ample line bundle on X, and X has only log
terminal singularities (see [EGZ]). The minimum ¢ satisfying this property
is called the Q-Gorenstein index of X. Obviously, Q-Fano varieties can be
embedded into some CPY, hence they are also considered as schemes, but
we treat them in the category of complex spaces.

A Q-Fano T-variety is a Q-Fano variety X with a holomorphic action
a: X xT — X, where we only consider an algebraic torus 7' = (C*)*. When
X has no singularities, we call it Fano T-manifold. We denote by Auty(X)
the centralizer of ' C Aut(X):

Auty(X) :={g € Aut(X) | gt = tg for Vt € T'}.

Let T" be an algebraic torus. We denote the character lattice of 17" by
M := Hom(7T,C*) and its dual (1-psg) lattice by N := Hom(C*,T"). Let X
be a Q-Fano T-variety. Its T-action canonically lifts to the sheaf O(—m/{Kx)
and hence there is an action of 7" on the cohomologies of O(—m/¢Kx). For a
character uv € M, put

HY(X,0(—mlKx)) :={oc € H'(X,0(—mlKx)) | t.o =u(t)o ¥t € T}
and set

R (m) = dim H'(X, O(—mfKx)),
Wy o(m) := dim H} (X, O(—mlKx)).

We adopt the following pure algebraic definition of modified Futaki in-
variant exhibited in [BW], which is shown to coincide with Fute in the pre-
vious section, up to a uniform positive factor. Note that the modified Futaki
invariant for special degenerations is firstly introduced in [Xio] and reformu-
lated in [WZZ]. (The author thanks the referees for telling the author these
important references. )

Definition 3.2.9 (modified algebraic Futaki invariant). For a Q-Fano T-
variety X and an element £ € Ng, we define the modified (sometimes we
omit this word in our T-equivariant setup) algebraic Futaki invariant Fx ¢ :

N — R by

Fye(\) = — lim 2xemid)

mevoe bl (m)
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where
wx,e(m; A) Ze“f/mho m)(u, A).

ueM

We define the Hilbert character x : Z — Z[M] of a Fano T-manifold X
by

dim X
Xm = Y (=)' b, (m)u € Z[M]. (3.3)
=0 ueM

We call a function x : Z — Z[M] a Fano character if there exists a Fano
T-manifold whose Hilbert character given in (3.3) is the given .

Proposition 3.2.10 ([TZ2]). For every Fano T-manifold X, there exists
a unique vector & € N such that the modified algebraic Futaki invariant
Fx ¢(X) in the above sense vanishes on the 1-psg lattice N of T' (equivalently,
the modified Futaki invariant Fute |, restricted to the Lie algebra t of T'
vanishes). We call this vector £ the K-optimal vector of (X, T).

Obviously from the definition of the modified algebraic Futaki invariant,
the K-optimal vector £ of a Fano T-manifold X depends only on the Hilbert
character (T, x). So it also makes sense to say that £ € Ny is the K-optimal
vector of a Fano character (7, x), which is a T-equivariant deformation in-
variant.

Proposition 3.2.11 ([TZ2]). If a Fano manifold X has a Kéhler—Ricci soli-
ton (g,&’), then the & is the K-optimal vector with respect to any algebraic
torus containing the algebraic torus generated by £'. (Note that the closure
of the exponential of the imaginary part of the holomorphic vector £ asso-
ciated to soliton gives a closed real torus, and the algebraic torus generated
by & is just the complexification of this closed real torus. )

We define the K-optimality of Fano character (and in particular the K-
optimality of a Fano T-manifold), not of vector, as follows.

Definition 3.2.12 (K-optimal character). We call a Fano character (7))
K-optimal if there is no proper sub-lattice N ¢ N with £ € Ng for the
K-optimal vector £ € Ng of (T}, x).

For a Fano manifold X, we call an algebraic action of an algebraic torus
T on X is K-optimal if it is maximal (as actions on X) among all K-optimal
characters (7', ) obtained from T-actions on X.
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Remark 3.2.13. It is possible that both characters (17, x1) C (Ts,x2) are
K-optimal, where y; are related by the projection Z[Ms] — Z[M,]. Not only
that, there is an example of a Fano manifold X; with a Kéahler—Einstein
metric (g1,&; = 0) admitting a deformation to a Fano manifold X, with a
Kéhler—Ricci soliton (go, &) (Example 3.5.4), which shows that both actions
X1 AT =0and Xo n Ty =T(&) # 0 are K-optimal with (73, xx,) C
(T2, xx,). This example illustrates that the torus equivariant formulation
is essential for the separation of the moduli space of Fano manifolds with
Kahler—Ricci solitons.

For a fixed Fano manifold X, K-optimal action 7' C Aut(X) is unique up
to adjoint thanks to the uniqueness in Proposition 3.2.5.

Let X be a Q-Fano T-variety. A pair (7 : X — C,#) consisting of the
following data is called a special degeneration of X.

1. X is a normal complex space with an action of 7' x C* and 7 : X — C
is a T' x C*-equivariant proper flat Q-Gorenstein surjective morphism
whose central fiber X is a Q-Fano variety, where T' x C* acts on C by
z.(t,s) = sz.

2. 0 is a T x C*-equivariant isomorphism 6 : X x C* = 7~ 1(C*).

We also assume that there is a holomorphic line bundle £ on X with an
isomorphism 6*L|-1c+) = piO(—¢Kx) for some ¢. It is shown in [Ber,
Lemma 2.2] that if such £ exists, then —¢Ky becomes Q-Cartier and the
tensor bundle £%™ is actually isomorphic to O(—mlKx,c) for some m. So
we exclude the datum £ from the data of special degeneration.

Definition 3.2.14 (K-stability). Let £ € Ng be the K-optimal vector of
a Q-Fano T-variety X. Denote the vector (£,0) € (N x Z)g by the same
symbol . We call the Q-Fano T-variety X

o K-semistable if for any special degeneration (7 : X — C,0) of X, the
modified algebraic Futaki invariant Fx ¢(m,6) := Fx,¢(\) of the central
fiber X; is nonnegative, where X is the one parameter subgroup defined
by \:C* =T x C*:s+— (1,s).

o K-polystable if X is K-semistable and Fx¢(m,0) = 0 if and only if
there exists a one parameter subgroup A : C* — Auty(X) such that
O(xA(t)~1, t) extends to an isomorphism of the total space X x C = X.
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e K-stable if the Fano T-variety X is K-polystable and Auti.(X) =T.

Remark 3.2.15. A pair (X, ¢’) of a Q-Fano variety X and a holomorphic vec-
tor field ¢’ is called K-(semi/poly)stable if £ := Im¢" generates a closed real
torus Tg and (X, T') is K-(semi/poly)stable where T" denotes the complexifi-
cation of the closed real torus Tk. In this case, the vector £ € Lie(Tg) = Ng
is of course K-optimal.

We call X modified K-(semi/poly)stable if there exists a torus action
X T which makes X K-(semi/poly)stable with respect to the action.

Remark 3.2.16. Note that a K-(semi/poly)stable Fano T-manifold is not nec-
essarily a K-(semi/poly)stable Fano manifold (with respect to the trivial
torus action), but only a modified K-(semi/poly)stable Fano manifold. How-
ever, suppose X is a Fano T-manifold, 7 C T is a sub-torus and the K-
optimal vector §~ with respect to the T-action coincides with the K-optimal
vector € with respect to the T-action (i.e. ¢ € Lie(T)), then the Fano T-
manifold X is K-(semi/poly)stable if and only if the Fano T-manifold X is.
This is proved in [DaSz] and recently proved by purely algebraic method in
(7, LWX3] for the KE case (¢ = 0,7 = 0).

We introduce a gentle Fano T-manifold as a Fano T-manifold inseparable
from a smooth Fano T-manifold admitting Kéhler-Ricci soliton.

Definition 3.2.17 (gentle Fano). A Fano T-manifold X is called gentle if
there is a T-equivariant deformation X — A with an isomorphism X |p« =
X x A* such that its central fiber Ay is a smooth K-polystable Fano T-
manifold. We call X — A a gentle degeneration.

From GIT viewpoint, it is naturally expected that any gentle Fano T-
manifold is K-semistable. In this section, we do not pursue this expectation
as it is not essential for the construction of our moduli space, while their
K-semistability might be philosophically important. (This turns out to be
true in the next section. ) Note that we always have Rg (X ) = 1 for a gentle
Fano T-manifold X with the K-optimal vector £, thanks to the equality (3.2).
This fact helps us to prove the following proposition.

Proposition 3.2.18. Let X be a gentle Fano T-manifold whose torus action
is K-optimal. Then any two gentle degenerations of X have the T-equivariant
biholomorphic central fibers.
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The proposition will be proved at the end of section 3.4, using Proposition
3.4.7 and a version of Donaldson-Sun’s technology on Gromov-Hausdorff
limit, and will be applied to the proof of Theorem 3.4.8. The logical order of
our argument is “Proposition 3.4.7 = Proposition 3.2.18 = Theorem 3.4.8”.
It seems also possible to show this proposition without using a finiteness from
Proposition 3.4.7 as in [LWX1]. However, the author thinks the finiteness
simplifies our argument.

3.3 Local charts

We call a closed C*°-symplectic manifold (M,w) symplectic Fano if its co-
homology class [w] is equal to 27 times the first Chern class ¢;(M,w) and
there exists an w-compatible almost complex structure J with positive Ricci
curvature. Note that we have b'(M) = 0 from familiar Bochner’s theorem or
Myers’ theorem as we have a metric with Ric > 0. Throughout this section,
T stands for a closed real torus and (M,w) for a symplectic Fano manifold
with a Hamiltonian effective action by 7.

We denote by Symp(M,w) the group of symplectic diffeomorphisms and
Ham"(M, w) its subgroup generated by Hamiltonian diffeomorphisms. Thanks
to Banyaga’s theorem, in the case b*(M) = 0, Ham’(M, w) actually coincides
with Symp® (M, w), the identity connected component of Symp(M,w). (Even
though it is easy to see that both groups have a natural Fréchet Lie group
structures and their Lie algebras coincide, the coincidence at the level of
Fréchet Lie group is not trivial because the Fréchet Lie group structures are
not locally exponential. See [Neeb] for the generalities on Fréchet Lie groups.
) We must work with the group Symp(M, w) (resp. Symp,(M,w)) so that the
complexification of the stabilizer group of cscK structure J € J(M,w) (resp.
K&hler-Ricci soliton structure J € Jr(M,w)) coincides with the biholo-
morphism group Aut(M, J) of (M, J) (resp. Autyp(M,J)), not only it just
includes the identity component Aut’(M,.J) (resp. Aut.(M,J)). Keeping
Banyaga’s theorem in our mind, we prefer using the notation Ham(M,w) :=
Symp(M,w), which is not necessarily connected, as we always identify its Lie
algebra with C'*(M)/R.

We consider the space Jr(M,w) of T-invariant w-compatible almost com-
plex structures and denote by Ji"(M,w) the subspace of integrable complex
structures. It is well known that Jr(M,w) admits a natural Fréchet smooth
manifold structure, which is identified with the space of T-equivariant sec-
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tions of an associated Sp(2n)/U(n)-fibre bundle (see [Pal| for instance). The
tangent space at J € Jr(M,w) can be written as follows.

Ty Jr(M,w) = {A € T¥(EndTM) | AJ + JA=0,w(A-,-) +w(-, A) = 0}.

Similarly, the group Hamy (M, w) of T-compatible symplectic diffeomor-
phisms can be endowed with a Fréchet smooth Lie group structure, whose
Lie algebra can be identified with C2°(M)/R. The left adjoint action is given
by

Hamy (M, w) x CF(M)/R = CF(M)/R: (¢, f) = fog™".

The following right action
Jr(M,w) x Hamp(M,w) — Jr(M,w) : (J,¢) — ¢*J
is also smooth and its derivative is given by
Cr(M)/R = TyJr(M,w) : f+— Lx,J,

where X is the Hamiltonian vector field of f: —df = i(Xy)w.

3.3.1 The moment map

For a given £ € t = Lie(T'), we let p¢ be a real valued function on M given
by
—d/ig = igw

with the prescribed normalization

/ pee” W™ = 0.
M

This function is invariant under the action of Hamy (M, w).
Set 0¢ := —2u,. For each J € Jp(M,w),

& =JE+ V-1 e Xl’O(M, J)
satisfies

V=100 = V=1(d(—2p¢) + V—=1Jd(—2p¢)) /2 = g w.
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We consider the following Riemannian metric on Jr(M,w), modified by
¢ from the usual one ([Donl]), defined as

(A, B)g = /A4gf]]gJ7klAfB; e—2,u§wn
for tangent vectors A, B € T;Jr(M,w) and set

Qg(A, B) = (JA, B)g

It is easy to see that ()¢ defines a non-degenerate closed 2-form on Jr (M, w).
We also consider

(f,9)e :Z/Mfg e e

for f,g € C°(M), which defines an inner product on the subspace
F(Mw)i= {f € CFOM) | [ f e —0p= CFON)/R
M

Finally, we denote by s(J) the Hermitian scalar curvature of J, defined
by Donaldson [Donl]. We normalize s(.J) by a factor so that it is equal to the

Kahler scalar curvature —g?@ 7:0,;(logdet g;) for any integrable J, which is
the half of the Riemannian scalar curvature. We denote by A, the usual
Riemannian Laplacian with positive eigenvalue, which is the twice of the O-
Laplacian [0; = —gf,jﬁ 7075 when J is integrable. Here is the moment map
for our modified symplectic structure 2.

Proposition 3.3.1. Fix £, ( € t. For each J € Jr(M,w), we consider the
modified Hermitian scalar curvature defined as

sec(J) = (s(J) —n) + Ag,0¢ — 50 — O — O,
where 6 is normalized as [, 0c.e’w™ = 0. Then the map

Séyg : jT(M, CU) — C%}(M,w)v S = (48574, ')g

satisfies the property of the moment map with respect to the symplectic
structure ¢ and the action of Hamy (M, w) on Jr(M,w). That is, S¢ is a
Hamy (M, w)-equivariant smooth map satisfying
d .
~ ], (Sec (), f) = Qe(Lx, o, o)

for any smooth curve J; € Jr(M,w) and f € C>*(M).
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Proof. The equivariance of the map readily follows because the coadjoint
right action is given by (s, )¢ - ¢ = (¢"s, )¢ and pg and pg: are Hamp (M, w)-
invariant.

The modified Hermitian scalar curvature can be divided in two parts as
follows.

d d
- 4 = — 4 —2pe, \n
dt t:O( secli) e /M dtli=o sec(Je) f e ew
N / L1 gs(g) feme wn— 2 / ((—4A; +4E)0¢) f e 2Hewr
a dt =0 dtli=o J t
_ 4 —2pe _ d / _ —2pg  )n
Cdt t:o(4S<Jt)’f€ ) dtli—o M((8At 8Jel)pe) f e Hew

(3.4)

Now we use the following Donaldson’s famous calculation [Donl] on the Her-
mitian scalar curvature with respect to the usual symplectic structure:

d
7, 4s(h), ) = (Lx,J, JA)

for A = Jy. The factor 4 comes from our convention of the metric (-, -)¢ (com-
pare [Szé1, Proposition 2.2.1.]). Combined with the following basic identities:
(a) Xpg = fXy+9Xs, (b) LyxJ = fLxJ - Jdf @ X +df ® JX, (¢) L¢J =0,
the first term of (3.4) can be arranged as follows.

d _
I (4S<Jt)7 f€ 2“6) = (LXfexp(fz,%)‘L JA)

dt lt=0

= (Lexp(72,u£)Xf J, JA) + (_2)(L(fexp(*2ﬂg))£‘]> JA)
= (e Ly, J — Jd(e™2) ® Xj + d(e™2) ® JX;, JA)

+ (=2)((fe ) LeJ — Jd(fe ) @ € + d(fe ) @ JE, JA)
= (Lx,J, JA)¢

— (=2)(Jdpe @ X5, JA)e + (=2)(dpe @ J Xy, JA)e

— (=2)(Jdf ® §, JA)e + (=2)(df ® JE, JA)¢
—4(fJdpe @ §, JA)e + A(fdpe @ JE, JA)e.
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Now it suffices to show the following equalities.

D (At (<2 B)e, e = (Jdpe © X, TA);

dt lt=0
= —(dpe ® J Xy, JA)¢
= (Jdf ® £, JA)¢
= —(df ® J&, JA);

and

—(Ji&)pe, e = (fIdpe @, JA)e
— (fdue ® JE, JA):.

il

As for (3.5),
(Jdue @ Xp, JA)e = | g7 gu(Jdpe @ X;)(JA); e 0™
(Jdpe @ Xp)F(JA)), e Hew”

— e p (i) A} e

I
S

N / — e p 0P AL € e
M

=2l [ st dp e
dt t=0 J pr t &

_ %LO((At + (=2) 1) e, fe-

We obtain (3.9) as follows.
(fJdpe &, JA)e = /M 9" gu(Jdue ® €)F(JA); fe Hew”
= [ Udnew o), fe e
[ —retst g
M

d
= 2| (U, N
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We can similarly compute the rest of them, using the following basic
formulas: Let A be an endomorphism of the tangent bundle T'M satisfying
JA+ AJ =0 and w(AX,Y) = w(AY, X). On a local coordinate, we denote
by w" the matrix valued function satisfying w*w;; = 6% and by ¢" that
satisfying ¢*g;; = 6%. Then we have the following.

A. (a) wiy = —wji, (b) Jz‘jJJk = _511'97 (©) gij = gji-

)
() wij = gpJi = —gipJ}, (b) gij = wigJ] = —wg;Jj.
(a) Wwki — _gq]Jk _ gquJ _wjk’ (b) gkj - ij(];f - _wkpjg - gjk‘
(a) wwiy = ww;i = oF, (b) g gi; = g’ g;i = oF.
fi = —Xjwij = XigpiJ] = =X} ! gp;.-
Xf=—fwh = fig9J5 = —f; 19",
(a) (JA)F = JyAY = —JP AL, (D) wig AF = wii AT
97 gu(JA); = (JA)j.

T Q2 =3 =8 U aw

]

Now we observe that our moment map actually corresponds to Kahler—
Ricci solitons.

Proposition 3.3.2. For simplicity, we let s¢, S¢ stand for s¢ o, Se o, respec-
tively. The following (1)-(3) are equivalent for any integrable J € J (M, w).

1. (gs,¢)) is a Kéhler—Ricci soliton on (M, J).
2. Sé‘(J) = 0.
3. Se(J) =

Proof. Provided that g; satisfies the Kahler—Ricci soliton equation Ric(gy) —
Le¢gs = gg. The trace of this formula gives

s(J) + 00 = n. (3.11)
Since £} is holomorphic, the Lie derivative by &', can be arranged as follows.
V—190(00: — £,0,) = /1000,
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and hence 00 — £;0; — 0 is constant. Recall that the operator (J — &) is a
formally self-adjoint elliptic operator with respect to the inner product (-, -)9g
(see for example [Fut-book, Section 2.4], it is also shown in our Appendix
B). Tt follows that the equation (O — &%)u = f has a solution w if and only if
[oy fePew™ = 0. This shows

06 — &0 = 6, (3.12)

under the normalization condition [, fcePw™ = 0. Substituting (3.12), the
equation (3.11) can be reformulated as

(s(J) —n) + 206 — (£50¢ + 6¢) = 0.

The left hand side of the equation is nothing but s¢(J), and we obtain s¢(J) =
0.

Conversely, assume S¢(J) = 0. Take a function h so that /—199h =
Ric(w)—w. Since Lgw = /1000, it is enough to show that h—0 is actually
constant. Similarly as before, the Lie derivative of v/—109h = Ric(w) — w
gives ~ o

V—=100&h = V/—100(00¢ — 6;)
and hence -
C1 = D@g - 95 - ff]h

is constant. We can rearrange the modified Hermitian scalar curvature as

Sg(J) = —?h + 2?‘9& — 5395 — 957
=-—-0h + 2D9§ — 6}95 — (Deg — ff]h — Cl)
= —E(h — 95) + g&(h — 95) + c1. (3.13)

Now the assumption S¢(J) = 0 implies that ¢y := s¢(J) is a constant. Since

(O=¢&))(h—0¢),1)s, = 0, the constant ¢; — c; = (O — &) (h — b¢) has to be
zero and we have shown that h — 6 is constant. O

Remark 3.3.3. As noted in [Donl] for the cscK (or Kéhler—Einstein) case, our
moment map picture enables us to interpret or even reproduce the following

known results from more geometric viewpoint, which were originally proved
in [TZ2]. (See also [Wangl]. )

e The invariance of the modified Futaki invariant.
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e The reductiveness of Aut(X,¢’). (cf. [FOJ)
e The uniqueness of Kahler—Ricci soliton. (cf. [BB])

For instance, substituting (3.13), we obtain

(Sl f) = [ sels et
= [ O -0+ s
- /M@(h —0¢),0f) e"w"

_ _4/ XY(h — B) "
M

= —4CFut£/ (X})

for X} € Lie(Stab(.J)), where ¢ = [e%w"/ [w" is independent of .J. Its
invariance can be interpreted as coming from a general fact on moment maps:
for any x € M and v € Lie(K¢), (u(zg), g~ 'v) is invariant for g € K¢, where
w: M — £ is a moment map.

Proposition 3.3.1 in particular shows that Fute|, is invariant under 7-
equivariant complex deformation: it only depends on the T-equivariant sym-
plectic structure.

We call a symplectic Fano T-manifold (M, w, T') K-optimal if there is a T-
invariant w-compatible integrable complex structure Jy (in this case, (M, Jy)
is a Fano manifold) and whose Hilbert character (1¢, x(M, Jo)) is K-optimal.
Its Hilbert character y,,, seen as a (real analytic) function t — R by £ —
>t Yowent Py u(m)(u, &), can be computed by the equivariant Hirzebruch-
Riemann—Roch formula ([Mei]):

m@aém&mmmmwwm>

near £ = 0. Here the equivariant Chern character Chy(—K), ) and Todd
character Td((M,w,-) is defined as the equivariant cohomology classes of the
following T-equivariant forms, which is independent of the choice of J €
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Jr(M,w):

Chi(—Kmw);*) = O Filer) = et

L F(gs,) )

1 — o= 5 Filas)

Td(M,w, ") := det (

where Td(M,w,§) is defined near £ = 0. Here the equivariant curvature
Fi(gs,€) is given by

Fi(gs.€) == Fy, + 2mv/—1(Le — V).

Although we firstly use the integrable complex structure .Jy to define
the Hilbert character, its Hilbert character can be computed by the T-
equivariant characteristic classes associated to the symplectic T-manifold
(M,w,T), which makes sense at least near £ = 0 even when there is no
T-invariant integrable complex structures. In particular, the Fano character
(Te, x(M, J)) is independent of the choice of integrable J € Jr(M,w) (in
other words, it is well-defined for (M,w,T')) and is K-optimal for every J
if (M,w,T) is K-optimal (i.e. if (T¢,x(M, Jy)) is K-optimal for some Jy).
Beware that even when (M,w,T) is K-optimal and the action (M, Jy) v\ T
is K-optimal for some Jy, the action (M, J) v~ T might be not K-optimal for
other integrable complex structure J € Jp(M,w) as the action might be not
maximal among actions with K-optimal characters.

We denote by S the restriction of the moment map S : Jr(M,w) —
C% (M, w)* to the subspace J7*(M,w), which consists of integrable complex
structures.

Proposition 3.3.4. Assume the action of 7" on (M,w) is K-optimal. Then
the following two statements are equivalent for any integrable J, .J" € (S)~1(0).

1. There is a T-equivariant C'*°-diffeomorphism ¢ : M = M such that
J=o¢*J.

2. [J]=1[J] € (8)71(0)/Hamp (M, w).

Proof. 1t follows from the uniqueness of Kéahler—Ricci soliton and Auty(X) =
Aut(X, €) from the K-optimal action. O

Remark 3.3.5. The above proposition would hold without K-optimal assump-
tion. To see this, it suffices to prove the following uniqueness claim.
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Claim: If g1, g0 are two T-invariant Kahler—Ricci solitons on a Fano T'-
manifold X (in this case, we have the same soliton vectors & = & € t), then
there is an element ¢ € Auty.(X) such that g, = ¢*g;.

In general, it seems not so easy to verify the K-optimality of a given torus
action on a Fano manifold, especially when the dimension of the center of
its maximal reductive subgroup is greater than one. From this point, it may
be better to consider non K-optimal actions for studying explicit description
of the moduli space of Fano manifolds with Kéahler—Ricci solitons in some
special cases. Indeed, for instance, the claim holds at least for a maximal
torus, as the Weyl group N7 /T can be represented by the elements of any
maximal compact K including the maximal compact torus Tg C T

It follows that the quotient (S)~'(0)/Hamyp(M,w) can be identified
with the set of biholomorphism classes of Fano manifolds admitting Kahler—
Ricci solitons with the fixed underlying symplectic structure (M, w), as sets.
Therefore, this quotient space must be the support set of our moduli space.
The quotient topology on this set is Hausdorff (cf. [FS1]). We exhibit the
proof for the readers’ convenience.

Proposition 3.3.6. The action of Hamy(M,w) on Jr(M,w) is proper. In
particular, the quotient topological space (S)~'(0)/Hamy(M,w) is Haus-
dorff.

Proof. We must show that the map
a: jT(Ma CU) X HamT(Ma W) - jT(Ma w) X jT(Ma CU) : (Ja ¢) = (‘]7 ¢*J)

is proper. Take a sequence (J,,, ¢,,) so that J,,, ¢* J, converge to some J, J. €
Jr(M,w) in the given order. It suffices to show that a subsequence of ¢,
converges to some ¢, € Hamyp(M,w) satisfying ¢% Joo = J,. Let goo, g5
denote the Riemannian metrics associated to J, J., respectively.

Let us take a dense countable subset S of M. The diagonal argument
shows that we have a subsequence of ¢,, so that ¢, (z) converges for any x € S.
We continue to write ¢,, for this subsequence. We obtain a distance preserv-
ing map ¢so : (S, dg_|s) = (M,dy. ) by putting ¢gc() = limy e ().
Then this map can be uniquely extended to a distance preserving map
boo : (M, dg_) — (M,d,.. ). Similarly we obtain a distance preserving map
Voo 1 (M,dy.) — (M,dg_) as a limit of ¢, '. It follows from [BBI-book,
Theorem 1.6.14] that the distance preserving endomorphism ¢, © 14 is sur-
jective, and we conclude ¢, is a continuous bijective map.
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Thanks to Myers-Steenrod theorem, we see that ¢ is a C'**°-diffeomorphism
with ¢} geo = gl Moreover, since g, = gn,ijdz'dx’, ¢}, gn = gnpg(ddn) (dpn)]dr'da?
respectively converge to goo, ¢4 goo i C>°-topology, we see the C'*°-convergence
of the coefficients (d¢y,); (dé,)] to (dps); (ddso)] with respect to a fixed C>-

coordinate. In particular, we have

(O6(ddn)?) (d8n)} > (Ou(duc)]) (ddsc)! (3.14)
and (d¢,)! = +/((dé,)Y)? convereges to (dds)? in C%-topology. It follows

from (3.14) that the C*-convergence of d¢, induces the C**l-convergence
of them. This shows that ¢, converges to ¢, € Hamp(M,w) in the C-
topology and ¢’ J,, = J._. O

3.3.2 Local slice

The materials in this subsection are parallel to [Szé2]|, where the cscK case
is treated.

Let X be a Fano T-manifold with a K&hler—Ricci soliton (g,&’), ¢ :
(M, Jy) = X be a biholomorphism, where M is a C*°-manifold and J; is a
complex structure on M. Put w := (¢*g)(Jo-, ), K := {h € Ham(M,w) | h*Jy =
Jo}, which is a compact Lie group, and £ := {f € C¥(M) | Lx,Jo =
0, fM fe%swm = 0}, which can be identified with the Lie algebra of K. Con-
sider the following L2-completion of the moment map in the last subsection

Sf : jT(Maw>i — Li—2,T(M7w)v'

We denote by © the holomorphic tangent sheaf of X and by H%(X,0) the
T-invariant subspace of the i-th cohomology H'(X,©). Note that we have
HY(X,0) = 0 for every ¢ > 2 and a smooth Fano manifold X, thanks to
Serre duality and Kodaira vanishing.

Proposition 3.3.7. There are an open ball B C H}(X,©) centered at the
origin, a K-equivariant holomorphic deformation w : X — B of X with
a holomorphic morphism ¢ : X — A} inducing a biholomorphism to the
central fiber, a K-equivariant C*°-smooth map J : B — Jr(M,w)? and a
Tr-equivariant L2-regular diffeomorphism ® : Bx M = X with the following
properties.

1. The holomorphic family X <& X = (B,0) is a semi-universal family
of X.
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2. For each b € B, J(b) is an L?-regular integrable complex structure
satisfying s¢(J(b)) € € and J(0) = Jo.

3. The diffeomorphism @ satisfies @ o @~ = pg and ®(0,-) = ¢, where
pg : B X M — B is the projection. The restricted map ®(b,-) :
(M,3(b)) — A, is a biholomorphism for each b € B.

Proof. Let w : X — B be the Kuranishi family of T-equivariant deformation
of X (see [Kurl, Kur2, Doul] for its construction). From its construction, we
have a holomorphic K-action on X and B so that @ is K-equivariant and a
holomorphic map  : B — Jr(M)? whose image j(b) is a real analytic (with
respect to the real analytic structure on X) integrable complex structure for
each b € B with a biholomorphism X, = (M, u(b)). As —(Kx,p is relatively
very ample for large ¢ € N, all the higher direct images of O(—(Kx,p)
vanishes and thus @,0(—(Ky,p) is a K-equivariant vector bundle on B.
Taking smaller B and using a K-equivariant isomorphism w,O(—(Kx /) =
HO(X,O(—EKX/B))BK = B x H°(X,O(—(Kx,p)) of vector bundles on B

(see Lemma 3.4.6 for the I -action), we can embed these Fano manifolds into
a uniform projective space CPY = P(H(X,O(—(Kxy/p))") so that X, , =
X,.g, where in the latter we consider the K-action on CP" induced from
the action on H*(X,O(—¢Kxy/p)). Pulling back the Fubini-Study metric,
we obtain a K-equivariant smooth family of K&hler metrics {wj}yep, where
each wy, can be identified with a Kéhler metric on (M, u(b)). Taking smaller
B again, we can assume that closed forms wy; := wy + t(w, — wp) are non-
degenerate for each b € B and t € [0,1]. Then we can find a K-equivariant
family of diffeomorphisms {f,}sep so that fifw, = wy. Putting J'(b) =
fiu(b), we obtain a K-equivariant smooth map J' : B — Jr(M,w)?, whose
image J'(b) is a smooth complex structure for each b € B.

It suffices to show that we can find an equivariant perturbation J of J’
so that J(b) = g;J'(b) for each b and s¢(J(b)) € €. Let UZ,, C L7, (M, w)
be a small ball of the origin. For each ¢ € UZ,, and an almost complex
structure J € Jr(M,w), we can find an L2-regular vector field X7 on M so
that i(X)(wo — tdJd¢) = —Jd¢. This vector field is actually L7 -regular.
In fact, it is sufficient to show that [X f,Xf s Li-regular for any smooth
function f. For any smooth vector field Z, we have

i([X 5, X Dn(2) = = (L, 0) (X, Z2) + Xy (X, 2)) = (X7 [ Xy, Z])
= X(=Jdo(2)) + Jdo([Xy, Z]) € Lj.
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Thus [X;, X{'] is L2, as we expected. The flow f” of this time-dependent
vector fields is L7, ;-regular and satisfy ( 21V (wy — tdJdp) = wy. To see the

regularity, it is sufficient to show that (f7),Y is a L3-regular vector field
for each smooth vector field Y on M. Note that (d/dt)(f>7).Y = [X?7,Y]
is L:-regular and (f”’).Y can be written as [}[X¢”,Y]ds. Then for each

[ <k, we obtain the following estimate, so ftd)"] is Lj_,-regular.

[ v ype = [
M M

t
g/ t/ VX2 Y] Pds w™
M 0

t
<t [ X2 Vs < o
0

2
W

t
/ VXS Y]ds
0

It follows that (f/)*J € Jr(M,w)?. Consider the orthogonal decomposition
L? = t ® €, with respect to L*>norm (-,-)e. Put € | = L{ N¢, and let
I, : L7, — € _, be the L*-projection. Note that

(D& = (F) T))ole) = - fido = JP(),

where P denotes the linear differential operator P : L7, — Ty Jr(M,w)j :
Y+ Lx,Jo, and (Ds¢);(A) = P*JA, where P* is the formal adjoint of P
with respect to the norm (—, —)¢. It follows that

G:BxU—=€_,, (b)) ise((ff7 )3 (1))
is a K-equivariant smooth map with the derivative

DGo)(0.9) = ~P*P(¥).

Since P*P is a self-adjoint fourth order elliptic differential operator, it gives
the isomorphism P*P : €,,, — _, . Applying the implicit function
theorem, we can find a new K-equivariant smooth map J : B — Jr(M,w)3
so that IT| s¢(J(b)) = 0, hence s¢(J(b)) € ¢, taking smaller B if necessary. [

Pulling back the symplectic structure ¢ on Jr(M,w)3 by the K-equivariant
smooth map J : B — Jr(M,w)?, we obtain a K-equivariant smooth sym-
plectic structure (by taking smaller B if necessary), which we denote by the
same notation. Then v : B — & : b — S¢(J(b)) is a moment map with
respect to this symplectic structure.
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Proposition 3.3.8 (See Postscript Remark below.). If B C HL(X,0) in
the Proposition 3.3.7 is sufficiently small, then the following two statements
are equivalent for any b € B.

1. The fiber X}, of the family @w : X — B has a Kahler—Ricci soliton.

2. The orbit b - Auty(X) C HH(X,0) is closed. That is, b is polystable
with respect to the Auty(X)-action.

Remark 3.3.9. While discussing with R. Dervan and P. Naumann, the author
realized that there was a gap in the following proof with regards to the
implication “the existence of Kahler—Ricci soliton = GIT-polystability”. To
be precise, what we prove here is that the following are equivalent for b € B:

L v Y 0)NnBNb-G#0.
2. 1, (0)NBNb-G # 0.
3. The point b € H}-(X, ©) is polystable with respect the Auty(X)-action.

Of course, this (1) implies the existence of Kéhler—Ricci soliton on A},
On the other hand, however, the existence of Kédhler—Ricci soliton on &}, only
implies that there is a unique orbit BNby-G in the closure BNb - G such that
v=1(0)NBNby-G # 0 and Xy is isomorphic to &, for any ¥ € BNby-G (thanks
to K-polystability). This in particular implies that v=1(0)/K ~ BK® | K¢
(Corollary 3.3.15 below) can be naturally identified with the isomorphism
classes of Fano manifolds admitting Kéahler—Ricci solitons who appear in the
family @ : X — B (thanks to Corollary 3.3.14 below).

The author emphasizes that we do not use the original statement of
Proposition 3.3.8 to prove all the statements in the rest of this chapter and
we only use the equivalence stated in this remark. The original proof is still
fine to show this equivalence.

Remark 3.3.10. After the publication of [Inol], Yue Fan kindly informed me
that the following proof has a trouble. We propose an alternative proof

in chapter 4, which makes use of Theorem G. See the explanation between
Theorem 4.1.5 and Proposition 4.1.6.

Proof of Proposition 3.3.8. Let €}y be the linearization of {2¢ at 0 € B, i.e.,
Qo = (doJ+, JodoJ*)¢ under the identification T, B = Hi. = Ty B. Consider the
map v : HE: — € defined by

(fivo(b)) = Qo(Lx,b,b) = (Lx,dJob, JodJob)e.
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Then 14 is a moment map with respect to the symplectic structure €2y. The
Kempf-Ness theorem says that b € H is polystable with respect to K¢ =
Autr(X) if and only if bK¢ Ny ' (0) # 0.

Since

% t:0<f’ v(tb)) = %‘to(’f’ 5 (3(tb)))e
= | (Lx3(h), 3(b)3(th)e
= (f, (b)),

the moment map v : B — £ can be expanded as

v(tb) = v(0) + tdov(b) + t?vo(b) /2 + O(t%).

Since 0 € B corresponds to Fano manifolds with Kéhler—Ricci soliton (M, Jy, w),
v(0) = S¢(Jo) = 0 from Proposition 3.3.2. Moreover, since 0 is a fixed point
of the K-action, we have dyv = 0. Therefore we get

v(th) = t215(b) /2 + O(t?).

Since the action of K on HY. is linear, the stabilizer group K, C K of b
satisfies Ky = K3. So we have

d
S (th) = Qu(b (1) = 0

for any f € &,, where o}, : £ — T, B is the differential of the action. Then it
follows that v(b) € & and vy(b) € &

Now we cite the following general lemma from [Szé2, Proposition 9] and
[Don3, Proposition 17. |.

Lemma 3.3.11. Let (B,2) be a symplectic manifolds with a K-action,
v : B — ¢ be a moment map with respect to the K-aciton (¢ is endowed
with a inner product). Suppose b € B satisfies v(b) € & and \,6 > 0 with
Av(b)|| < & satisfies ||(07%,0¢i0p) '] < A for any v € € with ||v]| < 6. Then
there is v, € € such that v(e™b) = 0 and ||vp|| < A||v(b)]|.

Fix a small > 0 so that there is C' > 0 such that for any v € ¢ with
|v|| < & and any f € £5,,

loes ()6, > CIAI®
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holds. Take smaller B so that Q¢ > Q. Since o4, (f) = to,(f) and

(or0u(). D = low(HR > CPIfI

we obtain ||(0},04) 7Y < C't72. Replacing © with Qq, we obtain the similar
estimate for the adjoint of ¢ with respect to €.

Suppose b € B is polystable. Then there exists a point &' € bK°N v, (0).
In regards of the linear symplectic form, &' is given by minimizing the norm of
b’ in the K°orbit of b, so b is also in B. Since the points in the same K°-orbit
give the isomorphic complex structures, we can assume vo(b) = 0. It follows
that v(tb) = O(t3). Then we can take t small so that C't2|v(tb)| < 4.
Applying the above lemma, we find a point tb' € B in the K°orbit of tb
satisfying v(tb') = 0. It follows that (M, J(tb)) = (M, J(tb')) admits Kéhler—
Ricci soliton. Note the polystability of b and b is equivalent as we consider
a linear action.

Conversely, suppose (M,J(b)) admits Kahler—Ricci soliton. Then simi-
larly we can show that there is a point &’ € bK ¢ satisfying 1(b') = 0. This
shows b is polystable. O

The following corollary exhibits one of good features of our T-equivariant
formulation. We use this to show the Artinianity of our moduli stack in the
next section.

Corollary 3.3.12. Any T-equivariant small deformation of Fano T-manifold
with Kahler—Ricci soliton is gentle. In particular, for any T-equivariant fam-
ily M — S of complex manifolds, the following subset

S°:={s eS| M;is a gentle Fano manifold }

is an open subset of S (with respect to the real topology).

Proof. Suppose the Fano manifold (M, J(b)) does not admit Kédhler—Ricci
soliton for the point b € B. From the above proposition, b € B is not
polystable. Then we can find a polystable point by € B in the closure of the
orbit K¢ by minimizing the norm y(—, Jo—). Since K° is reductive, we can
find a regular morphism A : C* — H so that A(t) — by. We can extend this
to a regular morphism A:C > H.. Pulling back the family @ : X — B,
we obtain a T-equivariant holomorphic family M — A whose central fiber
(M, J(bo)) has Kéhler—Ricci soliton because there is some bj € by K¢ such that
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v(by) = Se(J(b)) = 0. So M — A gives a gentle degeneration of X}, hence
A, is gentle. Since the family w : X — B parametrizes all isomorphism
classes of complex structures near &), for any b € B, we have shown the
assertion. [

3.3.3 Completion

The topological space Hamyp (M, w)i,; of L7, -regular symplectic diffeomor-
phisms admits a natural Banach smooth manifold structure (cf. [IKT, KM]).
The compositions and the inverses of morphisms in Hamz (M, w)? 41 are again
in Hamy (M, w)i, ;. However, the following maps

HamT(Maw)z—l-l X HamT(Maw)z—l-l — HamT(Maw>i+1 : (be?/)) = ¢ o %U
HamT(‘M,w)zJr1 — HaumT(]\/f,w)iJrl L N

are not differentiable with respect to the Banach smooth manifold structure,
but are just continuous (see [IKT]). Therefore we can not treat Hamq (M, w);_
as a Banach Lie group.

Nevertheless, we can consider the following C'-smooth map

H : B x" Hamy (M, w)j, .y — Jr(M,w)j : [b,¢] = ¢"3(b)

by working with a slightly regular target of J in Proposition 3.3.7, say, by
working with J : B — Jr(M,w);,. Note, first of all, the quotient B x*
Hamyp(M,w):,, == B x Hamp(M,w); /K is endowed with a unique Ba-
nach smooth manifold structure whose quotient map is a submersion, as the
finite dimensional compact Lie group K acts freely on B x Hamq(M,w); ;.
The C'-smoothness of H follows from the C'*°-smoothness of J : B —
Jr(M,w)i,, and the C'-smoothness of

jT(M7w)i+2 X HamT(MWu)%—i-l - jT(M7 w)i
J . ¢ = 0",

which follows from the main theorem of [IKT].
As Proposition 3.3.6, the map

ap : Jr(M,w); x Hamp(M,w)iq — Jr(M,w); x Jr(M,w)}
J . 9) — J , ¢"J),
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is proper for any large k (L2 C C? is sufficient). To see this, take a sequence
(Jn, &n) € Tr(M,w)i x Hamp(M,w)i,; so that g, ¢%g, converge to gso, gh
in L?-topology. Construct ¢, as in the proof of Proposition 3.3.6. Again,
thanks to Myers-Steenrod theorem, ¢, is C%-smooth and satisfies ¢*_goo =
gh- Then ¢ is a harmonic map between (M, g,) and (M, g, ). Hence it
satisfies the elliptic equation

« a¢§o 892520 1%
B i s I
where the coefficients of the Laplacian A, and the Levi-Civita connection
'3, are L% -regular. It follows that ¢ is LZH—regular.

Let us see that ¢, converges to ¢ in L7, ;-topology. Since g, — goo and
g = G5gn — gh, in Li-topology, we have I'y,  — T'§, and Ay — Ay in
L? ,-topology. Now we use the following uniform elliptic estimates for the

elliptic operators Ay (n = 1,2,...,00) with L{_;-bounded coefficients and
0</<Ek-1

Ag 95 —T =0,

sz,

@) < Cro1([[Agyullz2(g0) + 1ullz2(g0))

where C),_; is independent of n = 1,2,...,00 and gg is a fixed reference
smooth metric. (Note LZ_; C C'. We used this to the above uniform
elliptic estimates. See for instance the proof of the elliptic estimates in
the Appendix of [Kod-book]. Note also Sobolev multiplication works. )
First, the C*-convergence of ¢, — ¢ follows by the same argument as be-
fore. Then we know that Ay ¢S = Fgmnaigbﬁaj 194 converges to Ay ¢ =
'5.0:¢5.0;62,9% in L*-topology (actually in C%-topology). Combined with
the L7_,-convergence of Ay ¢% — Ay 0%, we obtain [|Agy (02 —0% ) || 12(g0) —
0. It follows from the above uniform elliptic estimate that

195 — d5llzz(90) < Cr-1(ll1Ag; (0 — D2 L2(00) + 195 — Dol L2(90)) = 0,

and we obtain ¢, — ¢ in L3-topology. We can repeat this process until we
conclude the L -convergence of ¢, — ¢u.
Now we can prove the following.

Proposition 3.3.13. The C'-smooth map
H: B xK HamT(M,w)i+1 — jT(M,w)i
is injective for any sufficiently small neighbourhood B C H}(X,©) of the

origin.
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Proof. The derivative of H at [0,id] is given by
b x L oMo/t — (T2 5 . £) s ddo(p) + O],

It is easy to see that this map is injective and has a closed split range.
Then the implicit function theorem shows that H gives an immersion in a
neighbourhood of [0,id]. In particular, H is locally injective at [0, id].
Suppose H is not (globally) injective for any sufficiently small B. Then we
can take sequences by, b, — 0 € B and ¢, ¢/, € Hamp(M,w)Z, , satisfying

[bn, &n] 7 (U, @] and H([bn, én]) = H([b;,, 0))-

In particular, we have J(b,) = (¢/,0¢-1)*J(b) and both J(b,,), J(V),) converge
to J(0) in Jr(M,w)%. From the properness of a2, we have a subsequence of
¢! o ¢t which converges to some ¢, in the stabilizer K of J(0). Hence, after
taking a subsequence, both [b,,id] and [V}, ¢! o ¢ 1] converge to the same
0,id] = [0, ¢poo] With the same images H([b,,id]) = H([D,, ¢}, o ,']). Since
H is injective near [0,1d], we conclude [b,,id] = [/, ¢!, o ¢,;}] for sufficiently
large n. This contradicts to the choice of the sequences [b,, ¢,] # [, @]
and we have shown that # is injective for some (hence any) sufficiently small
B. [

The restriction of the map J : B — Jr(M,w)? gives a continuous map
v=1(0) — (Sént)*l(O)% and induces another continuous map

v=H0)/K — (S) 7 (0);/Hamy (M, w)i .
The following corollaries are essential in the proof of the main theorem.

Corollary 3.3.14. The induced map v~*(0)/K — (§)~'(0);/Hamyp (M, w)i 4
is a homeomorphism onto an open subset.

Proof. The injectivity follows from the above Proposition. From the Proposi-
tion in section 2 of [Kur2], there is a point b € B such that (M, J(b)) = (M, J)
for any integrable L2-regular J sufficiently close to Jy in L2-topology. (Here
we can work with L7_, rather than L7 ., by taking smaller B if necessary,
thanks to the uniqueness of Kuranishi family independent of its construc-
tion. ) Furthermore, if J € (S™)7'(0); we have (M,J(b')) = (M,J(b))
for any ¥ € bK® and bK° N v~ 1(0) # 0, so we can take such b from
v~ H0) C B for any J € (§*)7'(0). Therefore the image of v~'(0)/K
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covers an open neighbourhood of Jy € (8)71(0); /Hamy (M, w)i . Since
(8)71(0); /Hamp (M, w)j,, is a Hausdorff space, it follows that the map
v H0)/K — (S™)~1(0);/Hamyp (M, w);, , becomes a homeomorphism onto
an open subset, by taking smaller B if necessary. O]

Corollary 3.3.15. Suppose the torus action on (M,w) is K-optimal. The
inclusion map v~*(0) — BK® induces a homeomorphism v~!(0)/K — BK¢
Ke.

Proof. The analytic GIT quotient BK® J K¢ is identified as a topological
space with the quotient space of BK¢ by the equivalence relation b ~ 0/ <=
bKcNUKe # (. Take elements b,b' € v~(0) so that b ~ . Since both
b, b’ are polystable with respect to the K“action, their K“-orbits are closed
and hence it follows that bK¢ = b'K°. As mentioned before, we obtain
(M,3(b)) = (M,J()). Then it follows from Proposition 3.3.4 that we get
[3(0)] = [[3)] € (8&)71(0)f/Hamyp(M,w)i ;. From the above corollary,
we obtain [b] = [b] € v71(0)/K and we have shown the map v~1(0)/K —
BK* JJ K¢ is injective.

We know that BK¢ ) K¢ consists of closed K“orbits and closed K°-
orbit has non-empty intersection with ©~*(0). This shows the surjectivity of
v~1(0)/K — BK®J/K*. Since both the spaces are locally compact Hausdorff,
by taking smaller B if necessary, the map becomes a homeomorphism.  [J

Corollary 3.3.16. For any b € v~1(0), Auty(X,) can be identified with the
complexification of the stabilizer group K, of the action of K.

Proof. From the proof of Theorem 3.2.7, we know that Auty(X,) = Autyr (M, J(b))
is the complexification of the compact group Stab(J(b)) C Hamyp (M, w)i, ;.
Since J : B — Jr(M,w)3,, is K C Hamyp(M,w);_ ,-equivariant, there is an
inclusion K}, C Stab(J(b)). For ¢ € Stab(J(b)), we have H([b, ¢]) = ¢*J(b) =
J(b) = H([b,id]), then the injectivity of H shows that [b, ¢] = [b,id], hence
6 € Ky, 0

Remark 3.3.17. Corollary 3.3.16 enables us to prove Corollary 3.5.12 under
the uniqueness statement of (2) in Conjecture 3.5.11, which we do not follow
in this chapter. So the last corollary will be never used in any proofs of this
paper. Recently, R. Dervan and P. Naumann find an another pure analytic
approach to construct the moduli space of cscK manifolds that makes use of
this corollary.
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In the next section, we will construct complex structures on the following
Hausdorff topological spaces.

Definition 3.3.18. We set

LIK(M,w,T) := (Sént)’l(O)i/HamT(M, w)iﬂ,
K(M,w,T) := (8)~'(0)/Hamg (M, w)

and
Kry:= [ KMwT)

X(Mw,T)=x

for a Fano character x = {xm € Z[M]}mez where (M,w,T) runs K-optimal
symplectic Fano T-manifolds whose Hilbert character x(M,w,T) (see the
description before Proposition 3.3.4) is equal to the given Fano character .

Note that the homeomorphism f*: K(M’,w',T) = K(M,w,T) induced
by a T-equivariant symplectic diffeomorphism f : (M,w) — (M’,') is inde-
pendent of the choice of f, so the space K1, is free from the choice of the
representatives (M,w,T) in the symplectic diffeomorphism class [M,w, T.

3.4 Gluing of local charts

3.4.1 The moduli stack Kr,

In this subsection, we prepare some standard terminologies around stack
and introduce the moduli stack ICr, and see its Artinness (Definition 3.4.2).
Though it is a simple task to check the Artinness under Corollary 3.3.12,
the author believes that knowing its proof must help the readers to properly
handle the moduli stack ICr, in the next subsection. See Appendix A for
generalities on stacks over the category of complex spaces, which we call
Can-stacks.

We denote by Can the category of complex analytic spaces which are not
assumed to be reduced nor irreducible. The set of holomorphic morphisms
between complex spaces U and V' will be denoted by Holo(U, V). We also
denote by Cang the category of complex spaces over S and by Holog(U, V)
its set of morphisms.

Let S be a complex space. A morphism of complex spaces 7 : M — S'is
called a family of complex manifolds over S if it is surjective, proper, smooth
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(equivalent to submersive when M and S are complex manifolds) and has
connected fibers. Recall that a smooth morphism between singular complex
spaces is by definition a morphism of complex spaces f : X — Y with the
following property: There are open coverings {V,, C Y}, {U, C X}, of
Y and X, respectively, an indexed set of smooth complex manifolds {W,},
and an indexed set of biholomorphisms {¢, : Vi, x W, = Uy,} satisfying
f o ¢o = p1, where the morphism p; denotes the projection V,, x W, — V.

Let T = (C*)* be an algebraic torus. A fibrewise T-action on a family
m: M — S is a holomorphic morphism « : M x T — M which satisfies the
following conditions.

1. (Fibrewise) The morphism « is an S-morphism. Namely, Toa = mop; :
MxT —S.

2. (Group action) co (a xidy) = ao (idy X 1) : M XT X T — M, where
T x T — T is the multiplication.

A fibrewise T-action on a family 7 : M — S is called effective if for every
s € S the induced group morphism 7" — Aut(M;) is injective. Finally, an S-
family of complex T-manifolds is defined to be a family of complex manifolds
over S together with an effective fibrewise T-action in the above sense.

Now we introduce the stack KCr,,. A Can-stack (Definition 3.6.9) is a cat-
egory F together with a functor F — Can satisfying some natural geometric
axioms. Here we give the category of our interest.

Definition 3.4.1 (category/stack Kr,). Let T be an algebraic torus and
X be a Fano character. Object in ICr, is a family of complex T-manifolds
m: M — S whose fibers are gentle (see Definition 3.2.17) Fano T-manifolds
whose Hilbert characters are x.

A morphism from § := (7 : M — S;a: M xT - M) to ¢ := (7 :
M = S a M'xT — M) is apair (f,¢) where f: S — S’ is a morphism
of complex spaces and ¢ : M — M’ is a T-equivariant morphism which is
compatible with 7,7, f and induces a biholomorphism ¢ : M — f*M’,
where f*M’ := S X g M CS x M. Here, the morphism ¢ is said to be
T-equivariant if @/ o (¢ x idy) =gpoa: M xT — M.

Note that there may be no gentle Fano manifolds whose K-optimal Hilbert
characters coincide with a given K-optimal Fano character (7, x). In other
words, there might be no object in the category KCr, for a K-optimal Fano
character (7', x).
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We denote by K7 the subcategory of Kz, consisting of families of K-
stable Fano T-manifolds and by C(n) the disjoint union of the categories
ICr, where (T, x) run all the K-optimal Fano characters of n-dimensional
Fano manifolds. Both categories Kr, and K7 are Can-stacks with the
forgetful functors Kz, K3 — Can given by (7 : M — S) — S. (See
Lemma 3.6.5 and 3.6.13 in Appendix A. )

We denote by ICr,(S) the subcategory consisting of objects (7 : M —
S,a) with fixed base S and whose morphisms are pairs (idg, ¢). For any
two objects £ = (M — S,a),n = (M — S,d/) € Kr,(S), we define the
contravariant functor Isomg(&,n) from Cang to Sets by mapping an object
f:U — S to the set Homy,. (f*¢, f*n) and a morphism h : (U, f) — (V, g)
to the map given by the canonical identifications f*¢ = h*g*¢, f*n = h*g*n.

The following definition is just an analogy of Artin algebraic stack.

Definition 3.4.2 (Artin Can-stack). A Can-stack F is called an Artin stack
if it satisfies the following two conditions.

1. The diagonal morphism A : F — F x F is representable by complex
spaces.

2. There exists a smooth surjective morphism U — F from a complex
space U.

Or equivalently,

1. For every complex space S and any &, € Obj(F), there exists a com-
plex space Sg, and an isomorphism Holog(—, S¢,) = Isomg(&,n) of
contravariant functors from Cang to Sets.

2. There exists a morphism U — F of fibred categories from a complex
space U such that the 2-fibre product U x £ V is isomorphic as stacks
to a complex space f : Vi — V smooth over V with surjective f, for
any morphism V' — F from any complex space V.

The 2-fibre product U x £V of stacks is always isomorphic to some com-
plex space W over V and U from the first condition (cf. [SPA, Tag 045G]).
We frequently use the following representability result in our analytic cat-
egory in this thesis. The representability of the following moduli functor (and
analogical functor in the schematic category) in both analytic/schematic cat-
egory is well-known and the projectivity is also well-known in the schematic
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category. While the compactness of the Douady space is proved by Fujiki
for class C space, it seems we must see the equivalence of the Douady space
and the Hibert scheme, or must imitate the construction of Hilbert scheme
in the analytic category, to show the projectivity of the Douady space when
X is projective. Our concerns here are just whether the analytification of
the Hilbert scheme represents the moduli functor of the Douady space, and
if we can make things T-equivariant. Though these concerns might be exhib-
ited somewhere in literatures, we place a proof here since the author could
not find an appropriate reference and the author believes it is better for the
readers (including the author).

Proposition 3.4.3 (T-Hilbert scheme). Suppose 7 : X — B is a holomor-
phic morphism of complex spaces and o : X xT" — X is a holomorphic action
with foa = f op;. Consider the functor Hilby . : Canp — Sets given by

Hilby 1 (S) = { ZCSxpd| Z is a T-invariant closed analytic subspace }

and Z — S is a flat family

Then there exists a Hausdorff complex space Hilby , representing the functor
Hilbr .. Moreover, suppose B = pt and X = X is projective with an ample
line bundle L, then the subfunctor Hilbr, x C Hilbr x consisting of families
Z — S with a fixed Hilbert polynomial y is representable by a projective
complex space Hilby, x € CPV.

Proof. When T is trivial, the existence of the Hausdorff complex space Hilb,, =
Hilbr . follows from [Dou2| for B = pt case and from [Pou] for general base
B. The projectivity follows from Grothendieck’s existence theorem of the
Hilbert scheme, which represents an analogical functor defined on the cat-
egory of schemes Sche, and the coincidence of the functors when they re-
stricted to the subcategory Def¢ of the spectrum of finitely generated Artin
algebras over C, which is naturally embedded into both Can and Sch¢. Ac-
tually, a morphism f : X — Y between complex spaces is an isomorphism if
and only if it induces an isomorphism of functors hy|pef. — by |Defe-

When T is non-trivial, we can consider the action of 7" on the set Hilb,(S)
for each S € Canpg, whose fixed point subset is nothing but the subset
Hilby (S) C Hilb,(S). Then the existence in the category of complex spaces
follows from the following two general statements.

1. Suppose H is a (not necessarily reduced) complex space with T-action
and * € H is a T-fixed point. Then there is a Tk-invariant open
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neighbourhood U C H of z and a Tk-equivariant closed embedding
¢ : U — V into an open neighbourhood V' C T, H of the origin, where
Tk denotes the maximal compact subgroup of 7" and T,,H denotes the
Zariski tangent space ([Akh-book, Subsection 2.2]).

2. Let W C T,H be the set of T-invariant points, which forms a T-
invariant linear subspace. Then the complex space Ur := U xy (W N
V) C U, considered as a closed subspace of U, enjoys the following
universal property: for any holomorphic morphism f : S — H invari-
ant under the T-action on H, the restricted holomorphic morphism
flg=1@w) : f71(U) — H holomorphically and uniquely factors through
UT-

On the other hand, the existence in the category of schemes follows from
[Fog]. The rest of the proof is parallel to the first paragraph. O]

The proof of the next proposition is a routine for the readers familiar
with Artin stack. We exhibit the proof for the others.

Proposition 3.4.4. The Can-stacks ICr, is an Artin Can-stack. If (7}, x)
is K-optimal, then /C7. | is also Artin and is an open sub-stack of ICr,y.

Proof. By considering the graphs M X N C M x N of morphisms
¢ : M — N, the functor Isomg(&,n) is identified with a subfunctor of
Hilby pmxar/s- Then it is easy to see that Isomg(§,7) is representable by an
open subspace of Hilby vxa/s (cf. [FGA-book, 5.6.2.]).

Next we construct a smooth surjective morphism U — Kr,. Let us
consider a uniform T-equivariant embedding of Fano manifolds in Iz, into
some fixed CPY. Then all Fano manifolds in Kr, emerge in Hilbp cpn.
From Corollary 3.3.12, there is an open subset U of Hilby cpn, in the real
topology, such that the restricted universal family U|y — U exactly consists
of gentle Fano manifolds in KCr, . Note the family U|; — U naturally carries
a T-action and hence is considered as an object in Kr,. So we have the
induced morphism U — Kz, : (f : S = U) — (f*U|y — S), which is
readily surjective from its construction. Consider a morphism X — Kr,;
it is equivalent to give a family of gentle Fano T-manifolds M — X. For a
sufficiently large m, the direct image sheaf 7, (O(—mK )|y, becomes locally
free. Take a covering U = {U,}, of X that trivializes the vector bundle
T (O(—mK r1))|v, so that we can consider morphisms U, — U corresponding
to trivializations of m,(O(—mK))|v, . There is a unique PG Ly-equivariant
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extension U, x PG Ly — U of these morphisms. Then from the universality of
the 2-fibre product U X1cr,, Ua , we get morphisms U, X PGLy - U X1cr,, Ua-
We have the inverse morphisms of these morphisms given as follows. Take an
object (S,£:8 = Un:8S = Uy ¢:&U = " M|y,) of U Xy, Us. Since
n* M|y, can be considered as being embedded in S x CPY, the isomorphism
¢ corresponds to a morphism ¢ : S — PGLy. Then we have a morphism
7 X q~5 : S = U, x PGLyp, which gives an object in Cany, xpir,.. Therefore
U Xxp, X — X is locally written as U, x PGLy — U,. So it is a smooth
morphism.

It is shown in [H. Li, Theorem 3.4] that K-stable Fano manifolds form
an open subset in the parameter space of any family of complex manifolds,
without introducing the K-stability of Fano T-manifolds. From the exactly
same argument as above, we conclude that 7. is Artin and is an open
sub-stack of K. O

In the above proof, the only non-routine part is Corollary 3.3.12, i.e. the
openness of the subset consisting of gentle Fano manifolds in the parameter
space of a family. Our method in Corollary 3.3.12 cannot be applied to prove
the Zariski openness. This is the reason why we must work in the category
of complex spaces rather than the category of algebraic spaces, so that we
cannot apply Alper’s theory on good moduli spaces over the category of
algebraic spaces, at least so far.

3.4.2 Main construction

In this subsection, we prove our main theorem. First we prepare two general
lemmas.

Lemma 3.4.5. Let K be a compact Lie group and K¢ be its complexifi-
cation, V be a representation of K¢ and B C V be a K-invariant Stein
open neighbourhood of the origin. Let s xt : R — B x B be the holo-
morphic groupoid obtained by pulling back the holomorphic action groupoid
a:VxKe—VxV:(vk)— (v,vk) along the inclusion B x B C V x V.
Then the following holds.

1. The stack [B/R] associated to the holomorphic groupoid (B, R, s, t, ¢)
as in Appendix A is isomorphic, induced by the inclusion B — BK¢,
to the quotient stack [BK¢/K¢] as Can-stacks, where BK® denotes the
K¢orbit {bg € V | b€ B,g € K} of B, which is K°invariant open.
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2. There is a natural morphism [BK¢/K¢] — BK° | K¢ of Can-stacks
to the analytic GIT quotient BK® J/ K¢ which enjoys the following
universal property: any morphism from the quotient stack [BK¢/ K]
to any complex space X uniquely factors through BK® |/ K¢.

Proof. We identify [BK°¢/K*] with the Can-stack [BK¢/K°] in Example
3.6.3. Consider a morphism o from the fibred category [B/R], to [BK®/K*
sending an object £ : S — X in [B/R], to the object (S, 5 x K¢ ao (£ xid))
in [BK¢/K¢] (cf. the description right after Example 3.6.3). Let S be a
complex space and (S, P,¢') be an object in [BK¢/K¢|(S). Take a local
trivialization {P = U, x K}, of the principal K°bundle P and consider
the associated K°-equivariant morphisms ¢, : U, x K¢ — BK°¢ After
taking smaller U,, we can find a holomorphic morphism &, : U, — B
and a holomorphic morphism g : U, — K¢ so that &,(z)g(z) = & (z,e).
It follows that the object (Uy,U, x K¢ ¢) in [BK°/K*| is isomorphic to
0(&n) = (Ua, Uy x K¢ a0 ((£ag) X idge)). Moreover, it is easily seen that
Isomg/py,.s(&,m) = Isompge/ke,s(0(§),0(n)) is a sheafification of the func-
tor Isomg/p),.s(§,n) : Cang — Sets. It follows that [BK¢/K¢ is a stack-
ification of the fibred category [B/R],. Therefore, it is isomorphic to the
stackification [B/R] of [B/R],.

Since B is a reduced Stein space, BK¢ is also a reduced Stein space and
there exists a categorical quotient BK¢ J K¢, which is also a reduced Stein
space (see [Hei], [Snow]). Take an object (S, P,¢) in [BK¢/K°] and a local
trivialization {P = U, x K¢}, of P. Then we have holomorphic morphisms
o Uy = Uy x K¢ — BK® — BK* | K¢. Since &, : U, x K¢ — BK® agree
on the overlaps U, N Uz up to the action of K¢ and BK® — BK° || K¢ is
K*-invariant, holomorphic morphisms &, coincide on the overlaps U, N Us
and define a holomorphic morphism S — BK°¢ JJ K¢, glued together. This
construction gives the morphism [BK¢/K¢ — BK¢ / K¢. The universal
property follows from the fact that any K°invariant holomorphic morphism
BK¢ — X uniquely factors through BK® ) K°. Il

The complex space BK €/ K¢ is moreover normal as it is an open subspace
of the algebraic GIT quotient V' / K¢, which is normal whenever V' is normal
(cf. [MFK-book, Section 0.2]).

Lemma 3.4.6. Let K be a compact Lie group, B be a complex manifold
with holomorphic K-action and £ — B be a K-equivariant holomorphic
vector bundle. Suppose 0 € B is a fixed point of K-action. Since the
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fiber Fy can be considered as K-representation, we can construct a K-
equivariant holomorphic vector bundle Ey BK ‘= B x Ey whose action is
given by (b,v)k := (bk,vk). Then E is K-equivariantly isomorphic to Eoy i
on some neighbourhood of 0 € B.

Proof. Consider the frame bundle 7 : P — B of the holomorphic vector
bundle E and fix a point py € 7~(0) C P. We have a right holomorphic
action of K on P defined by

4 -1
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for p: C" = E, € Pand k € K. The point p, € P is a fixed point of
this action and 7 : P — B is a K-equivariant submersion. So we have a
K-equivariant holomorphic section ¢ : B — P with ¢(0) = py by taking
smaller B if necessary. Now the map B x GL(r) — P : (b,g) — o(b)g gives
a K-equivariant isomorphism of principal G L(r)-bundles and hence induces

a K-equivariant isomorphism of the adjoint bundles C"p 2, Ey B.K' ]

Let X be a Fano manifold with a Kéhler—Ricci soliton (g, &), T = (C*)**
be the algebraic torus generated by &', K := Isomg (X, g) be the (possibly
non-connected) isometry group preserving £ and H+(X,0) C H'(X,0) de-
note the T-invariant subspace of the first cohomology of the tangent sheaf.
Recall in Proposition 3.3.7 and in Corollary 3.3.12 we obtained a family
@ : X — B of gentle Fano T-manifolds over a small ball B C Hp(X,O).
Moreover, X admits a holomorphic K-action so that w is K-equivariant
with respect to the linear action on B, and a T-equivariant biholomorphism
Xp =2 X. This in particular defines a morphism B — Kr, of Artin Can-
stacks. Now we prove the following.

Proposition 3.4.7. Let X be a Fano T-manifold with Kahler—Ricci soliton
and the Hilbert character (T, x). Then by taking smaller B if necessary, the
morphism B — Kr,, factors through an étale morphism [B/R| — K7, with
finite fibres, where R is defined as in Lemma 3.4.5. In other words, for any
morphism S — Kr, of Can-stacks, there is an étale morphism S" — S of

complex spaces with finite fibres and an S-isomorphism of Can-stacks from
S’ to the 2-base change S xx,. [B/R] — S.

Proof. The family @w : X — B in Proposition 3.3.7 defines a morphism B —
Kry. Now we will show that this morphism factors through the quotient
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morphism B — [B/R]. It is equivalent to the existence of a natural 7-
equivariant R-biholomorphism s*X = t*X. We prove this by relating our
analytic family to an algebraic family as groupoids. As a consequence, the
induced morphism [B/R] — Kr, is shown to be étale with finite fibres.
Since @w : X — B is a K-equivariant family and O(—Kyx/p) is relatively
ample, we can find a large / € N so that the direct image sheaf w,.O(—(Ky/p)
is K-equivariantly isomorphic to the sheaf of sections of a K-equivariant holo-
morphic vector bundle E. Lemma 3.4.6 shows that there is a K-equivariant
isomorphism HO(X,(’)(—ZKX))BK = F, so we have a K-equivariant B-

embedding X < B x PV where we identify PV with P(H°(X, O(—(Kx))*).
From the universality of Hilbypy, we obtain a K-equivariant holomorphic
morphism /i : B — Hilbpp~y together with an isomorphism h*Uf = X

From the Euler sequence

0 — Opy — O(1)®N*! 5 Qpy — 0,
we obtain Hh(X,7*Opn) = 0 and HY(X,i*Opn) = HL(PY, Opn). Combining
with this with the following exact sequence
0 — Hp(X,Ox) = HJ(X,i"Opv) — H}H(X, Nx/pn)
— Hp(X,0x) = Hp(X,i"Opn) — Hp(X, Nx/pv) — 0

shows that the sequence
0 — H}(X,0x) = HH(PY,Opx) = H)(X, Nx/pv) = Hp(X,0x) = 0

is exact and Hp (X, Nx/pn) vanishes. So we conclude that Hilbypw is smooth
at [X] = h(0) € Hilbypw~, whose tangent space is given by H(X, Ny/pn) (cf.
[FGA-book, subsection 6.4.]).

Now we work in the category of algebraic spaces in the blink of an eye.
Since Autr(X) is reductive, we can apply the étale slice theorem [AHR, The-
orem 2.1}, which generalizes the Luna’s étale slice theorem to non-affine cases,
and then obtain the following: a smooth affine Auty(X)-variety (W, w), an
Autp(X)-equivariant morphism ¢ : (W,w) — (Hilbzp~, h(0)) which induces
a PG Ly (N +1)-equivariant étale morphism W x4%r(X) PG L — Hilby, and
a Auty(X)-equivariant étale morphism (W, w) — (HH(X,©),0).

W xAuwr(X) PG Ly +—— (W, w)

étale
etalel / \

(Hilby, h (HL(X,0x),0)
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Note that the quotient morphism W x PGLy — W x%° PGLy is a K-
equivariant submersion, under the right action of K¢ = Auty(X) on W X
PGLy defined by (z,90)91 = (291,97 "gog1) and on W xE° PG Ly defined
by [z, 90]lg1 = [%,g0g1]. Since the point (w,e) € W x PGLy is fixed by
this K¢action, we obtain a K-equivariant holomorphic section o from a
neighbourhood of [w, e] € W x&° PGLy with o([w,e]) = (w,e). Therefore,
taking smaller B if necessary, we can assume that h : B — Hilby factors
through W x PG Ly — Hilby. We can moreover assume that the composed
morphism (B,0) — (W, w) of a lifting B — W x PGLy passing through
(w,e) with the projection to the first factor is K-equivariant holomorphic
open embedding. Note that we do not know whether this morphism (B, 0) —
(W, w) is a section of the étale morphism (W, w) — (H#(X,Ox),0).

Set Hilby. := h(B) - PGLyr C Hilby. Since w : X — B is a complete
family at any point b € B, Hilb;. is an open subset. The restricted PG Lyp-
equivariant universal family &° — Hilb;. parametrizes only gentle Fano T-
manifolds and hence induces an open embedding [Hilby./PGLr] — Kr,. We
fix this subset Hilb® while we later take smaller B.

It follows from [Snow, Proposition 5.1] that we have a K°-invariant open
neighbourhood W° C ¢~ !(Hilby.) of w so that the restriction W° — HL(X, ©)
is an K “-invariant open embedding. Taking smaller B, we have the restricted
morphism B — W° x PGLy. Let g : B — PGLy be the composition of this
morphism with the projection to the second factor. Denote by h, : B — Hilb®
the composition agip,. o (b x ¢g7') : B — Hilby x PGLy — Hilby. Then
the holomorphic morphism h, is K-equivariant and factors through the K°-
equivariant holomorphic morphism W° — Hilb;.. Moreover, we have an
induced isomorphism AU = X.

Since the differential of the induced morphism B — W° at 0 € B is a
K-equivariant isomorphism, we can assume that B — W° is a K-equivariant
open embedding. Let us denote by 3 : B — H:(X, ©) the composition of this
morphism B — W° with W° — HL(X,0). Then § is also a K-equivariant
open embedding.

Note that both BK¢ C HL(X,0) and 8(B)K® C H}(X,0) are the com-
plexification, in the sense of [Hei], of B with respect to the action of K . From
the uniqueness of the complexification, there is a K“equivariant biholomor-
phism v : BK¢ — [B(B)K° which is compatible with the K-equivariant
morphisms B C BK¢ and : B — §(B)K°.
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Now we have the following cartesian diagrams

R —— BK®x K¢ =54, [l « e

s th laBKc lO‘H%

B x B =2 BK®x BK® =" HL x H}

Ry —— B(B)K° x K© —=29 gl x K*

sw xtwl laB(B)KC l‘)‘H%
®

Bx B 225 B(B)K® x B(B)K® = HL x H}

Since v : BK¢ = $(B)K*is K‘-equivariant, it satisfies Y*?oapre = agpyxeo
(v X id) and hence gives an isomorphism of the groupoids (p; o apge, p2 ©
apke) : BK®x K¢ — BK*® and (p1 o agByke, P2 0 agpke) : B(B)K x K¢ —
B(B)Ke¢. It follows that there is an isomorphism (p,idp) : (R, B) = (Rw, B)
of the groupoids s xt : R — B x B and sy X tyy : Rw — B x B. Hence
there is an isomorphism [B/R] = [B/Rw] of the quotient Can-stacks.

On the other hand, since 3 : B — H# factors through the K°-equivariant
open embedding W° — HI., the groupoids sy X ty : Ry — B X B also
appears in the following cartesian diagram.

Rw—>WOXKC

SW thl lawo

B®2

Bx B —— W°x W°

Therefore we obtain an open embedding of the quotient Can-stacks [B/Ry| <
(We/Ke].

Moreover, the étale finite morphism W° x%° PGLy — Hilb® induces
an étale finite morphism of the quotient Can-stacks [W°/K¢] & [W° xK*
PGLy/PGLy] — [Hilb3./ PG Ly].

Now combining all, we obtain an étale morphism [B/R] — ICr, with
finite fibers, which obviously commutes with B — Kr, and B — [B/R]
from its construction. O

Here is our main theorem.
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Theorem 3.4.8. There exists a Hausdorff complex analytic space Kr,,
which we call the moduli space of Fano manifolds with Kdhler—Ricci soli-
tons, and a morphism K7, — Kr, from the Artin Can-stack K7, such
that any morphism from /7, to any complex space B holomorphically and
uniquely factors through Kr,. Moreover, this moduli space enjoys the fol-
lowing property.

1. The complex space K7, is normal and homeomorphic to the space
K7, in Definition 3.3.18. We will prove this in Proposition 3.4.11 after
constructing a moduli space with the following property.

2. The morphism K7, — Kr, induces a bijection [ICry|/ ~ — Kry
where |ICr, | denotes the set of points of the stack ICr ., which is canon-
ically identified with the set of the isomorphism classes of gentle Fano
manifolds, and [X] ~ [X’] if the central fibers of the gentle degenera-
tions of gentle Fano manifolds X and X’ coincide.

As we have already noted, the logical order of our argument is “Proposi-
tion 3.4.7 = Proposition 3.2.18 = Theorem 3.4.8”. Here we apply Proposi-
tion 3.2.18 before we prove it. The author recommend the readers who prefer
following the proof in the logical order to read section 3.4.4 firstly.

Proof. The image of the étale morphism [B/R| — ICr, defines an open sub-
stack Im[B/R] C Kr,. Object in Im[B/R] is an object (7 : M — S, a) in
K1, whose fibers are gentle Fano T-manifolds appearing in the Kuranishi
family @ : X — B. Firstly, we prove that the morphism [B/R] — BK° )|
K¢ in Lemma 3.4.5 factors through Im[B/R]. We construct a morphism
Im[B/R] — BK° ) K¢. Take an object (7 : M — S «) in Im[B/R] and
consider the following cartesian diagram.

S —— [B/R]

S —— Im[B/R)]
Since [B/R] — Im[B/R] is étale, S — S is also étale. Then we can take local
slices sq : Uy, — S of S — S so that {U,}, covers S and obtain morphisms

U, — [B/R], hence also obtain holomorphic morphisms ¢,, : U, — BK¢// K*.
From its construction, we know that € U, maps to the point ¢, (z) € BK¢)/
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K¢ = v7Y0)/K representing the central fiber of some gentle degeneration
of M., which is unique due to Proposition 3.2.18. So if S is reduced, these
morphisms ¢, : U, — BK® /| K¢ coincide on the overlaps, hence they give a
holomorphic morphism ¢ : S — BK*¢ J/ K¢, glued together. When S is not
reduced, since any Fano T-manifold has reduced semi-universal family, we
can locally extend the morphism S — Im[B/R] to some T' — Im[B/R] with
reduced 7. Take a point x € U, N Ug and a small neighbourhood U of x
so that U — Im[B/R] extends to some T' — Im[B/R] with reduced domain
T D U containing U as a closed subspace. Taking smaller T', sections s,|y,
sglu extend to some sections t,,tz : T — T, where T is given similar as
S. Therefore the morphisms ¢o |y, dsly : U — BK® J) K¢ extend to some
morphisms ¢, s : T'— BK®// K¢. As we have already observed that ¢, and
g coincide, the restrictions ¢,|y = ¥4 0iv, Pslv = Ysoiy : U — BK® | K¢
also coincide as holomorphic morphisms, where iy : U — T is the closed
immersion. Therefore we obtain a morphism ¢ : S — BK¢ J K¢ by gluing
the morphisms ¢, : U, — BK¢ JJ K¢. Tt is easy to see that this construction
is functorial, so we obtain the expected morphism Im[B/R|] — BK® | K¢,
which inherits the universal property from the morphism [B/R] — BK® )/ K°.

Now consider two morphisms [B/R|] — K, and [B'/R'] — K, with
different domains. We also consider two maps i : BK¢ ) K¢ — LK (M,w,T)
and ¢/ : BK' | K’ — LiK(M,w,T). For any point x € LK (M,w,T) in
the overlaps ImiNImi’, we can find another étale morphism [B”/R"| — K,
and a map ¢’ : B"K"® | K"* — L:K(M,w,T) with i"([0]) = z so that
Im[B"/R"] C Im[B/R] N Im[B'/R'] C Kr, and Imi" C Imi N Ims. Es-
pecially we have a natural inclusion morphism Im[B”/R"] — Im[B/R] and
hence obtain a morphism Im[B”/R"] — BK*¢ J/ K¢. From the universality
of the morphism Im[B”/R"] — B"K"¢ ] K", we obtain a holomorphic mor-
phism B"K"¢ ) K" — BK® J/ K¢. This holomorphic morphism is clearly
compatible with ¢ and i as maps, so especially it is a homeomorphism onto
its open image, after taking smaller B” if necessary. Since the analytic GIT
quotient spaces BK¢ J/ K¢ are normal, this holomorphic homeomorphism is
actually a biholomorphism. This argument shows that the coordinate change
i'~' i is biholomorphic. Thus we obtain a complex space (M, w, T) by giv-
ing a complex structure on the topological space Li K (M, w,T) defined from
the above holomorphic charts. Set Kry = [, (30 1)= K(M,w,T). Clearly
from its construction, there is a morphism Kr, — Kz, enjoying the uni-
versal property. It follows from section 3.3 and Proposition 3.2.18 that this
morphism induces a bijection |[ICr,|/ ~ — Kr,. We prove in the next sub-
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section that the space K (M, w, T, which is homeomorphic to L2 K (M, w,T),
is actually homeomorphic to K (M, w,T). [

Corollary 3.4.9. The Can-stack IC | admits a tame moduli space I3 | —
7 (see [Alpl, Definition 7.1]), with the same universal property as the
moduli space I, — K. Moreover, the complex space K7, is a Hausdorft

complex orbifold.

This corollary follows from the construction in the proof of the main
theorem, the openness property of the K-stable Fano T-manifolds and the
fact that [B/R] — I is an open embedding in this case, which is an
easy consequence of the injectivity of the map |[B/R|| - BK® | K¢ ~
v~1(0)/K — Kr, and the bijection |ICF,, | = K7, The orbifold coordinates
are given by open neighbourhoods of the origin in the spaces HH(X,0) /
(Autr(X)/T). We can also consider a separated smooth Deligne-Mumford
Can-stack K7 associated to the Can-stack IC7., .

3.4.3 Consistency

In the previous section, we constructed a complex analytic space structure
on the spaces Ly K (M,w,T) = (5)~(0); /Hamy (M, w)j , , and proved that
it has a certain universality independent of k£, which is described in terms of
the stack ICr,. Since the universality determines a complex space uniquely
up to biholomorphisms, the complex spaces (S"*)~'(0); /Hamq (M, w); , are
all canonically biholomorphic to each other. In particular, we deduce that
they are all homeomorphic through the following natural maps

T+ (S)7H0)F /Hamp (M, w)fyy — (S¢)7H(0)h/Hamp (M, w)iyy = [J] = [J].
Now we show the continuous map
Iy : (Sé“t)*l(O)/HamT(M, w) — (Sé“t)*l(O)i/HamT(M,w)iJrl (] = [J]

is also homeomorphic, using that Z; ; is homeomorphic.

In the proof of the following proposition, we hope to apply an LZ-version
of Newlander—Nirenberg theorem. Unfortunately, the author could not find
in literatures a precise L2-version of Newlander—Nirenberg theorem for our
purpose, but only find the reference [NW]. As the Newlander—Nirenberg
type theorem in [NW] losses some regularity, we make use of the above fact
obtained from the universality of our moduli space.
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Proposition 3.4.10. The continuous map Zj is a homeomorphism.

Proof. Take two elements J,.J' € (S)~'(0) and suppose there is a L -
regular map ¢ € Hamy (M, w);,, such that ¢*J = J'. Then ¢ is C*-smooth
by Myers-Steenrod theorem. This shows that Zj is injective.

Next we show the surjectivity. It is sufficient to show that for any
J € (8§8)71(0);, there is a Lj, -regular map ¢ € Hamgp(M,w);,, such
that ¢*J € (5™)7'(0). Take a large integer m > 2 and [ so that L} C
cm-be c ™t c L. Since 7y is a homeomorphism, we can find a L} ;-
regular map ¢ € Hamp(M,w)3; so that ¢gJ € (Si™)~(0)7. Then it follows
from [NW] that there is a C™*/"-smooth diffeomorphism ¢, : M’ — M such
that ¢¢gJ is a C°°-smooth integrable complex structure, where on the other
hand ¢}¢iw and ¢i@hg, is only C™~1*/"_regular, in particular, L? 4-Tegular.
We can choose a C'*°-smooth diffeomorphism ¢y : M — M’ which we can
additionally suppose that it is sufficiently close to ¢, in C™-topology. Note
that ¢g o ¢ o ¢o is sufficiently close to ¢y in L7 4o-topology. The pull-back
metric ¢3(do o ¢1)*gs is a L2 4p-regular metric which is a Kéahler—Ricci soli-
ton with respect to C*°-smooth integrable complex structure ¢5(¢g o ¢1)*J.
The elliptic regularity argument shows that (¢g o ¢1 0 ¢2)*g, is in fact C>°-
smooth. Hence (¢g 0 ¢ 0 ¢2)*w is also C*°-smooth. Since we further assume
that (¢o o ¢1 0 ¢o)*w is close to Pjw = w in L ,-topology, both C*-smooth
symplectic form w, (¢g 0 ¢1 0 ¢2)*w have the same cohomology classes and
wp = tw + (1 — t)(¢g © ¢1 © ¢o)*w is non-degenerate for any ¢t € [0, 1].
From Moser’s theorem, we obtain a C'*°-smooth diffeomorphism ¢3 satis-
fying ¢%(¢o 0 ¢1 0 ¢2)*w = w, which is close to idy in L, -topology as in the
proof of Proposition 3.3.7. Now we have obtained the expected L? L-Tegular
map ¢ := ¢p o ¢1 © ¢ 0 ¢3. From the construction, we know ¢ can be taken
sufficiently close to ¢y in Lj_,-topology.

Finally we prove that Z; is actually a homeomorphism. Take a convergent
sequence J, — Joo € (S§™)71(0);. It suffices to show that there are elements
O, P € Hamp(M,w)i,, such that ¢ .J,, ¢% Jo belong to (Sg*)~'(0) and
the sequence ¢ J, converges to ¢*_ J in the C'*°-topology, by taking a sub-
sequence if necessary (thanks to the injectivity of Z.). Since Z is surjective,
we can find an element ¢, € Hamp(M,w)i,; so that ¢% Js is C*-smooth
and hence there is no loss of generality in supposing C'*°-smoothness of J,
from the beginning. Since Z;; is a homeomorphism, we can find a sequence
¢ny € Hamp(M,w)i,, so that ¢}, J, € (SF)71(0)} and ¢}, J,, converges to
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Joo in the L?-topology. We define a set
Si(J) = {¢ € Hamp(M,w)i, | ¢*7 € (S¢)71(0)}

for J € (S")7'(0);. Since Z; is surjective, ¥;(J) is a non-empty set. More-
over, the density of Hamp(M,w) C Hamgp(M,w)7,;, which we can deduce
from Weinstein’s tubular neighbourhood theorem, shows that ;(J) C Hamy (M, w)7,,
is also dense. Therefore we can perturb ¢, ;, as small as n goes to the infin-
ity, so that ¢y, ,J, are C*-smooth and preserve the L?-convergence N
Joo € (S™)7H0)7. Now we can proceed to the diagonal argument with re-
spect to (n,l) and conclude that a subsequence O, 1Jny converges to Jo in
C*-topology. O

There is another topological space consisting of biholomorphism classes
of Fano manifolds with Kahler—Ricci solitons, which is considered in [PSS].

(M, J,g,&) is a Fano manifold (M, J) with }

e !
KRan(n, F) = {[M’ J.9,¢] a Kéhler-Ricci soliton (g,£) and [, [¢'[2w™ < F.

In [PSS], a topological compactification KR gy (n, F') of this space is consid-
ered in regard to the ‘complexified’” Gromov—Hausdorff convergence. It was
open whether the space KRgp(n, F) is stable for large F', which was expected
in [PSS]. As we have the equality Fut(¢") = 2 [}, |¢/|2w™ for Kéhler-Ricci soli-
ton (g,&’), this is equivalent to say that the invariants Fut(£’) are uniformly
bounded from above for n-dimensional Fano manifolds with Kahler—Ricci
solitons.

We show that this invariant is actually bounded, not only for Fano man-
ifolds with Kahler—Ricci solitons, but also for all n-dimensional Fano T-
manifolds with the maximal K-optimal action. We also compare KRy (n, F')
with our K (M,w,T) and Ky, which a priori have different topologies.

Proposition 3.4.11. Set

(M, J,g,&) is a Fano manifold (M, J) }
with a Kéhler—Ricci soliton (g,¢&'). J°

Then KReu(n) = KRgu(n, F) for large F' and the map
K(M7W7T) — ICRGH(”) : [‘]] = [M7 J7 gJ]

’CRGH(TZ) = {[M, Jagagl]

gives a homeomorphism onto a clopen (closed and open) subset of KRy (n),
for any 2n-dimensional symplectic Fano manifold (M, w) with K-optimal 7-
action.
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Proof. Since Fano manifolds are bounded [KMM], we have a sufficiently
large Hilbert scheme Hilb of CPY with bounded Hilbert polynomials so that
for any Fano manifold X we can find a point [X] € Hilb, uniquely up to
Aut(PY) = PGL(N + 1)-action, representing an anti-canonically embedded
X C CPY. We denote by Hilbg.,, the Zariski open locus parametrizing the
anti-canonically embedded Fano manifolds. Obviously, PG L(N+1) preserves
the subset Hilbgaye.

Fix a maximal algebraic torus 7" of PGL(N + 1) and consider its action
on Hilbp,,,. Note as we have Stab([X].g) = g~ !Stab([X])g € PGL(N + 1)
for g € PGL(N + 1), we can find a point [X]| € Hilbgay, so that Stab([X]) N
T C Stab([X]) = Aut(X) is a maximal torus. Indeed, for a maximal torus
Tx C Stab([X]), pick a maximal torus 7" = gTg~' C PGL(N + 1) so that
T" N Stab([X]) = T, then we have a maximal torus Stab([X].g) N T =
g 'Txg C Stab([X].g).

Next, consider the normalization Hilb — Hilb, where Hilb is a normal
projective variety and the morphism is a finite surjective morphism. Then
we have a T-equivariant embedding of Hilb into some P(V'), where V is a
T-representation ([MFK-book, Corollary 1.6]). Since V' decomposes into 1-
dimensional representations as V= C,, ®---®C,,, ,, the stabilizer T, C T'
of any point € P(V) can be written as y;,'(1) N --- N Xi’jl(l), hence the
possibilities are finite. It also follows that every fiber S5.'(T") of the following
map

Sy :P(V) — {subtorusof T } : 2 — T,

is a (possibly non irreducible) subvariety in P(V'). Therefore, we obtain a
finite stratification {S*(T;) C P(V)} and {H; C }/ﬂﬁopano} by its restriction.
We refine this stratification by taking connected components of each H; and
continue to write {H; C Hilbga,,}. Since the restricted family U|y, — H;
gives a family of Fano T;-manifolds, we can consider the K-optimal vector
& € (N;)gr with respect to the Tj-action on the Fano manifolds X, (s € H;),
which is independent of s € H;. Let T} C T; be the sub-torus generated by
&i.

Now from the construction, every Fano manifold X with a maximal K-
optimal 7"-action finds some H; satisfying [X] € H; and 7" = T!. Since the
Futaki invariant of £ on X is independent of the choice of s € H;, we con-
clude that there are only finitely many possibilities of the values of Futx (')
for the pairs (X, ¢’) of Fano manifolds with vanishing modified Futaki invari-
ant Futy . In particular, Futx(¢') is bounded for (X, g,¢’) € KRgu(n) and
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hence KRgu(n, F) = KR(n) for large F.

Next we see that the given map K(M,w,T) — KRgu(n) is a homeo-
morphism by a standard argument as follows. The continuity of the map
is obvious. For every [M,J,g] € KRgu(n) and any two representatives
(M, J1, 1), (Ms, Jo, g2) € [M, J, g], we have a diffeomorphism ¢ : My — My
satisfying ¢*Jo = Ji, ¢*ga = g1 and (¢71).& = &}, where £ is the unique
holomorphic vector field satisfying Ric(g;) — L¢gi = gi- It follows that the
map K(M,w,T) — KRgu(n) is injective for K-optimal (M,w,T), and the
images of K(My,w,T1), K(My,ws, Ts) — KRgu(n) intersect iff there is an
isomorphism 6 : T} = Ty and a (17, Ty)-equivariant symplectic diffeomor-
phism (M, w;) = (M, ws).

Since the images of the maps for distinct pairs (My,wy, T1), (Ma, ws, Ts)
are disjoint, it suffices to prove that the maps are closed. Actually, if the
maps are closed, then the maps are homeomorphisms onto their images and
the images are open from the above finiteness of the possibilities of the
K-optimal pairs (M,w,T). To see the closedness, take a sequence [J,] €
K(M,w,T) which has the convergent images [M, J,,, g7,] = [Ms, Joos Goo] i
KRgr(n). As remarked before Proposition 6.1 in [PSS], we have a sequence
(M, J,, g5,] € Hilby. which converges to [My, Ju, goo] € Hilb,, where Hilby,
denotes the open subset of Hilby parametrizing gentle Fano T-manifolds with
bounded Hilbert polynomial. Now we have a canonical continuous (holomor-
phic) map Hilby. — K(M,w,T) C KRy, induced by the universality of Kr,,.
The image of the sequence [M, J,, g;,] is nothing but the original sequence
[J.], so we obtain the convergence of [J,,] to the image of [My, Joo, goo] in
K(M,w,T). O

Remark 3.4.12. The compactification KRgy(n) of KRgy(n) constructed in
[PSS] is a compact Hausdorff space with a countable basis (cf. [DoSu2])
and the boundary KRep(n) \ KReu(n) is closed. The closedness of the
boundary is easily confirmed as follows. Suppose [X,,,g,] is a sequence in
KRgu(n)\ KRgu(n) converging to [Xo, goo] in KReu(n). Take a sequence
[ Xnis ni] € KRau(n) for each n converging to [X,,, g,] in KRau(n). We
can suppose that Hilb(X,,;, g,;) — Hilb(X,, ¢,) in Hilby. Then we can find
a subsequence of [X,,, g,] so that Hilb(X,, g,) — Hilb(X, g ) in Hilby by
the diagonal argument. Since the subset of Hilby parametrizing singular
subspaces of CPY forms a closed subset, the limit [X., goo] must be also

singular, hence [Xo, goo] € KReu(n) \ KReu (1)
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3.4.4 The promised proof of Proposition 3.2.18

If X is a gentle Fano T-manifold, then R (X) =1 for the K-optimal vector
¢'. So there exists a unique solution w; = wy(a) of the following equation

Ric(wi) — Lewy = tw + (1 — t)av
for every t € [0,1) and any initial metric .

Lemma 3.4.13. Let X — A be a family of Fano T-manifolds with R/ (X,,) =
1 for the K-optimal vector £ over a compact disc A and a be a smooth family
of Tk-invariant Kéahler metrics a, on X,. Then there is a sufficiently divisible
k € N and a positive constant ¢ > 0 which depend only on the pair (X, )
such that for any o € A and ¢t € [0,1) the following uniform partial C°-
estimate holds.

anth(ad)ak Z C7

where px, u(a0),k denotes the function on X, defined by

PXo o) k(%) 7= MAXS(T) [, 0y 0

where s runs over s € H%(X,, O(~kKx)) with [, |S’%Lx[,,wt(%),k(kwt<0‘0))n =
1 and hx, u,(a.)x denotes a metric on —kKy, whose curvature is kw; (o).

Proof. This follows from estimates in the proof of Lemma 5.6, Lemma 5.7 and
Lemma 5.8 in [F. Wang, X. Zhu|. Note that we can uniformly take constants
C'in Lemma 5.6, B in Lemma 5.7 and ¢;, C' in Lemma 5.8 independent of «,,
since the constants of Theorem A in [Mab] and of Corollary 5.3 in [Zhu] can be
uniformly taken. Then it follows that any sequence (X,,, wy,(ay,)) (t; — 1) is
a sequence of almost Kahler—Ricci solitons in the sense of [F. Wang, X. Zhu,
Definition 5.1]. Now we can deduce our estimate from [JWZ, Corollary 1.4],
[DoSul, Lemma 3.4] and the argument after the lemma. O

Now we can apply the arguments in [DoSul] to the metric family

{(X, wilas)) s,y <0115

under the above partial C%estimate. Thus we have a sufficiently divisible
number k£ € N with the following properties.
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1. The pair (X,,wi(a,)) defines a point Hilb(X,,w:(a,)) in the compact
Hausdorff topological space Hilby/Ur by embedding X, into CPY us-
ing a unitary basis of H°(X,, O(—kKx,)) with respect to the metric

wi(y)-

2. For any sequence (0;,t;) € A x [0, 1], we have a subsequence such that
(Xo,, wt; (o, )) converges in the ‘complexified” Gromov-Hausdorff topol-
ogy to some Q-Fano variety X, with a Kédhler—Ricci soliton (wy, &.).

3. After taking a further subsequence, the sequence Hilb(X,,,w, (ay,)) €
Hilby/Ur converges in Hilby/Ur to the point Hilb(X., ws) which is
similarly defined using a unitary embedding X, < CPY.

Proof of Proposition 3.2.18. Let {(X,wi(®))}ieo,1) be the family of so-
lutions of the continuity method with an initial metric a. Suppose there
is a smooth Fano T-manifold with Kéhler-Ricci soliton (Xo,ws) which is
the limit of a Gromov—Hausdorff convergent subsequence (X, w,(a)). First
we show that the limit (X, ws) is uniquely determined independent of the
choice of the initial metrics « and the subsequences (X, w;, («)). Suppose
o’ is another Kihler metric on X and (X, wy(a')) = (X, wl,) be a con-
vergent subsequence to a Q-Fano T-variety with Kahler—Ricci soliton. Set
as = sa/ + (1 — s)a. As we noted right before this proof, we can find
a sufficiently divisible number ko € N so that all (X,wi(as)) can be uni-
formly embedded using the unitary basis of H°(X, O(—ksKx)) with respect
to wi(as), which defines a point Hilb(X,w:i(ays)) € Hilby/Ur. Moreover,
we can assume (Xoo, Woo) and (X ,w. ) also define points Hilb(Xo, ws) €

Hilby/Ur, Hilb(X. ,w.,) € Hilbr/Ur respectively, and Hilb(X,wy, () —
Hilb(Xao, woo) € Hilby /Uy, Hilb(X, wy () — Hilb(X,,w') € Hilby/Ur.

These embeddings clearly define a continuous map [0, 1) x [0,1] — Hilb/Uy :
(t,s) — Hilb(X, w;(ay)).

Suppose Xoo 2 X/, If Hilb(Xy,ws ) PGLr NHilb(X) ,w. )PGLr # 0,
then we obtain a test configuration of X, with the central fiber X/  from the
reductivity of the stabilizer Autr (X ), which allows to apply the étale slice
theorem [AHR, Theorem 2.1] and the Hilbert-Mumford theorem. Since the
central fiber admits a Kéhler—Ricci soliton, the modified algebraic Futaki
invariant of this test configuration is zero. However, as X, has Kahler—
Ricci soliton and hence K-polystable, X! must be isomorphic to X,. This
contradicts to our assumption.
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So we have Hilb(X ., weo) PGLrNHilb(X! ,w’ )PGLyr = (). Then in par-
ticular we can take open neighbourhoods B, (Hilb(X ., weo ) PGL7), Ber(Hilb(X/ , W’ )Ur)
separating the two closed subsets Hilb(X ., weo ) PG Ly and Hilb(X/_, wl )Ur.
Here we use a Up-invariant distance on Hilby to consider B. and fix this
distance. Take Up-invariant open neighbourhoods V' & V' C Hilby of
Hilb(X 0, woo)Ur so that U|y, — V' parametrizes Fano T-manifolds appear-
ing in the family @ : X — B with central fiber Xy = X,,. We can assume
Hilb(X, wy, () € V/Urp. From the finiteness of the fibers of the morphism
[B/R] = Kr, in Proposition 3.4.7, there are only finitely many isomorphism
classes of Fano T-manifolds with Kahler-Ricci solitons in this family that
can be the central fiber of some gentle degeneration of X. Putting w;(o) :=
Wot! 4 (1-0)t; (), We have a continuous curve Hilb(X, w;(—)) : [0, 1] — Hilby /Uy
Furthermore, putting

o, :=sup{o € [0,1] | Hilb(X, w;(—))|p,s) C Be(Hilb(Xoo,wee) PGL7/Ur)},

we obtain a sequence of almost Kéhler—Ricci solitons in the sense of [F. Wang, X. Zhu].
So after taking a subsequence, we have a sequence (X,w;(0;)) converging
to some Q-Fano T-variety admitting K&hler—Ricci soliton (X2, w? ) with
the convergent corresponding sequence Hilb(X,w;(0;)) — Hilb(XZ, w2 ) in
Hilby/Ur. Replacing e with /2%, we can construct o, and X/, by the
same process.

Suppose there is infinitely many ¢ for each k such that Hilb(X, w;(0;x)) ¢

VPGLy/Ur. After taking subsequence, we know that

Hilb(X, w;(0},)) € (VPGLr/Ur) N By (Hilb(X oo, woo) PG L1/ Ur)
(3.15)

for
iy =sup{o € (0,0 | Hilb(X, wi(—))|p0) € VPGLy/Ur}.

Since (X, w;(0},,)) is a sequenee of almost Kéahler-Ricci solitons for each k,
we can assume (X,w;(0},)) = (X2, 0 ) for some Q-Fano T-variety with

00, kW
Kéhler—Ricci soliton (X é’cﬂ o Yoo k) The dlagonal argument shows that there

is a subsequence {(X, wzk( Zkk))}k 1 of {(X,wi(o7y))}in and a Q-Fano T-
variety X!  such that (X, w;, (0] ;) — (XY o, wi ) and Hilb(X, w;, (07 ) —

OOOO’

Hilb (X7 ”’ ~)- Now from the property (3.15), we conclude Hilb(X7! o, wil o) €

Hllb(Xoo,woo)PGLT \ Hilb(X,weo)PGLy. But this is absurd in the same
way as we have seen before.
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Therefore we can assume that for any large k, Hilb(X,w;(0;4)) is in the
neighbourhood VPG Ly /Ur except for only finitely many ¢. In this case,

the convergent sequence (X,w;(0ir)) — (X5, w5 ;) defines a convergent

sequence Hilb(X, w;(0; 1)) — Hilb(X[ ,,wl ;) in Hilby /Ur that is uniformly

00,k

away from Hilb(X o, woo ) PG Lt because Hilb(X, w;i(o;x)) € 0B, jox (Hilb(X oo, weo ) PG L7 /Ur).
It follows that X7, % X... Since Hilb(X[,,w? ;) € V'PGLr/Ur and each

there is a gentle degeneration of X with its central fiber X7, there is only

finitely many isomorphism classes in {X7 ,}72,. So we can assume X7 ,
is all isomorphic after taking subsequence. From the uniqueness of Kahler—

oo ” P
Ricci soliton, the sequence (Xm7k, who ) is constant and hence converges to

the limit (X7, ,wl o) = (XL 1, wio ). It follows that Hilb(X7, w5, ) €

00,007 ™ 00,00 00,k 00,007 %Y 00,00

Hilb(X », weo ) PG Ly from the fact

Hilb(X 7, ;, whe 1) € Bejor (Hilb(Xoo, woo) PG Ly7).
This is the last contradiction in this argument, which is now familiar to us.
Finally, we conclude X/ = X, so the limit is independent of the choice of
the initial metrics a and the subsequences t;.

Now we proceed to prove the uniqueness of the central fibers of gen-
tle degenerations of X. Let X — A be a gentle degeneration. We have
a smooth family of Kéhler metrics oy on X, which extends the Kahler—
Ricci soliton ag on the central fiber Xy, thanks to the stability argument
of the Kéhler condition in any sufficiently small deformation (see the last
chapter of [KM-book]). The uniqueness of the continuity path, proved in
[TZ1], shows that wi(ap) = g, so we can find a sequence t; — 1 and
s; — 0 € A so that (X, wy, (as,)) converges to (Xp, ag). We can show that the
sequence (X, wy (a,)) also converges to (X, ap) for any sequence t; — 1 by

a similar argument as above (compare [LWX1, Lemma 6.9. (1)]). Consider

some convergent sequence (X, wy,, (as;)) fm 21 (Xoo,is Weoi) and a sequence

ti = 1 so that dem((XooisWeoi), (X, wy () < 1/i. The diagonal argu-
ment shows that (Xo i, weo ;) — Xp. Since Ap is a smooth Fano T-manifold,
X is also smooth for large i. From what we have shown in the above

argument, it follows that for any fixed Kahler metric @ on X, we obtain

(X, w()) LmiN (Xoo,is Weo ) for each 4, so especially (X i, wnoi) are all iso-

morphic to each other. Now we conclude (X, w;(«)) = (Xb, ap) where the
limit is independent of the choice of the initial metrics o and the sequence

is also independent of the choice of the central fibers (Xp, ag) of the gentle
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degenerations. So for another central fiber (X, oj) of another gentle degen-

eration X’ — A of X, we also have (X,w;(«)) = (X, ag). Tt follows that

(X, ag) is isomorphic to (Xp, o) from the uniqueness of the limit. This is
what we expected. Il

3.5 Discussions

3.5.1 On some examples

Here we observe step by step some known examples of Fano manifolds ad-
mitting Kéhler—Ricci solitons. Although the existence is known, as far as
the author knows, even the associated holomorphic vector fields £ are not
explicitly given in almost all examples.

Ezxample 3.5.1. The blowing-up of CP? at one point is a typical example of
Fano manifold admitting non-Einstein Kahler—Ricci solitons. This seems the
first example of a compact complex manifold proved to admit Kahler—Ricci
solitons, which was found by Koiso [Koi] and Cao [Cao|, independently.

Ezample 3.5.2 (toric Fano manifolds). It is shown in [X-J. Wang, X. Zhu]
and reproved by [DaSz| from the K-stability viewpoint that every toric Fano
manifold admit Kahler-Ricci soliton and it is Kéhler-Einstein if and only
if the barycenter of the canonical polytope coincides with the origin. Note
that the maximal torus action on a toric Fano manifold is not necessarily
K-optimal.

Every toric Fano manifold is rigid, i.e. H*(X,0x) = 0, where © y denotes
the tangent sheaf ([BieBri, Proposition 4.2.]). It follows that toric Fano
manifolds give discrete points in the moduli space KRgy(n).

Ezample 3.5.3 (Fano homogeneous toric bundles). It is shown in [PS] and re-
covered in [Hua] that Fano homogeneous toric bundles have Kahler—Ricci soli-
tons. This is a generalization of the main result in [X-J. Wang, X. Zhu]. It is
again proved in [BieBri, Proposition 4.2.] that Fano homogeneous toric bun-
dles are rigid (see also [BieBri, Proposition 2.2.1.], [T. Del, Example 3.10.]).

Example 3.5.4 (horospherical Fano manifolds). It is shown in [T. Del] from
the K-stability viewpoint and reproved by [F. Del| that every horospherical
Fano manifold admits Kéahler—Ricci soliton. This is a generalization of one
of the main results in [PS].
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Horospherical Fano manifolds with Picard number one (b? = 1) are clas-
sified in [Pas]. There is a unique horospherical Fano manifold (with an action
of the complex G5 group) in this classified class which admits a non-trivial
small deformation. We can see as follows (or just by checking the criterion in
[T. Del]) that the Kahler—Ricci soliton on this horospherical Fano manifold
Xy is not Kahler-Einstein. It is shown in [PP] that the Kuranishi family
of this horospherical Fano manifold X is given by an iso-trivial degenera-
tion X — C of the orthogonal Grassmanian Gr,(2,7). As the Grassmanian
Gr,(2,7) is homogeneous, it admits Kéahler-Einstein metric ([Mat2]). If X
admits Kahler—Einstein metric, then we get a contradiction by the separation
property of Kéhler—Einstein Fano manifolds ([SSY, LWX1]) as the deforma-
tion X — C is iso-trivial and the general fibre admits Kahler—Einstein metric.
Thus we conclude that Xy cannot admit Kahler-Einstein metrics, while it
admits Kahler—Ricci soliton explained as above.

This example shows that the family X — C is not in the category K(n),
though any fibers in the family, which are isomorphic to either Gr,(2,7) or
X, admit Kahler—Ricci solitons. We have to separate them into two pieces
X* — C* and Xy — {0} as the associated holomorphic vector fields jump at
the origin.

It seems interesting to study whether any horospherical Fano manifolds
are K-rigid, which means H-(X,©x) = 0 for a K-optimal action X T

Ezxample 3.5.5 (Fano manifolds with complexity one). It is shown in [IS] and
[CabStis] that complexity one Fano threefolds of type 2.30, 2.31, 3.8*% 3.18,
3.21, 3.22, 3.23, 3.24, 4.5* and 4.8 from Mori and Mukai’s classification [MM]
admit non-Einstein Kahler—Ricci soliton.

Especially 3.8 and 4.5 admit deformations, so H:(X, ©) // Auty(X) might

be not mere a point.

The product X xY of two Fano manifolds X, Y with Kahler—Ricci solitons
admits Kahler-Ricci solitons. So for instance, suppose X is a Del Pezzo
surface of degree 1 < d < 4 and Y is the blowing-up of CP? at one point,
then X xY admits non-Einstein Kéahler—Ricci solitons. By deforming X while
fixing Y, we get a T-equivariant deformation of X x Y where X xY T
is induced from the K-optimal action Y «\~\ T. So X x Y provides a non
discrete point in the moduli space KRgm(n) outside of the subset Ko g (n)
consisting of Kahler—Einstein Fano manifolds.

Dancer—-Wang’s examples [DW] may also provide non discrete points in
the moduli space.
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3.5.2 Future studies
Questions on the structure of the moduli space

Question 3.5.6. Study explicit examples of (T,x) or (M,w,T) with non-
trivial 7" whose moduli space Kr, or (M, w, T') has positive dimension and
has a concrete description on its structure.

The author does not have any concrete description of positive dimensional
moduli spaces (M, w, T') so far. Related studies in the Kéhler—Einstein case
(i.e. T'=0) are explored by [OSS, SS, LiuXu].

Question 3.5.7. Is the complex analytic space K, actually quasi-projective?

This question is related to the result in [LWX2] where the quasi-projectivity
of the moduli space of Fano manifolds with Kahler—Einstein metrics is proved.

When T is non-trivial, even the finiteness of the number of the connected
components of K, is still unknown, even though it has a natural topological
compactification as a moduli space.

Question 3.5.8. Is there a canonical complex analytic structure on the com-
pact topological space KRgp(n)? How about on the space KRgp(n) \
KRegu(n)? Can we identify them with algebraic spaces, or moreover with
projective schemes?

This is related to the work of [Oda3, LWX1]. The techniques in this
chapter do not work, at least directly, in the singular setting.

Question 3.5.9. Is there a canonical complex analytic (or algebraic) moduli
space of Q-Fano varieties with Kahler—Ricci solitons?

In all questions, it seems better to investigate modified K-stability from
more algebro-geometric perspectives, possibly with some help of differential
geometry.

Questions related to the extent of the moduli space

Question 3.5.10. Are there any non-gentle/modified K-unstable examples of
Fano manifolds with Picard number one? How about birationally rigid Fano
manifolds with Picard number one?

This is a refined question related to the Odaka-Okada conjecture [OO].
Two modified K-unstable examples are given in [T. Del], but both have the
Picard number greater than one. The following is an optimistic conjecture
towards a framework for classification of K-unstable Q-Fano varieties.
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Conjecture 3.5.11. Let X be a Q-Fano variety.

1. If X is not modified K-semistable, there is a (non-equivariant) R-
degeneration (cf. [DeSz, CSW]) of X whose central fiber is a modified
K-semistable Q-Fano variety whose H-invariant attains the infimum of
the H-invariants over all R-degenerations. Moreover, these degenera-
tions are unique up to isomorphisms.

2. If X is modified K-semistable with respect to a torus action 7', then
there is a T-equivariant degeneration X’ — A of X whose central
fiber X{ is a K-polystable Q-Fano T-variety (modified K-polystable
with respect to the T-action). Moreover, any two such T-equivariant
degenerations X] — A, X; — A are equivalent up to scaling in the
sense of the T-equivariant version of [BHJ, Definition 6.1.], not only
they have isomorphic central fibres.

This conjecture is related to [CSW, Conjecture 3.7.] and is an analogy
of the Harder-Narasimhan filtration for torsion-free coherent sheaves and the
Jordan-Hélder filtration for semistable coherent sheaves (see [HL-book]) as
already observed in [DeSz, Remark 3.6.]. We include the singular case for
the future application to the Question 3.5.9.

For the first item, [CSW] shows that every smooth Fano manifold X has
an R-degeneration with the Q-Fano central fiber X, and there is an another
degeneration X’ — A of X, with the modified K-polystable Q-Fano central
fiber X} with the K-optimal vector &, which can be extended to X, with the
vanishing modified Futaki invariant (see also [DeSz]). So as for the existence,
it suffices to prove the modified K-semistability of Xy. Since (X{,¢') is K-
polystable, the problem is reduced to the ‘stability of K-semistability in small
deformations’, which is related to the Artinness of the Can-stack consisting
of K-semistable Q-Fano T-varieties, as in Proposition 3.4.4. It is remarkable
that if X is K-unstable (with respect to the trivial torus action), then X}
must be endowed with non-Einstein Ké&hler—Ricci solitons ([CSW, p. 17]).

The existence part of the second item is confirmed in [DaSz] for smooth
modified K-semistable Fano T-manifolds. The uniqueness of the central fiber
in this case could be demonstrated by the same methods in [LWX1], which is
a role model of our proof of Proposition 3.2.18. (We worked with the smooth
central fiber because the author felt that it makes arguments clear. )

178



The uniqueness assertion in the second item is stronger than the unique-
ness of the central fiber. This stronger uniqueness (for every smooth gentle
Fano T-manifold X) has the following application.

Corollary 3.5.12 (of the uniqueness statement of Conjecture 3.5.11 (2)).
The moduli space ICr,, — Kr, we constructed in Theorem 3.4.8 is good
in the sense of Alper [Alpl]. (In our case, the cohomological affineness
should be defined as the exactness of the push-forward functor Coh(Kr,) —
Mod(Kr,y). )

Actually, using the uniqueness of the degeneration in the sense of [BHJ],
we can show that the étale morphism [B/R] — ICr, is an open embedding.
Then the corollary follows from the fact that [BK¢/K] — BK® ) K¢ is
a good moduli space. Recall that we have already shown the central fiber
of the degeneration is unique, which we used to prove that the morphism
[B/R] — BK°® || K¢ factors through Im[B/R] C Kr,. There may be other
ways to show this naturally expected corollary.

3.6 Appendix: Complex analytic stacks

In this Appendix A, we briefly review some general notions and examples of
stacks which we used in section 4. As we work only over the category (or
more precisely, the site) Can of complex spaces, we do not introduce stacks
in full generality, which actually work over any site such as the étale sites
of schemes or algebraic spaces, the site of C"*°-manifolds and so on. The
interested readers should also refer to [SPA, FGA-book]| for stacks in full
generality.

3.6.1 Fibred category

Recall that we denote by Can the category of complex spaces, which are not
assumed to be reduced nor irreducible. The set of holomorphic morphisms
between complex spaces U and V' is denoted by Holo(U, V).

Definition 3.6.1 (fibred category). Let F be a category and p : F — Can
be a functor to the category of complex spaces. The functor p : F — Can
is called a fibred category over Can if it satisfies the following properties.
For any holomorphic morphism f : X — Y between complex spaces and
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any object n € Obj(F), there exists an object £ € Obj(F) and a strongly
cartesian morphism ¢ : & — n € Mor(F) over f.

Here the morphism ¢ : & — n is called strongly cartesian if it enjoys the
following universal property: for any complex space X', any holomorphic
morphism ¢ : X’ — X, any object & € Obj(F) with p(¢’) = X’ and any
morphism ¢’ : £ — n € Mor(F) with p(¢') = f o g, there exists a unique
morphism x : & — £ such that ¢’ = ¢ o x and p(x) = g.

¢/
F ¢ T g —a3
|
i fog
Can X =95 X —f3Y

Let X be a complex space and p : F — Can be a fibred category. We
denote by F(X) the subcategory of F consisting of objects £ € Obj(F)
with p(§) = X and morphisms ¢ with p(¢) = idx. We call F (or more
precisely F — Can) a category fibred in groupoids if morphisms in F(X)
are all invertible for any complex space X.

A functor f : F — G between two fibred categories is called a morphism
of fibred categories if pg = pg o f (strictly) and f maps strongly cartesian
morphisms in F to strongly cartesian morphisms in G. We can also consider
2-morphisms between two (1-)morphisms f, g : F — G which are just natural
transformations ¢ : f — g satisfying pg(te : f(§) — g(&)) = idp, () for all
¢ € Obj(F).

The functor Cany — Can : (£ : S — X) — S, where Cany denotes
the category of holomorphic morphisms £ : S — X, is a typical example of
category fibred in groupoids (actually in sets). A holomorphic morphism of
complex spaces f : X — Y gives the morphism Cany — Cany which maps
an object £ : .S — X to the object fo& : S — Y. On the other hand,
a morphism f : Cany — Cany as fibred categories gives a holomorphic
morphism f(idx) : X — Y. Therefore, we have a canonical fully faithful
embedding of Can to the (2-)category of fibred categories. So we often
abbreviate Canx as X.

PF

Ezxample 3.6.2. Let a : X x G — X be a holomorphic action of a complex Lie
group G to a complex space X. We denote by [X/G],' the fibred category

!The symbol , means that this fibred category is not a stack in general; it is just a
pre-stack.
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(in groupoids) defined as follows.

1. Tts objects are holomorphic morphisms £ : § — X from some complex
spaces S.

2. Its morphisms &g — 1y are the pairs (f, ¢) of holomorphic morphisms
f:S—=Tand ¢: S5 — X x G satistying pjop =6 and aop=no f.

3. Its functor [X/G], — Can maps objects {s to S and morphisms (f, @) :
Es—nrto f: S5 —T.

Objects in the fibred category [X/G], coincide with X = Cany, but
morphisms are different. For instance, two objects z,y : pt — X in [X/G],
are isomorphic if and only if there exists an element g € G with xg = y. We
have the morphism X — [X/G], of fibred categories defined by &g +— &s.

There is another related fibred category [X/G] with a good geometric
feature.

Ezample 3.6.3. We denote by [X/G] the fibred category (in groupoids) de-
fined as follows.

1. An object consists of a triple (S, P,£) where S is a complex space,
P is a principal G-holomorphic bundle over S and £ : P — X is a
G-equivariant holomorphic morphism.

2. A morphism (5, P,§) — (T,Q,n) is a pair (f,¢) where f: S - T is a
holomorphic morphism and ¢ : P — @) is a G-equivariant holomorphic
morphism over f which induces an biholomorphism P = S xr @), and
satisfies £ = £’ o ¢.

3. Its functor [X/G] — Can maps objects (S, P,£) to S and morphisms
(f.6): (S.P.&) > (T,Q.n) to f: 5 — T.

We have the morphism [X /G|, — [X/G] of fibred categories which maps
an object £ : S — X to the object (5,5 x G,a0 (£ x idg)) and a morphism
(f,®) : & — nr to the morphism (f, f X ¢). This is a typical example of the
‘stackification’ we treat in the next subsection. The fibred category [X/G]
is called a quotient stack.

When the action is proper free, then there exists a complex space X/G,
a holomorphic morphism X — X/G and an isomorphism X/G = [X/G] of
fibred categories, which is compatible with X — X/G and X — [X/G].

Let us see another example generalizing [X/G],. A holomorphic groupoid
consists of the following data (X, R, s,t,¢):
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1. X and R are complex spaces.
2. s and T are holomorphic morphisms from R to X.
3. ¢: R x5 x4 R — Ris a holomorphic morphism.
These data are to satisfy the following rules for any complex space S:

1. For every holomorphic morphism & € Holo(S, X), there exists a holo-
morphic morphism e; € Holo(S, R) such that co (e x ¢) = ¢ and

co (¢ x eg) = 1 for any pairs (eg, @), (¥, e) with soe; =t o ¢ and
50 =toeg.

2. The equality ¢o ((co (6 X 1)) X x) = ¢o (6 X (0 (4 x x))) holds for
any ¢,1, x € Holo(S, R) with so¢ =to and so) =toy.

3. For any ¢ € Holo(S, R), there exists a ¢ € Holo(S, R) such that so¢ =
top=¢§ sop=togp=nand co(px¢)=ey co(P x¢)=e

This condition is equivalent to say that Holo(.S, X') forms an abstract groupoid
whose morphisms £ — 7 are ¢ € Holo(S, R) with so¢ = £ and to ¢ = 7,
and composition is given by c.

A holomorphic group action a : X x G — X gives an example of holomor-
phic groupoid with R=X xG,s=p;,t=aandc=idx u: X xGXG —
X xG. Ifu:U — X is a holomorphic morphism, then we can consider the
pull-back holomorphic groupoid (U, (U X U) Xyxu xxx,sxt R, s, t', ).
Example 3.6.4. We denote by [X/R)], the fibred category (in groupoids) de-
fined as follows.

1. Tts objects are holomorphic morphisms £ : S — X from some complex
spaces S.

2. Its morphisms & — 1y are the pairs (f, ¢) of holomorphic morphisms
f:S—=Tand ¢: S — Rsatisfying sop =& andtop=no f.

3. Its functor [X/R], — Can maps objects {s to S and morphisms (f, ¢) :
¢s—nrtof:5—T.

Here is our interested fibred category from Definition 3.4.1.
Lemma 3.6.5. The category Kz, and K7, forms a fibred category by the

functor ICgf)X —Can: (m: M — S,a)— S.
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This is just because the following cartesian diagram gives a cartesian
morphism for any holomorphic morphism f : X — Y between complex
spaces and any object (7 : M — Y, a) € Klgf)x

XXyM—>M

| |

x—7 Ly

The correspondence (7 : M — Y, ) — (f*1: X xy M — X, f*a) gives
a functor ICr, (Y) — Kr,(X). It looks like that this provides a functor
X = Kr,(X) from the category Can to the “category” of groupoids, but
actually does not. This nuisance comes from the set theoretical fact that
X Xpy (Y xg2 M) # X X052 M; they are not exactly the same objects
but just naturally isomorphic. This is the reason why we should formulate
things in terms of fibred category.

3.6.2 Descent data

We introduce descent data of a fibred category over Can.

Definition 3.6.6 (descent data). Let p : F — Can be a fibred category, X
be a complex space, U := {i, : Uy, = X }aea be an open cover of X (in the
real topology). We denote by u, s : U, N Ug < U, the inclusion morphism
to the first factor and by uag, : Uy, N Us N U, — U, N Up the inclusion
morphism to the intersection of the first and second factor (uns, = Uga)-
Put Ay := A X A/Gy, A3 .= AXx Ax A/Gs.

A descent datum of F over (X,U) consists of the following data © =
(El, Eg, E3, @2, @3):

1= {fa € f(Ua>}a€A
2= {&ap € F(Ua NUs) }aypyea,
3= {faﬁv S j:(Ua NUzN U’Y)}{a»ﬁ,’Y}GA:s

[11 [1] [1]

are sets of objects in F and

Oy := {ba,p : §ap — &a | Ua,p is cartesian over uq g} (a,5)ca2

63 = {Qaﬂ,v : 50467 - §a,3 | 90[67/‘/ is cartesian over uaﬂﬂ/}({aﬁ}ﬁ)eAQXA
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are sets of cartesian morphisms in F. These data must satisfy
Oa,6 © Oapy = Oapy 0 brap

for any «, 3,7 € A.

p
F » Can
Eapy O6v.0 > &y Uagpry Rl > Usy
N 0 N AN
Oap,~y y’y uocB,'y\‘ UB,WN
Y
Oyap ap 08,0 > GB Uya,B Uag UB,a
l B ) J/ . \L
g'ya Oa,p Sy U'ya Yo, 8 U,
AN N
Oa,~ l Uer,~ l
N >
§a Ua

A descent datum © = (2, =, Z3, 09, O3) is called effective if there exists
an object £ € F(X) and a set of morphisms

©1:={04 : &a — & | 0, is cartesian over iy faca

satisfying
Qa 9} 906”3 = 95 o) 95704

for any a, 8 € A. We define an effective descent datum of F over (X,U) to
be an object consisting of data ©, = (D,&,0,) = (£, =1, 22,23, 01,05, O3)
as above.

Remark 3.6.7. Note that
e Every descent datum of Cany is effective.
e There are descent data of [X/G], which are not effective, in general.
e Every descent datum of [X/G] is effective.

As for the second item, consider the fibred category [(C*\ {0})/C*],
for example. More explicitly, let & be an open cover of CP! defined by
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two open subsets U, = {(z1 : 22) | 22 # 0},Us := {(21 : 22) | 21 # 0}
and let &, : U, — C*\ {0},&5 : Us — C?\ {0} be morphisms defined by
Ealz1 @ 20) == (21/22,1),&(21 = 22) = (1, 22/21), respectively. Consider a
descent datum over (CP',U) with Z; := {&,,&s} given by an obvious way.
In order to be effective, this descent datum should define a non-constant
morphism CP' — C?\ {0} which is isomorphic (not equal) to &,,&s when
restricted to each open set, but this is impossible as every holomorphic map
CP' — C?%\ {0} is constant. So this descent datum is not effective in this
fibred category.

On the other hand, the corresponding descent datum in the fibred cat-

egory [(C? \ {0})/C*] becomes effective, completed by the object CP! &
(C2\ {0}) = (C2\ {0}) in [(C?\ {0})/C*]. Actually, [(C?\ {0})/C"] is

isomorphic to CP! as fibred categories.

Definition 3.6.8 (morphism of descent data). Let © = (=, Z5, =3, 09, O3),
D' = (2,5, =5, 0),0%) be two descent data of F over (X,U). A morphism
from ® to @’ is a triple & = (P, Py, P3) of sets of morphisms

O = {¢a: 60— & € F(U,) | €a € E1, €, € ElYaca
b, = {¢a6 : éaﬁ — é;ﬁ S ]:(Ua N Uﬁ) ‘ gaﬁ S 5275(/1/3’ € EIQ}{O‘vﬁ}EAQ
D5 :={dapy : apy = dvﬁv € FUaNUsNU,) | &apy € 53,5;,37 € Sshaparens

in F satisfying
Pa ©0ap = 9:17,3 ©¢ap and Pap o bagy = 0:1,/3,’7 © Papy

for all a, 5,7 € A. Descent data naturally form a category with these mor-
phisms. We denote by Faes(X,U) the category of descent data.

Let D, = (9,£,0,), D" = (9,¢,0)) be two effective descent data of F
over (X,U). A morphism from © to ®', is a quadruple ;. = (¢, P, Py, P3)
where (@1, Py, P3) gives a morphism of corresponding descent data and ¢ :
¢ — &' is a morphism in F(X) satisfying

¢ © 0& = 9:1 © ¢a
for any a € A. We denote by F.x(X,U) the category of effective descent

data.

185



3.6.3 Stacks over the complex analytic site Can

We can consider the forgetful functors Feg(X,U) — Faes(X,U) defined
by ;. = (9,£,0;) — D and Feg(X,U) — F(X) defined by D, =
(©,£,01) — & The latter functor Feg(X,U) — F(X) is fully faithful
and essentially surjective. Therefore there is an inverse functor F(X) —
For(X,U) (assuming the axiom of global choice). As for our fibred category
ICr,, there is a canonical choice? of the inverse functor defined by

(1M —=8)—= (M= S {r'(Us) = Usta, {7 (UaNUs) = UsNUg} s, - - -)-

However, in general there is no canonical choice of this inverse functor; there
needs an additional choice of (D,0;) compatible to &, which is not unique
as object but unique only up to isomorphisms.

Definition 3.6.9 (Can-stack). A fibred category p : F — Can is called a
stack over Can or just Can-stack if it satisfies the following two conditions
for any complex space X and any open cover U of X.

1. The functor Fog(X,U) — Faes(X,U) is fully faithful.
2. The functor Feg(X,U) — Faes(X,U) is essentially surjective.

Remark 3.6.10. If we have a choice of pull back f — f*¢ with a morphism
f*¢ — & so that it is cartesian over f : S — X, we can consider a contravari-
ant functor defined by

Morx(&,m) : Cany — Sets : (f : S — X) — Homgs) (7€, f™n),

where Can¥ stands for the opposite category of Cany. Then the first condi-
tion of the above definition is equivalent to say that the functor Morx(&,n)
is a sheaf on the site Cany.

It is customary to denote by Isomx (&, n) the functor Morx (€, n) when F
is a category fibred in groupoids, as every morphism in F(X) is an isomor-
phism.

We can consider a related fibred category Morx (£, n) (in setoids) with-
out a choice of pull back. The category consists of objects (fs, ¢¢, ¢,,) Where

2This is well-defined because U, NU s = UgNU, as complex spaces, in particular as sets.
On the other hand, U, x x Ug # Ug x x U, as sets, though they are canonically isomorphic,
because of the set theoretical fact (a,b) = {{a}, {a,b}} # {{b},{b,a}} = (b,a).
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f S — X is a holomorphic morphism of complex spaces and ¢¢ : {g —
£, ¢, : ns — n € Mor(F) are cartesian arrows over f. Its morphisms
(fs, P, dy) = (fsr, %, ¢,,) are triples (g,v¢,y,) where g : S — S" is a holo-
morphic morphism of complex spaces and ¢ : £g — &g,y © g — N are
cartesian arrows over g satisfying fs = fs/0g, ¢¢ = ¢; 0 and ¢, = ¢; 09y,

For any fibred category, we can always associate a stack in a canonical
way. Here is the fact from [SPA, TAG 02ZN, 0435].

Proposition 3.6.11. Let p : F — Can be a fibred category. Suppose we
have a choice of pull back (f,&) — f*¢ (just for simplicity). Then there exists
a Can-stack F' (with a choice of pull back) and a morphism s : F — F’ of
fibred categories with the following properties.

1. For every complex space X and any &,n7 € Obj(F (X)), the mor-
phism of presheaf Morx(§,n) — Morx(s(§),s(n)) is a sheafification

of Morx(&,n).

2. For every complex space X and any £ € Obj(F'(X)), there exists an
open cover U = {i, : Uy, — X}, of X such that 3¢’ is isomorphic to
s(&y) for some &, € Obj(F) for every a.

3. Given a Can-stack G and a morphism ¢ : F — G of fibred categories,
there exists a morphism ¢’ : F' — G of fibred categories such that
there exists a 2-isomorphism between g and ¢’ o s.

The last property actually follows from the first two properties. A stack
F' with the last property is called a stackification of F and the stack F’
constructed in the proof of this proposition as the stackification of F (a fixed
construction is in mind). We denote by [X/G], [X/R] the stackification of
the fibred category [X/G],, [X/R], respectively and call them the quotient
stack. The stack [X/G] is a stackification of the fibred category [X/G],, so
it is (canonically) isomorphic to the stackification [X/G].

A 2-fibre product [SPA, 003Q)] of fibred categories can be calculated as
follows. We refer to this construction as the 2-fibre product of fibred cate-
gories.

Proposition 3.6.12. Let F,G,H be fibred categories over Can and f :
F —H,g:G — H. The fibred category € defined as follows enjoys the
universal property of 2-fibre product.
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1. An object of £ is a quadruple (X, £, n, ¢) where X is a complex space,
€ is an object in F(X), n is an object in G(X) and ¢ : f(§) — g(n) is
an isomorphism in H(X).

2. A morphism (X, &, n,¢0) — (Y, £, 1, ¢') is a pair (o, 7) where o : £ — ¢’
is a morphism in F and 7 : n — 7’ is a morphism in G satisfying
p(o) =p(r): X =Y and g(7) 0 ¢ = ¢ o f(0).

When F, G, H are all Can-stacks, the stackification of the fibred category
€ is denoted by F x 144,,G. The Can-stack F x y4,4G satisfies the universal
property of 2-fibre product in the 2-category of Can-stacks.

The following verifying process might help the readers’ better under-
standing of the notion of descent. See Definition 3.4.1 for the definition
of ’CT,xa %:X'

Lemma 3.6.13. The fibred categories K, K7, are Can-stacks.

Proof. For abbreviation, we let M stand for (7 : M — S,a) € Kr,.
Let S be a complex space, U = {U,}, be an open cover of S and © =
(21,22, 23, 02,03) be a descent datum of ICr, over (X,U). Since 0,5 € Oy
is cartesian, it induces an isomorphism

Oap : Mag = Malvanu,-
So we obtain an isomorphism
9’5a =0ga0 9;,15 : Moa|UaﬂU5 = Mﬁ|UaﬂUB-

Similarly, we obtain an isomorphism

(9/670‘|Ua5'y © 950477) © (ea»ﬁ’Uaﬂw ° 00‘/877)_1 : MOC|Ua[-3'y l> Mﬁ‘Ua,B'y

/

which we denote by 6 from the cartesian arrow 0,5, € Os.

Boyy
From the condition 04 5004~ = ba,, 00545, we obtain 0 5 0.6230/77 =0 .5
and 05, |v.nvsnu, = 05, So we can glue M, together by gluing maps 6,

and obtain a complex space M with a natural set of morphisms 0, := {0, :
M, — M}aea such that (M, =, 55, 23,01, 0,,03) is an effective descent
datum. Therefore the forgetful functor Feg(S,U) — Faes(S,U) is essentially
surjective.

It is easy to see that Morg(M, M’) is a sheaf on the site Cany. O
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Ezample 3.6.14. This example is cited from [Alpl, Example 8.2] and must
help the readers to understand that gluing good moduli spaces is a non-
trivial task. Consider the C*-action on C? by the scalar multiplication. The
quotient stack [(C?\ {0})/C*] is naturally an open sub-stack of the quotient
stack [C?/C*]. Both stacks admit good moduli spaces [(C*\ {0})/C*] —
CP!, [C?/C*] — C? J/ C* = pt respectively. In spite of the openness of the
morphism [(C?\ {0})/C*] — [C?/C*|, the induced morphism CP' — pt of
good moduli spaces is not open.
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Chapter 4

Application of Theorem G:
Algebraic moduli problems on
Q-Fano varieties with KRs

Theorem G in chapter 3 enables us to approach the problem on compact-
ification of the moduli space of Fano manifolds with Kahler—Ricci solitons.
When the author wrote [Inol], Theorem G was missing, so that the author
was unable to apply established methods in [Oda2, Oda3, LWX1] on the
moduli space of Kahler—Einstein Fano varieties. This is why the author de-
veloped another method to construct the moduli space of Fano manifolds
with Kahler—Ricci solitons, making use of moment map picture on p-scalar
curvature. Now we have filled the missing piece and so are able to apply
the methods in [Oda2, Oda3, LWX1]. We will prove the algebraicity of the
moduli space constructed in the previous section. We also outline how we
can reduce the moduli problem to a fundamental task on pK-stability; Con-
jecture I.
The content is based on the article [Ino3].
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4.1 Algebraic moduli space of Fano manifolds
with KRs

4.1.1 Constructibility
The YTD conjecture on puK-stability of Fano varieties

We firstly prepare some terminologies. For a Q-Fano T-variety X, we call a
vector £ € t K-optimal if we have Fut§”|t = 0. Such a vector £ always exists
and is unique for each T-action by [TZ2, Lemma 2.2]. A torus action on a Q-
Fano variety X is called K-optimal if the torus is generated by the K-optimal
vector & of some maximal torus action in X. All K-optimal actions on X are
conjugate to each other since the K-optimal vector associated to a maximal
torus is unique and all maximal tori are conjugate to each other. We call
a Q-Fano T-variety X pK-semistable (resp. pK-polystable, uK-stable) if T
is K-optimal and the polarized variety (X, —Ky) is ,ug”K—semistable (resp.
M?K—polystable, ,LL?“K—stable) with respect to the K-optimal vector &.

Conjecture I. Let X be a Q-Fano variety admitting Kéhler—Ricci soliton
with a K-optimal torus action 7. Then it is uK-polystable with respect to
general T-equivariant test configurations.

It is already known by [BW] that a Q-Fano variety with Kéhler—Ricci
soliton is puK-polystable with respect to special degenerations. There are two
possible approaches to this conjecture from different perspectives:

e Algebraic approach: As Li—Xu [LX] for the usual K-stability, we show
that the pK-polystability of a Q-Fano variety with respect to general
test configurations and with respect to special degenerations are equiv-
alent.

e Analytic approach: As Berman-Darvas-Lu [BDL| for the usual K-
stability with smooth X, studying ug\—Mabuchi functional, we show
that any test configuration with vanishing ,ug‘—Futaki invariant is equiv-
alent to a product configuration under the existence of ,ug\—cscK metric.

For our interest in this section, it suffices to deal with smoothable Q-Fano
variety. We already know that a Fano manifold with Kahler—Ricci soliton is
pK-semistable with respect to general test configurations. So in the smooth
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case, it is a matter of dealing with test configurations with vanishing u-Futaki
invariant.

The converse claim ‘from polystability to the existence of canonical met-
ric’ is in general regarded as a difficult direction of the Yau-Tian—-Donaldson
conjecture. However, for Fano manifolds, it is already proved by Datar—
Székelyhidi [DaSz] and [Y. Li] that a uK-polystable K-smoothable Q-Fano
variety admits a Kahler—Ricci soliton, as a variant of the Kahler-Einstein
case [CDS, Tian2, SSY], using twisted K&hler—Ricci soliton instead of log
Kahler-Einstein metric. The argument heavily employs an argument on
Gromov-Hausdorff limit under a uniform estimate on Kahler metrics with
Ricci lower bound (the partial CY-estimate), which is not suited for general
polarization (cf. [DoSul]).

The moduli stack

A K-family over B of Q-Fano varieties is a T-equivariant proper flat family
7 : X — B of Q-Fano varieties with K-optimal T-action which enjoys Kollar
condition. Here Kollar condition means that some reflexive power wg’(ﬂ/]B of
the relative canonical sheaf is T-equivariantly isomorphic to a T-equivariant
line bundle and every reflexive power w[)?}]B commutes with arbitrary base
change (cf. [Kov], [BX]). A non-equivariant family may not be a K-optimal
torus equivariant family, however, we can stratify the base so that the family
restricted on each stratum admits a K-optimal torus action (cf. [Inol]). We
call a K-family 7 : X — B pK-semistable famuly if every fibre is a uK-
semistable Q-Fano T-variety.

A K-smoothable Q-Fano variety X is a Q-Fano variety which admits a
K-family 7 : X — A of Q-Fano varieties with an isomorphism & & X whose
fibres away from the origin 0 € A are smooth Fano manifolds.

Define the moduli stack M" by putting its fibre over B as

n . uK-semistable families over B of

M*(B) = { K-smoothable Q-Fano varieties of dimension n } (4.1)

Let us recall a terminology in [Inol]. We call a Fano manifold X gentle
if it admits a special degeneration to a smooth Fano manifold with Kahler—
Ricci solitons which is equivariant with respect to a K-optimal action of X.

Proposition 4.1.1. Let a € ¢;(X) be a Kéhler form on X. If there exists
a twisted Kahler—Ricci soliton w; on X for every 0 < ¢t < 1, which satisfies
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Ricw; — Leswy = tw; + (1 —t)ar, then X is pK-semistable. In particular, every
gentle Fano manifold is pK-semistable. (cf. [Inol, Section 2])

Sketch of proof. Gentle Fano manifold admits a twisted Kahler—Ricci soliton
for every t < 1. Similarly to [Sze-book], we can see that the following twisted
pMabuchi functional is bounded from below for each t < 1:

Mai-1e(d) = Me(¢) + (1 — ) Tae(9),

where we put

1
M () = —/ dt/ @ggfreeg(@)wgt’
0 X
1
Jee(9) := n/ dt/ P (tro,, (@ — w,) +§J90t)€05(¢t)wgta
0 X

where ¢, is a function satisfying /—190¢; = a—w;. On the other hand, as in
[DR, Theorem 6.4] (cf. [Lah]), we can see that the following twisted pFutaki
invariant is the slope of the twisted uMabuchi functional along any smooth
subgeodesic associated to a smooth test configuration (X', £) dominating the
trivial test configuration:

Eve(—Kx — L.e*)
Eve(el) ’

Futy_;¢(X, L) = Fute(X, L) + (1 — t)

independent of a € ¢1(X). It follows that Fut;_;¢(X, L) is non-negative
for every ¢ < 1. Since Fut;_¢(X, L) is continuous on ¢, Fute(X,L) =
Futg¢(X, £) is also non-negative. O

We also put M™° the substack of M" consisting of gentle Fano man-
ifolds. It is shown in [Inol] that M™° is Artin in analytic category and
admits the moduli space.

Constructibility

We firstly note the following counterpart of [Oda2, Lemma 2.10] for general
Kahler class.

Lemma 4.1.2. Let B be a projective manifold with a Hamiltonian action
by a torus 7. Let ¢ = [a + p] € NSr(B,R) be an equivariant cohomology
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class. For z € B and n € t, we put f(z,7) := —p,(lim;_,o z.eV=1). Then
there is a finite collection {B;} of disjoint constructible subsets of B and a
continuous piecewise linear function ; such that

wi(n) = f(x,n)

for every x € B; and n € t. Each function ¢; is convex if moreover « is a
Kahler metric.

Proof. Since the equivariant class ¢ is of the form ¢ = Y% | axcl(Ly) for
some a; € R and some equivariant (holomorphic) line bundles L;, the claim
on the lattice N(T') C tis a consequence of [Oda2, Lemma 2.10] (cf. [LWX1,
Lemma A.3]). Indeed, since the limit lim; z.etV1 g independent of the
equivariant class ¢, we have f.(z,n) = >, akfclT(Lk)(a:,n). For integral n
associated to a one parameter subgroup A : C* — T, we have f(z,n) =
—Ac/nV, where A, : C — B is the extension of the morphism A, : C* —
B : 17— x.7. We omit the proof for general n € t. m

We call a collection § of Q-Fano varieties is of fixed character if —mKy
is Cartier for a fixed integer m, the K-optimal tori Tx are isomorphic to a
fixed T" and the Hilbert characters xy of —mKx with respect to T" are fixed
for all X in §. Here the Hilbert character x of a line bundle L is the function
X : Z — R(T) given by x(k) = >0 o(—=1)'H'(X,kL), where H'(X,kL) is
regarded as T-representations. For such collection §, we have a uniform kg
such that for each X € § there is a T-equivariant anti-canonical embedding
of X into CPXxko)=1 5 T We call a collection § of Q-Fano varieties has
bounded characters if § is a finite union vazl §: of collections §; of fixed
characters. Note that the K-optimal vector £ € t of X is determined by its
Hilbert character.

Let Hilbr(x(+)) denote the Hilbert scheme of T-invariant subschemes of
P(x(1)) with Hilbert polynomial x(-), identifying the character x(1) with
T-representation. Let Ur(x(-)) denote the universal family over Hilbr(x(+))
and £ denote the restriction of p5O(1) on Hilby(x(+)) X P(x(1)) to the closed
subscheme Ur(x(-)) C Hilbr(x(-)) x P(x(1)). For a Q-Fano manifold X
with the Hilbert character x(¢) = Y."  (—=1)"H (X, {(—mKx)), we denote
by [X] a point of Hilby(x(k-)) representing an anti-canonically embedded X
by | — kmKx/|, which is unique modulo PGLr(x(k)).

The following is essentially an application of deep analysis in [CW] and
arguments in [CSW].
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Proposition 4.1.3. Let § be a collection of K-smoothable Q-Fano varieties
of fixed character. Then there is a uniform positive integer k; such that
if X € § is uK-unstable, there exists a one parameter subgroup A : C* —
PG Ly (x(k;)) such that the induced test configuration (A3 Ur(x(ki+)), ==A%L)

? kim
has negative %\K—Futaki invariant with respect to A = 27 and the K-optimal
vector &.

Moreover, assuming Conjecture I, we can take k; so that if X € § is
pK-semistable but not pK-polystable, then there exists a one parameter
subgroup A : C* — PGLy(x(k1)) such that the induced test configuration

(AsUr(x(ky+)), =A% L) is special and has a uK-polystable central fibre.

Y kim

Proof. Firstly, we note that there is a uniform constant § € (0,1) such
that every smooth Fano manifold X admits a Kéhler metric wx € 2mc;(X)
with Ric(wy) > dwx. Indeed, thanks to the equivalence of Székelyhidi’s
R-invariant R(X) = F(X) and the delta invariant §(X) proved in [BBJ,
Corollary 7.6], it suffices to bound the delta invariants of Fano manifolds
from below. The bound holds by the finiteness of delta invariants for smooth
Fano manifolds [BLZ, Theorem 1.4]. Otherwise we can show the bound via
log K-stability as in [Oda2], translating log K-stability into the existence of
twisted KE by [CDS, I].

Since we have a uniform bound of the Sobolev constant for such wx, we
have a uniform bound in the assumption of [CW, Theorem 6.8 (6.5)]. Thus
we get the partial C%estimate for Kahler-Ricci flow on ¢ > 1 with the initial
metric wyx by [CW, Theorem 1.3]. Then the argument in [CSW] shows that
there is a uniform integer k; such that for each X € § there is a vector
Ax € v/—1Lie(PUr(x(k1))) and gx € PGLyp(x(ki)) such that the limit
[X] = lim_,00[X].gx.€"*X in the Hilbert scheme Hilby(x(ki-)) is a Q-Fano
variety with Futg , = 0 for the vector £ on X generated by A. Let £x € t
be the K-optimal vector of X, which satisfies Futx ¢, = 0. Then since Ax is
T-equivariant, we have Futg ¢ |¢ = 0. Since Tian-Zhu’s volume functional
log Vol(n) = log [ erw™ is strictly convex and Futx ¢(£x — &) =0,

d
Fut g e a-ne(x — &) = T log Vol(t{x + (1 —t)§),

is monotonically decreasing. Thus we get
Futg ¢ (=€) = Futg e, (Ex — &) < Futx(Ex — &) =0.

Now let Thax € PUr(x(k1)) be a maximal torus with «/—1Ax € ty.x. By
Theorem G and Lemma 4.1.2; there is a continuous piecewise linear function
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© on tyax such that Futym, | [(x)eme (—1) = () for every n € ty.. Note
when 7 is in the lattice Hom(U (1), Tinax) C tmax, We have Futim, , (x].em ey (—1) =

Fute,, ((A_n);UT(X(k‘r)), k%mmlﬁ) for the one parameter subgroup A, as-
sociated to 7. (The minus sign on 7 comes from the sign inversion of the
fundamental vector fields of an R-action and a C*-action which are related
by R - C* : t — e’ ) Approximating the ray R, A € t,. by inte-
gral rays, we can find a one parameter subgroup A’ : C* — Ty, with
Fute,, (A Uz (x(k1-)), lem/K’}ﬁ) < 0. Since we have a convergence of Kahler—
Ricci flows [CW, Theorem 6.9], we can also discuss K-smoothable case with
a uniform k; by diagonal argument.

The second case is precisely the case X is uK-semistable but not admit
Kahler-Ricci soliton under Conjecture I. In this case, X is never destabilized
by A, so it degenerates in the Hilbert scheme to a Q-Fano variety X, with
Kahler—Ricci soliton which is not isomorphic to X by the argument in [CSW].

]

Theorem G further implies the following key proposition, which works as
a translator from analytic result to algebraic result.

Proposition 4.1.4. We assume Conjecture I for the claim on BP*. Let
(X, L) — B be T-equivariant family of T-polarized schemes Then the subsets

B* ={be B | (X, L) is a pK-semistable Q-Fano variety. }
BP* = {b e B | (&, Ls) is a uK-polystable Q-Fano variety. }
B* ={be B| (X Ly) is a uK-stable Q-Fano variety. }

are constructible sets of B.

Proof. We can realize the family (X, £) — B as a pull-back of the univer-
sal family over a Hilbert scheme Hilb (with a fixed Hilbert polynomial) by
embedding X — B relatively to CPY using sections of a sufficient multi-
ple of L. By the above proposition, we may assume by taking a sufficiently
divisible multiple that if a fibre (X}, L) is a pK-unstable Q-Fano variety,
then there is a one parameter subgroup A : C* — G = Aut(CPY) such
that Futg\(/_\;'j?( ,A;L) < 0. Since the inverse image of constructible sets are
constructible, we may assume that B is such a Hilbert scheme.

If we take a G-equivariant resolution 3 : B — B, then we have §(B?®) =
BP?| so that we may assume B is smooth by Chevalley’s theorem on con-
structible sets. Since Hilbert scheme is projective, we may assume B is
smooth projective.
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In this situation, the complement B\ B** is equal to the set

(X, L) is not } { Futg (A; X, A;£) < 0 }
{b €B ’ a Q-Fano variety Ubes for some A : C* — Aut(CPN) S~
By [HK, 3.11] as in [BX, 3.2], the set {b € B | (X}, £;) is a Q-Fano variety }
is locally closed in B.

On the other hand, the set

{b cB AZDEN%“XG(X/B,[,)/nV <0 }
for some A : C* — Aut(CPY)

is constructible by Lemma 4.1.2. Therefore, B\ B*® is constructible and so
is B*. We can similarly show the claim on B?* B* (cf. [Oda2]). O

4.1.2 Algebraic moduli problems
Zariski openness of gentle locus

Now making use of Theorem G, we prove the following. The proof here is
independent of the analytic results in section 3.3.

Theorem 4.1.5. The moduli stack M*" = KC(n) (resp. Kr,) of gentle
Fano manifolds over the étale/fppf site of algebraic schemes is Artin algebraic
(resp. Artin algebraic of finite type).

Sketch of proof. To see that the moduli stack is Artin algebraic, it suffices to
show that the set

B**°:={be€ B | X, is a gentle Fano manifold. }

is Zariski open for every smooth family 7 : X — B of Fano manifolds. Since
every family X — B is Zariski locally isomorphic to the pull-back of the uni-
versal family on a T-invariant Hilbert scheme along some morphism, we may
reduce the problem to the following: suppose a fibre X, is a Fano manifold
admitting Kahler—Ricci solitons, then there exists a Zariski neighbourhood
U C B of o € B such that &}, is gentle for every b € U.

We firstly show that there is a Zariski neighbourhood V' C B on which ev-
ery fibre is a uK-semistable Fano manifolds. Taking a smaller B if necessary,
we may assume the family is anticanonically embedded in a projective space
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X — BxCP over B. If we cannot take such V, then by the constructibility
shows that we have a locally closed subset S C B such that A} is pK-unstable
for every b € S and the closure S meets 0. Moreover, we may assume that
S is taken so that a one parameter subgroup C* — Auty(CPY) destabilizes
every A&, over S. As in the previous section, we can see that A} over S is
(1 — ¢t)-twisted pK-unstable for ¢ € (o, 1] some uniform ¢, < 1. Since the
modified Székelyhidi-Hashimoto invariant Re(A}) is a lower semi-continuous
function on b, we conclude that X, is (1 — #o)-twisted puK-unstable. This is
a contradiction since we assume X, admits Kahler—Ricci solitons, hence it is
(1 — t)-twisted pK-semistable for every ¢ € (0, 1].

Now we may assume every X, is pK-semistable. By [DaSz], we have
a special degeneration to a Q-Fano variety &, with Kéhler-Ricci solitons
for each Aj,. It suffices to show that the central fibres &} are smooth after
replacing B with a smaller neighbourhood U C B. We firstly show that we
can take such U as an analytic neighbourhood. Taking a family of Kéhler
metrics oy around the fibre X, such that «, is a Kahler—Ricci soliton. Then
as in the proof of Proposition 3.2.18, we can see that A}, which are obtained
as a Gromov—Hausdorff limit along the continuity method Ric(w;) = tw; +
(1 — t)aw, subconverges to X, in a Hilbert scheme as b — o. Since &, is
smooth, X, must be smooth for b sufficiently close to o.

To see that U can be taken as a Zariski open set, we note that any gentle
Fano manifold does not admit any equivariant special degeneration to some
pK-semistable singular Fano variety. If there exists an equivariant special
degeneration of a gentle Fano manifold X to a singular pK-semistable Fano
variety X, then similarly as in [Y. Li] we can construct an equivariant special
degeneration of Xy to a Fano variety X with KRs by the diagonal argument
for twisted KRs on X. As X, is singular, X{) is also singular. We can
construct these degenerations equivariant with respect to the maximal torus
action, so we also obtain a special degeneration of the gentle Fano manifold
X to X|. However, since the central fibre of special degenerations of X to a
Fano variety with KRs are unique by Proposition 3.2.18, the fact that X is
singular contradicts to the assumption that X is gentle. Thus we have

{ Xy admits an equivariant special degeneration in CPYN to
B\U={beB ’ ‘ . | } .
a pK-semistable singular Fano variety

This is a constructible set. It follows that U is a constructible analytic open
set, which shows the desired Zariski openness. Il
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After the publication of [Inol], the author was asked a question from Yue
Fan on the proof of Proposition 3.3.8. He noticed that the proof (as well as
Székelyhidi’s original proof for cscK metrics) does not show the desired claim
but it only shows the following: for each b € B whose orbit b.G is closed, there
exists t, > 0 such that J(¢.b) admits Kéhler—Ricci solitons for every ¢ € (0, t).
There is no reason for t, > ty with a uniform ¢, > 0 for every b € B in a
small sphere as we do not know whether we can take a uniform constant C’
in the proof independent of b. A similar but slightly different proof can be
found in [Bro|, however, since the pulled-back symplectic form may not be
Kahler after we apply the perturbation in Theorem 3.3.7, the proof there
also seems to be fail. Yue Fan [Fan] achieved to prove an analogous claim
in the context of moduli problem on Higgs bundles, using a result similar to
[CS]. Thus the result is recovered for the cscK case.

Now we give an alternative proof in the case of KRs which does not rely
on the result in section 3.3.2. Instead of establishing a similar result as in
[CS] for the case of KRs, we imitate an argument in [LWX1], applying the
above result.

Proposition 4.1.6. Let B — Hilby be an affine étale local slice (with re-
spect to the PG Lr-action) at a point [X| € Hilby representing an anticanon-
ically embedded Fano manifold X with KRs. Then we can take an Aut(X)-
invariant analytic open set B’ of B, such that every closed Aut(X)-orbit of
B’ parametrizes a Fano manifold with KRs.

Proof. 1f not, there is a sequence by € B converging to the point o € B
corresponding to the point [X| € Hilby such that by.G C B is closed but the
Fano manifolds &}, do not admit KRs. Similarly as in the above proof (or as
in [Y. Li]), we can construct special degenerations of X}, to Fano manifolds
X, with KRs in CP"™ which converges to &, = X in the Hilbert scheme.
Since B xg PGLp — Hilby is open, the degenerations C — Hilby are in
the image of this map for sufficiently large k. Since B xg PG Ly — Hilby is
equivariant, we can realize the degenerations in B xg PG L. It follows that
by.G X PGLy = p~'((bg,e).PGLr) is not closed in B x PGLt as the orbit
(b, e).PG Ly is not closed in B X PG Ly, which contradicts to the fact that
bi,.G is closed in B. O

Now we prove the following, using Theorem 4.1.5 and Theorem 3.4.8.

Theorem 4.1.7. The moduli space K(n) constructed in section 3.4 is a
separated algebraic space.
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Proof. As proved in section 3.4, we have an analytic moduli space M>" —
K(n). Since gentle locus is Zariski open, we can cover the moduli stack by
étale morphisms [B,/G,| — M®" with affine B,. Then by the universality
of the morphism [B,/G.] — B, /| Ga, we get a collection of morphisms
¢o 1 My — K(n) from affine normal varieties M, = B, // G, which covers
K(n). Similarly as in the proof of Theorem 3.4.8, we can see that these
morphisms are analytically étale.

For each point x € ¢o(My) N Ps(Mp), we can construct algebraic étale
morphisms Mg, — M,, Mg from an affine normal variety M,z so that
they commute with the morphisms ¢,,¢g and the composition Mys, —
K(n) covers x, similarly as in the proof of Theorem 3.4.8. Here the point
is the commutativity of morphisms, however, this easily follows from the
analytic construction of the moduli space. O

Towards the compactification

We can strengthen the result in the previous section under Conjecture I.

Claim. We assume Conjecture I. Then the moduli stack M" is Artin alge-
braic and admits a unique proper algebraic good moduli space M™. More-
over, the moduli space enjoys the following.

e The points of M™ are exactly smoothable uK-polystable Q-Fano va-
rieties, which are precisely smoothable Q-Fano varieties with Kahler—
Ricci solitons.

e The forgetting morphism M" — M" maps pK-semistable Q-Fano
T-varieties X and X' to the same point if and only if there are T-
equivariant test configurations of X and X’ with an identical smooth-
able puK-polystable Q-Fano T-variety.

If the moduli space exists, then the properness of the moduli space is a
consequence of the compactness result in [PSS] combined with the bounded-
ness of Fut(¢) for K-optimal vectors £ ([Inol, Proposition 4.11]). It is recently
proved by [Y. Li| that a K-smoothable Q-Fano variety admits a Kéhler—Ricci
soliton if it is uK-polystable with respect to special degenerations.

We can show that K-smoothable pK-semistable Q-Fano varieties are
bounded. If we further aim to construct a finite type moduli space for
Q-Fano varieties with Kahler—Ricci solitons and with non-smoothable klt
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singularities, we must impose a bound on Hilbert polynomials since there
is an unbounded collection of toric orbifolds with Kéhler-Ricci solitons (cf.
[PSS]), unlike Kéhler-Einstein case. In view of [PSS], the author speculates
that it suffices to bound the usual Futaki invariants Fut(§) of the K-optimal
vectors £ and the volumes in order to bound the Hilbert polynomials of uK-
semistable Q-Fano varieties.

Now we outline the proof of the main Claim. More details will be included
in a separate paper.

Outline of the proof of Claim. As in [Oda3] and [LWX1], we apply Alper’s
gluing theorem of (local) good moduli spaces [Alp2, Theorem 1.3] (cf. [Alpl,
Proposition 7.9]). We will construct étale local moduli stacks i, : M, —
M" of the moduli stack M" so that each stack M, is of the form [SpecA/G]
with reductive G and so that these M, cover M". Each M, admits the
good moduli space M, = SpecA J/ G. If we can check the conditions in
Alper’s gluing theorem, we get the expected good moduli space M" — M"
by ‘gluing’ these local moduli spaces M, in étale topology.

As we remarked in [Inol], the concept of good moduli space is still not
well established in analytic category. Especially, good moduli spaces of an
analytic stack are not ensured to be unique while the uniqueness is essential
for gluing theorem. So we must show that global and local moduli stacks are
algebraic in order to apply Alper’s framework on good moduli space. Now is
the time to apply the above proposition.

Construction of local moduli stacks M, reduces to the following claim.

e For a T-equivariant family (X, L) — B of K-smoothable Q-Fano 7T-
varieties, B*® is Zariski open.

We can prove this similarly to [LWX1, Theorem 7.3] using twisted pK-
stability instead of log K-stability as in [Y. Li]. We take the affine scheme
SpecA as an étale local slice of Hilby at pK-polystable [X] € Hilby (cf. [AHR,
Theorem 2.1]) so that SpecA parametrizes only uK-semistable K-smoothable
Q-Fano varieties. The group G is the automoprhism group Aut(X).

Gluing the local moduli spaces M, boils down to the following claim, by
shrinking SpecA further if necessary.

e [f a K-smoothable Q-Fano variety X admits two equivariant special
degenerations to K-smoothable pK-polystable Q-Fano varieties X, X,
then X, and X|) are isomorphic.
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e A point x € SpecA parametrizes a uK-polystable Q-Fano variety X, if
the orbit z.G is closed.

e The stabilizer GG, is isomorphic to Aut(X,) for every = € SpecA.

We can show these similarly to [LWX1, Theorem 1.1, Theorem 8.8, Corollary
8.14]. We in particular make use of the constructibility of B?® to prove the
second claim. The first two items show that the morphism M, — M is
universally weakly saturated in Alper’s sense (cf. [Alp2]). The last one shows
the morphism is pointwise stabilizer preserving. Now we can apply [Alp2,
Theorem 1.3] and obtain the expected good moduli space. O
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