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cscK metrics and Kähler–Einstein metrics

For a polarized manifold (X , L), when the Kähler class c1(L) admits a
Kähler metric ω with constant scalar curvature (cscK metric)?

Kähler–Einstein metric: When λc1(L) = 2πc1(X ) for some λ ∈ R, then ω
is cscK iff it satisfies Ric(ω) = λω.

(λ < 0) KX > 0 ⇒ ∃ unique KE metric.
(λ = 0) KX ≡ 0 ⇒ ∃ unique Ricci flat metric in any L.
(λ > 0) KX < 0 ⇒ Futaki invariant is an obstruction.
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Yau–Tian–Donaldson conjecture

Yau–Tian–Donaldson conjecture

∃ cscK metrics in c1(L) ⇐⇒ (X , L) is K-‘poly’stable.

cf. Kobayashi–Hitchin correspondence (Donaldson, Uhlenbeck–Yau’s theorem)

For a normal test configuration (X/C,L) of (X , L), the
Donaldson–Futaki invariant is given by

DF (X ,L) := (KX̄/CP1 .L·n)− n

n + 1

(KX .L
·(n−1))

(L·n)
(L̄·(n+1)).

The K-(semi)stability of (X , L) is the positivity (non-negativity) of
Donaldson–Futaki invariants. cf. Hilbert-Mumford criterion
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Donaldson–Fujiki moment map picture

Donaldson-Fujiki moment map picture

(M, ω): C∞-symplectic manifold. Scalar curvature gives a moment map
on J (M, ω). Namely, the map S : J (M, ω) → Lie(Ham(M, ω))∨ given
by

⟨S(J), f ⟩ =
∫
M

(s(gJ)− s̄)f ωn

is a unique moment map for the symplectic structure Ω on J (M, ω):

ΩJ(A,B) =

∫
M

(JA,B)gJω
n.
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Kempf–Ness theorem: model of YTD conjecture

Let (B,Ω+ ν) ⟲ K be a projective manifold with a Hamiltonian action
of compact Lie group K .

G = K c : the complexification

LG := [Ω + ν] ∈ H2
K (B,R) = H2

G (B,R)
η∨ ∈ H2

C×(C,R): the positive generator

Kempf–Ness theorem (+ Hilbert–Mumford criterion)

For b ∈ B,

(Semistability) ν−1(0) ∩ b.G ̸= ∅ ⇐⇒ for every Λ : C× → G

−Λ∗
bLG/η

∨ = −⟨ν(Λb(0))
c ,Λ∗η⟩ ≥ 0.

(‘Poly’stability) ν−1(0) ∩ b.G ̸= ∅ ⇐⇒ if moreover Λ∗
bLG/η

∨ = 0
only when Λ : C× → Gx .

Semistability is Zariski open condition, while polystability is not so.
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Uniqueness and Existence

Theorem (Berman-Berndtsson)

CscK metrics in c1(L) are unique modulo Aut0(X , L).

Theorem (Bando–Mabuchi, Stoppa, Berman-Darvas-Lu, et al.)

If the Kähler class c1(L) admits a cscK metric, then (X , L) is
K-‘poly’stable.

Theorem (Chen-Donaldson-Sun, Tian, (Aubin, Yau, Odaka))

When −KX ∈ R.L, the Kähler class c1(L) admits a cscK metric (KE
metric) if (and only if) (X , L) is K-‘poly’stable.
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Moduli space of Kähler–Einstein Fano varieties

Theorem (Paul-Tian)

For a G -equivariant family (X ,L) → B of polarized schemes, there exists
a G -equivariant line bundle CM(X ,L) on B such that

−cC
×

1 (f ∗CM(X ,L)) = DF (f ∗X , f ∗L).η∨ ∈ H2
C×(C,Z) ∼= Z.η∨

for every C×-equivariant morphism f : C → B.

+

Donaldson–Sun, Chen–Donaldson–Sun, Tian
⇓

Theorem (Odaka, Li-Wang-Xu)

Q-smoothable Fano varieties with Kähler–Einstein metrics form a proper
algebraic moduli space.
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Kähler–Ricci soliton

Examples:

Fano manifold X = k-point blow up of CPn (k = 1, . . . , n) does not
admit KE metrics.

A toric Fano manifold admits a KE metric iff the barycenter of Fano
polytope is the origin.

There are infinitely many toric Fano orbifolds with no KE metrics,
while toric Fano orbifolds admitting KE metrics are finite in each
dimension.

Kähler–Ricci soliton: Ric(ω)− LJξω = λω

cf. normalized Kähler–Ricci flow: Ric(ωt)− λωt = ω̇t

Every toric Fano orbifold admits a KRs.

Every horospherical Fano manifold admits a KRs, which includes
infinitely many Fano manifolds with ρ(X ) = 1 & no KE metrics.
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Tian–Zhu’s volume minimization and modified K-stability

For a Fano manifold X ⟲ T and ξ ∈ t, the modified Futaki invariant
Futξ ∈ t∨ is defined by

Futξ(η) := −
∫
X

θηe
θξωn,

where θξ = −2µξ for [ω + µ] ∈ cT1 (X ). Independent of ω ∈ c1(X ).

∃ KRs ⇒ Futξ = 0

Proposition (Tian–Zhu)

Regardless of the existence of KRs, ∃!ξ ∈ t satisfying Futξ = 0.

Modified K-(semi)stability of X with respect to ξ: For a T -equivariant
special degeneration X = (X/C,−KX/C), the modified Futaki invariant
of X is given by

Futξ(X ) := −
∫
X0

θηe
θξ .
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Uniqueness and Existence

Theorem (Tian–Zhu)

Kähler–Ricci solitons on a Fano manifold are unique modulo Aut0(X )
(and up to scaling).

Theorem (Berman–Witt-Nyström)

If a Fano manifold admits a Kähler–Ricci soliton, then X is modified
K-polystable.

Theorem (Datar–Székelyhidi)

A Fano manifold X admits a Kähler–Ricci soliton if (and only if) X is
modified K-polystable.
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Moduli space of KRs Fano manifolds

Berman–Witt-Nyström

+

Moment map picture for KRs + Uniqueness of polystable degeneration

⇓

Theorem (I. ’19, Adv. Math.)

Fano manifolds with KRs form a complex analytic moduli space.

↓

Theorem (Dervan–Naumann)

CscK manifolds form a complex analytic moduli space.
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µ-scalar curvature: definition

X ⟲ T ∼= (U(1))×k : holomorphic action on a complex (Kähler) manifold

µ-scalar curvature

For λ ∈ R and ξ ∈ t and a T -equivariant Kähler metric ω + µ, we put

sλξ (ω) := (s(ω)−∆µξ)− (∆µξ + 2|∇µξ|2) + 2λµξ

= (s(ω) + □̄θξ) + (□̄θξ − (Jξ)θξ)− λθξ.

Definition

A Kähler metric ω is a µλ
ξ -cscK metric if sλξ (ω) is constant.

Independent of the choice of the moment map µ for ω.

µλ
0 -cscK metric ⇐⇒ cscK metric.

When λω ∈ 2πc1(X ),
µλ
ξ -cscK metric ⇐⇒ Kähler-Ricci soliton: Ric(ω)− LJξω = λω.
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µ-scalar curvature: “naturality” of the concept

Recall

Donaldson-Fujiki moment map picture

(M, ω): C∞-symplectic manifold. Scalar curvature gives a moment map
on J (M, ω). Namely, the map S : J (M, ω) → Lie(Ham(M, ω))∨ given
by

⟨S(J), f ⟩ =
∫
M

(s(gJ)− s̄)f ωn

is a moment map for the symplectic structure Ω on J (M, ω):

ΩJ(A,B) =

∫
M

(JA,B)gJω
n.
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µ-scalar curvature: “naturality” of the concept

Put

s̄λξ :=

∫
M

sλξ (gJ) e
θξωn

/∫
M

eθξωn.

Proposition (Moment map picture for µ-cscK, I. ’19, Lahdili ’19)

(M, ω) ⟲ T : C∞-symplectic manifold. µ-scalar curvature gives a
moment map on JT (M, ω). Namely, the map
Sλ
ξ : JT (M, ω) → Lie(HamT (M, ω))∨ given by

⟨Sλ
ξ (J), f ⟩ =

∫
M

(sλξ (gJ)− s̄λξ )f eθξωn

is a moment map for the symplectic structure Ωξ on JT (M, ω):

Ωξ,J(A,B) =

∫
M

(JA,B)gJ eθξωn.
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µ-Futaki invariant and µ-entropy

For ξ ∈ t, the µ-Futaki invariant Futλξ ∈ t∨ is defined by

Futλξ (η) := −⟨Sλ
ξ (J), θη⟩ = −

∫
X

(sλξ (ω)− s̄λξ )θηe
θξωn

/∫
X

eθξωn.

Independent of ω ∈ [ω] and µ : X → t∨.

∃ µλ
ξ -cscK metric in [ω] ⇒ Futλξ = 0

µλ(−2ξ) = −
∫
X
(s + □̄θξ)e

θξωn∫
X
eθξωn

+ λ

∫
X
(n + θξ)e

θξωn∫
X
eθξωn

− λ log

∫
X

eθξ
ωn

n!

Also independent of ω ∈ [ω] and µ : X → t∨.

Dξµ
λ = Futλξ
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Properties of µλ-entropy

Theorem (I. ’19)

(Existence) Critical points of µλ always exist regardless of the
existence of µλ

ξ -cscK metrics in [ω].

(Uniqueness/phase transition) For each X ⟲ T ,

λfreeze := sup
{
λ ∈ R

∣∣∣ µλ′
admits a unique

critical point for every λ′ ≤ λ

}
is always finite (never ±∞).

(Extremal limit) Let ξλ be the unique critical point of µλ for
λ < λfreeze. Then λξλ converges to the extremal vector field ξext as
λ tends to −∞.

The extremal vector field ξext is the unique critical point of∫
X

(ŝ(ω)− θ̂ξ)
2ωn −

∫
X

ŝ2ωn. (f̂ := f −
∫
X

f ωn/

∫
X

ωn)
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Behavior of µλ-entropy: typical example

We can explicitly compute µλ of CP1 ⟲ U(1). For ξ = x .η ∈ u(1),

µλ
−KCP1

(ξ) = 2π(1− x

tanh x
) + λ(−1 +

x

tanh x
)− λ log

2 sinh x

x
.

λfreeze(CP1,−KCP1) = 4π.

There actually exists a µλ
ξ -cscK metric for exactly two ξ ̸= 0 (and

ξ = 0) when λ > 4π.

As λ → ∞, the family of (non-cscK) µλ-cscK metrics ωλ admits a
family of diffeomorphisms fλ : D2 → C ⊂ CP1 from a disk of radius√
2 such that f ∗λ ωλ converges to the flat metric. (while fλ does not

converge to a diffeomorphism onto C. )
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Closedness of framework

(Scaling) ω: µλ
ξ -cscK metric ⇒ c−1ω: µcλ

cξ -cscK metric.

(Product) (X , ωX ), (Y , ωY ): µ
λ-cscK metrics with the same λ and

with respect to vector fields ξX , ξY , respectively ⇒
(X × Y , ωX ⊕ ωY ): µ

λ-cscK metric with respect to ξX ⊕ ξY .

(Perturbation of λ) ∃ µλ-cscK metric in [ω] with λ < λ1 for the first

eigenvalue λ1 of ∆−∇µξ ⇒ ∃ µλ̃-cscK metric in the same [ω] for

λ̃ ∈ (λ− ϵ, λ+ ϵ).

(Perturbation of Kähler class) We can also perturb Kähler classes
under the above condition.

(Propagation) ∃ extremal metric in [ω] ⇒ µλ-cscK metric in the
same [ω] for λ ≪ λfreeze and also for λ ≫ λfreeze.

(Uniqueness) Convexity of weighted Mabuchi functional shows that
µλ-cscK metrics are unique for λ < λfreeze. (Lahdili)
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Calabi ansatz on PΣ(L⊕O)

Consider the ruled manifold PΣ(L⊕O) for a positive L on an algebraic
curve Σ. Let F denote a fibre and B = {(x , (0 : 1)) | x ∈ Σ} denote the
section at infinity. The Kähler cone is given by

{aF + bB | b > 0,
a

b
> −degL

2
}.

Theorem (I. ’20)

Every Kähler class in the cone {aF + bB | a, b > 0} admits a µλ-cscK
metric for every λ ≥ 0 (for some ξ).

For g(Σ) ≥ 2 and small a
b , the Kähler class aF + bB does not admit

extremal metrics. (rel. K-unstable ⇒ no µλ-cscK metrics for λ ≪ 0. )
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Calabi ansatz on CP2#CP2 = PCP1(O(1)⊕O)

The anti-canonical class −KX of X = CP2#CP2 = PCP1(O(1)⊕O)
admits both KRs and extremal metric (no cscK metrics).

Calabi ansatz: ∃ µλ-cscK metrics for every λ ∈ R (with a negative
xλ = ξλ/η = (6/11) · ξλ/ξext) connecting KRs and extremal metric.

We can see 2.9× 2π < λfreeze < 3× 2π.
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µK-stability

4. How to formulate µK-stability? – equivariant calculus
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µK-stability

Remarks

Recall

DF (X ,L) := (KX̄/CP1 .L·n)− n

n + 1

(KX .L
·(n−1))

(L·n)
(L̄·(n+1)).

In moduli context, test configurations appear by pulling back the
universal family U on Hilb along C×-equivariant morphisms
C → Hilb, which is not necessarily normal.

We can define DF also for non-normal (X ,L) by using homology
Todd class τ(OX̄ ) = [X̄ ]− 1

2κX̄ + · · · ∈ AQ(X̄ ) instead of KX̄ . (cf.
Fulton, Edidin-Graham)

The intersection formula is useful to see the behavior of DF (X ,L)
along the normalization and resolutions of X .

Recall

µλ = −
∫
X
(Ric+ □̄µ)eω+µ∫

X
eω+µ

+ λ

∫
X
(ω + µ)eω+µ∫

X
eω+µ

− λ log

∫
X

eω+µ
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µK-stability

µFutaki invariant of test configuration

(X , L): T -equivariant polarized manifold (scheme)
For ξ ∈ t, we define the µ0

ξ-Futaki invariant of a T -equivariant test
configuration (X ,L) by the following equivariant intersection formula:

Fut0ξ(X ,L) := 4π
Evξ

(
(κT

X̄/CP1 .e
L̄T ) · (eLT )− (κT

X .e
LT )(eL̄T )

)
(Evξ(eLT ))2

∈ R.

When X is smooth, this is equivalent to:

−2

∫
X̄ (Ricrel

Ω̃
+ □̄Ω̃Θ̃ξ)e

Ω+Θξ
∫
X
eΩ+Θξ −

∫
X
(Ricω + □̄θξ)e

ω+θξ
∫
X̄ eΩ+Θξ

(
∫
X
eω+θξ)2

,

where Ricrel
Ω̃

= Ric(Ω̃)− π∗Ric(ωCP1) for some metrics Ω̃, ωCP1 on

X̄ ,CP1.
We can similarly define

Futλξ (X ,L) := Fut0ξ(X ,L) + λ(equiv. intersection on L̄).
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µK-semistability

A T -polarized manifold is µλ
ξK-semistable if Futλξ is non-negative for any

test configuration.

Theorem (I. ’20 + Lahdili ’19)

If c1(L) admits a µλ
ξ -cscK metric, then (X , L) is µλ

ξK-semistable.

If (X , L) is µλK-semistable for λ ≪ 0, then (X , L) is relatively
K-semistable.

Recall:

If (X , L) admits and extremal metric, then it admits µλ-cscK metrics
for λ ≪ 0 and λ ≫ 0.

Even if (X , L) is µλK-semistable for λ ≫ 0, (X , L) may not be
relatively K-semistable.
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Generalization of CM line bundle

Theorem (I. ’20)

For λ ∈ R and ξ ∈ t, there exists a characteristic class Dξµ
λ assigning

Dξµ
λ(X/B,L) ∈ H2

G (B,R) for each T × G -equivariant family of
polarized schemes (X/B,L) over smooth G -variety B which enjoys the
following:

1 Naturality: f ∗Dξµ
λ(X/B,L) = Dξµ

λ(X ′/B ′,L′) for

X ′ X

B ′ Bf

2 µ-Futaki invariant: Dξµ
λ(X/C,L) = Futλξ (X ,L).η∨ for any

T -equivariant test configuration (X ,L)
3 CM line bundle: D0µ

λ
G (X/B,L) = − 4π

(L·n)c
G
1 (CM(X/B,L))
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Application

Combining with Chen–Sun’s deep analysis on Kähler–Ricci flow and the
analytic openness of µK-semistable locus established in the previous
work, we can show that µK-semistable locus of a Q-Fano family is Zariski
open on the base. Then we get the following result on algebraicity.

Theorem (I. ’20)

The moduli space of Fano manifolds with KRs is an algebraic space.

I also have a plan for compactifying the moduli space (in progress).
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Idea of construction – the case λ = 0 (to economize space)

Recall the following expression of µλ-entropy:

µ0 = −
∫
X
(Ric+ □̄µ)eω+µ∫

X
eω+µ

.

Both
∫
X
(Ric+ □̄µ)eω+µ and

∫
X
eω+µ are the integration of equivariant

forms. In other words, we can regard these as the pushforward of the
equivariant cohomology classes

KT
X ⌢ eLT , eLT ∈ ĤT (X ,R) :=

∞∏
k=0

H2k
T (X ,R)

along p : X → pt, which are elements of ĤT (pt,R) ∼=
∏∞

k=0 S
k t∨ and are

the Taylor expansion (at 0 ∈ t) of the functionals
∫
X
(Ric+ □̄µ)eω+µ,∫

X
eω+µ on t. For a G -equivariant polarized family (X/B,L), we put

µ0
X/B,L := 2π

π∗(κX/B .e
L)

π∗(eL)
∈ ĤG (B,R).
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Idea of construction – Sketch of equivariant calculus

1 (Differential at ξ along G ) For ξ ∈ t, we introduce a differential
operation

Dξ : Hω
T×G (B,R) → H2

G (B,R)

for some subring Hω
T×G (B,R) of ĤT×G (B,R) where T acts on B

trivially. When G = {1} and B = pt, Hω
T×G (B,R) is identified with

the ring of real analytic functions on t.

2 (Convergence result) For T × G -equivariant polarized family
(X/B,L), we can show that µλ

X/B,L is in Hω
T×G (B,R), using

Cartan model of equivariant deRham current homology. The
element Dξµ

λ
X/B,L ∈ H2

G (B,R) is what we want!

3 (Equivariant Grothendieck-Riemann-Roch) Naturality and the
identification with CM line bundle comes from the equivariant
Grothendieck-Riemann-Roch theorem by Edidin-Graham.

4 (Localization formula) Using the equivariant localization formula, we
can see Dξµ

λ
X/C,L = Futλξ (X ,L).η∨.
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Thank you for listening!
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5. Bonus talk: Beyond YTD conjecture
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Beyond YTD conjecture: Perelman’s µ-entropy

Define µ̌λ : H(X , [ω]) → R by

µ̌λ(ω) := sup
f∈C∞(X )

W̌ λ(ω, f )

where

W̌ λ(ω, f ) :=

∫
X

(s(ω)+□̄f−λ(n+f ))ef ωn
/∫

X

ef ωn−λ log
( 1

n!

∫
X

ef ωn
)
.

Theorem (to appear)

The functional µ̌λ is smooth when λ ≤ 0 (mountain pass theorem).

Its critical points of µ̌λ are precisely µλ-cscK metrics (for some ξ).

The critical points are global minimizer.

A Kähler metric ω is µλ
ξ -cscK metric iff µ̌λ(ω) = µλ(ξ).
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Beyond YTD conjecture: Non-archimedean µ-entropy

µλ
NA : HNA(X , L) → R

Theorem (Essentially proved in I. ’20)

If a ‘test configuration’ ϕξ ∈ HNA(X , L) associated to a vector field
maximizes µλ

NA, then (X , L) is µλ
ξK-semistable.

Conjecture

supµλ
NA ≤ inf µ̌λ

X admits a µλ-cscK metric ω
⇐⇒ µ̌λ(ω) = inf µ̌λ ⇐⇒ µ̌λ(ω) = supµλ

NA.

X is µλK-semistable with respect to ξ
⇐⇒ µλ

NA(ϕξ) = supµλ
NA ⇐⇒ µλ

NA(ϕξ) = inf µ̌λ.
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Remarks: Han-Li’s result when L = −KX

Berman–Witt-Nyström proved that (X ,−KX ) is µ
2πK-polystable

with respect to special degenerations if X admits a KRs (=
µ2π-cscK metric).

Recently, J. Han and C. Li introduced G -uniform g-Ding stability
‘DNA

g (ϕ) ≥ γ · JNA
g (ϕ)’ and proved the equivalence of G -uniform

g-Ding stability of (X ,−KX ) for ‘maximal’ G is equivalent to the
existence of KR g-soliton.

They also show that the (G -uniform) g -Ding stability of (X ,−KX )
is equivalent to that with respect to special degenerations, using
MMP with scaling. The proof works also for MNA

g . (I guess it works

also for Futλξ . )

g -Mabuchi stability for g = e⟨ξ,−⟩ must be equivalent to
µλ
ξK-stability. (λ is determined from ξ. )

Thus, ∃ KRs on X ⇐⇒ (X ,−KX ) is µ
2πK-polystable.
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