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cscK metrics and Kahler—Einstein metrics

For a polarized manifold (X, L), when the K3hler class ¢;(L) admits a
K&hler metric w with constant scalar curvature (cscK metric)?

K&hler—Einstein metric: When Aci(L) = 2mci(X) for some A € R, then w
is cscK iff it satisfies Ric(w) = Aw.
m (A <0) Kx >0 = 3 unique KE metric.
m (A =0) Kx =0 = 3 unique Ricci flat metric in any L.
m (A > 0) Kx < 0 = Futaki invariant is an obstruction.
A>0 A=0 A <0
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Yau—Tian—Donaldson conjecture

Yau—Tian—Donaldson conjecture

3 cscK metrics in ¢1(L) < (X, L) is K-'poly’stable.

cf. Kobayashi—Hitchin correspondence (Donaldson, Uhlenbeck—Yau's theorem)

For a normal test configuration (X /C, £) of (X, L), the
Donaldson—Futaki invariant is given by

n (Kx.L'("=1)

DF(X,E) = (KX‘/CPI"C.,’) - n+ 1 (L”)

(Z-(nJrl)).

The K-(semi)stability of (X, L) is the positivity (non-negativity) of
Donaldson—Futaki invariants. cf. Hilbert-Mumford criterion



p-cscK metric and puK-stability (Eiji Inoue)

L Background: cscK metrics & K-stability

Donaldson—Fujiki moment map picture

Donaldson-Fujiki moment map picture

(M, w): C*°-symplectic manifold. Scalar curvature gives a moment map
on J(M,w). Namely, the map S : J(M,w) — Lie(Ham(M,w))" given
by

(S(J), f /(s gy) — 5)fw"

is a unique moment map for the symplectic structure Q on J (M, w):

Q(A, B) = /M (JA, B)gw"
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Kempf-Ness theorem: model of YTD conjecture

Let (B,Q2 4 v) O K be a projective manifold with a Hamiltonian action
of compact Lie group K.

m G = K¢: the complexification
m Lg:=[Q+v] € HX(B,R) = H%(B,R)
= 0V € HZ, (C,R): the positive generator

Kempf—Ness theorem (+ Hilbert—Mumford criterion)

For b € B,
u (Semistability) v 71(0) N b.G # ) «= forevery A\:C* — G

~AsLa/n’ = —((As(0))°, Au) = 0.

u (‘Poly’stability) »=1(0) N b.G # 0 <= if moreover AjLg/n" =0
only when A : C* — G;.

Semistability is Zariski open condition, while polystability is not so.
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Uniqueness and Existence

Theorem (Berman-Berndtsson)

CscK metrics in ¢;(L) are unique modulo Aut®(X, L).

Theorem (Bando—Mabuchi, Stoppa, Berman-Darvas-Lu, et al.)

If the Kahler class ¢;(L) admits a cscK metric, then (X, L) is
K-‘poly’stable.

Theorem (Chen-Donaldson-Sun, Tian, (Aubin, Yau, Odaka))

When —Kx € R.L, the Kahler class ¢;(L) admits a cscK metric (KE
metric) if (and only if) (X, L) is K-'poly’stable.
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Moduli space of Kahler—Einstein Fano varieties

Theorem (Paul-Tian)

For a G-equivariant family (X, £) — B of polarized schemes, there exists
a G-equivariant line bundle CM(X, L) on B such that

—cE(F*CM(X, L)) = DF(f*X, f*L).n" € H3.(C,Z) = Z.n"

for every C*-equivariant morphism f : C — B.

+
‘ Donaldson—Sun, Chen—-Donaldson—Sun, Tian ‘

¥

Theorem (Odaka, Li-Wang-Xu)

@Q-smoothable Fano varieties with Kahler—Einstein metrics form a proper
algebraic moduli space.
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Kahler—Ricci soliton

Examples:

= Fano manifold X = k-point blow up of CP" (k =1,...,n) does not
admit KE metrics.

m A toric Fano manifold admits a KE metric iff the barycenter of Fano
polytope is the origin.

m There are infinitely many toric Fano orbifolds with no KE metrics,
while toric Fano orbifolds admitting KE metrics are finite in each
dimension.



p-cscK metric and puK-stability (Eiji Inoue)

LBackground' Kahler—Ricci solitons & modified K-stability

Kahler—Ricci soliton

Examples:

Fano manifold X = k-point blow up of CP" (k =1,...,n) does not
admit KE metrics.

A toric Fano manifold admits a KE metric iff the barycenter of Fano
polytope is the origin.

There are infinitely many toric Fano orbifolds with no KE metrics,
while toric Fano orbifolds admitting KE metrics are finite in each
dimension.

Kahler-Ricci soliton: Ric(w) — Ljew = Aw |

cf. normalized K3hler-Ricci flow: Ric(w;) — Aw; = w;

Every toric Fano orbifold admits a KRs.

Every horospherical Fano manifold admits a KRs, which includes
infinitely many Fano manifolds with p(X) = 1 & no KE metrics.
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Tian—Zhu's volume minimization and modified K-stability

For a Fano manifold X O T and £ € t, the modified Futaki invariant
Fute € t¥ is defined by

FthE /96

where 0 = —2p¢ for [w + p] € ¢ (X). Independent of w & ¢ (X).

|3 KRs = Fute = 0|

Proposition (Tian—Zhu)
Regardless of the existence of KRs, 3¢ € t satisfying Fute = 0.
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Tian—Zhu's volume minimization and modified K-stability

For a Fano manifold X O T and £ € t, the modified Futaki invariant
Fute € tV is defined by

FthE /96

where 0 = —2p¢ for [w + p] € ¢ (X). Independent of w & ¢ (X).

|3 KRs = Fute = 0|

Proposition (Tian—Zhu)
Regardless of the existence of KRs, 3¢ € t satisfying Fute = 0.

Modified K-(semi)stability of X with respect to &: For a T-equivariant
special degeneration X = (X' /C, —Kx c), the modified Futaki invariant
of X is given by

Fute(X) == —/X 0, e’
0



p-cscK metric and puK-stability (Eiji Inoue)

LBackground' Kahler—Ricci solitons & modified K-stability

Uniqueness and Existence

Theorem (Tian—Zhu)

Kahler—Ricci solitons on a Fano manifold are unique modulo Aut®(X)
(and up to scaling).

Theorem (Berman-Witt-Nystrom)

If a Fano manifold admits a Kahler—Ricci soliton, then X is modified
K-polystable.

Theorem (Datar-Székelyhidi)

A Fano manifold X admits a Kahler—Ricci soliton if (and only if) X is
modified K-polystable.
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Moduli space of KRs Fano manifolds

| Berman-Witt-Nystrom |
+
| Moment map picture for KRs + Uniqueness of polystable degeneration |

I

Theorem (I. '19, Adv. Math.)

Fano manifolds with KRs form a complex analytic moduli space.
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Moduli space of KRs Fano manifolds

| Berman-Witt-Nystrom |
+
| Moment map picture for KRs + Uniqueness of polystable degeneration |

I

Theorem (I. '19, Adv. Math.)

Fano manifolds with KRs form a complex analytic moduli space.
N

Theorem (Dervan—Naumann)

CscK manifolds form a complex analytic moduli space.
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p-scalar curvature: definition

X O T 2 (U(1))**: holomorphic action on a complex (K3hler) manifold

p-scalar curvature

For A € R and £ € t and a T-equivariant Kahler metric w + u, we put

(W) = (s(w) — Apg) — (Ape +2|Vue?) +
= (s(w) + O6;) + (D6 — (JE)Oe) —

A Kihler metric w is a yi2-cscK metric if s} (w) is constant.

m Independent of the choice of the moment map u for w.
m p-cscK metric <= cscK metric.

= When A\w € 2m¢i(X),
,ué\—cscK metric <= Kahler-Ricci soliton: Ric(w) — Ljew = Aw.
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p-scalar curvature: “naturality” of the concept

Recall

Donaldson-Fujiki moment map picture

(M,w): C*°-symplectic manifold. Scalar curvature gives a moment map
on J(M,w). Namely, the map S : J(M,w) — Lie(Ham(M, w))" given
by

(SJ), f /(s gy) —5)fw"

is a moment map for the symplectic structure Q on J(M,w):

Q,(A,B) = /M(JA, B)g,w".
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p-scalar curvature: “naturality” of the concept

§5’\ ::/ sg’\(gJ) eeﬁw"// e¥ewn.
M M

Proposition (Moment map picture for p-cscK, I. '19, Lahdili '19)

(M,w) O T: C°-symplectic manifold. u-scalar curvature gives a
moment map on J7(M,w). Namely, the map
S¢ + IJr(M,w) — Lie(Ham7(M, w))" given by

(S.(). F) = /M (50 (g5) — 3)F e%ewr

is a moment map for the symplectic structure Q¢ on J7(M,w):

Q¢ (A B) = / (JA, B)g, e%w".
M
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pu-Futaki invariant and p-entropy

For £ € t, the p-Futaki invariant Futg\ € t¥ is defined by

Fut) (n) := —(S2(J), O) /(sg (w) — 820, e%w" // %",

Independent of w € [w] and p: X — V.

3 p-cscK metric in [w] = Fut? =0
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pu-Futaki invariant and p-entropy

For £ € t, the p-Futaki invariant Futg\ € t¥ is defined by

Fut) (n) = —(S2(J), 0) = — /X (52 (w) — 8)0, e / /X e,

Independent of w € [w] and p: X — V.

3 p-cscK metric in [w] = Fut? =0

= 0 n 0 n n
o (—2g) = D8BTSy crw |og/ e
X

Ty e Ty e _

n!
Also independent of w € [w] and u: X — t¥.

Dep = Futg‘
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Properties of u*-entropy

Theorem (1. '19)

m (Existence) Critical points of u* always exist regardless of the
existence of ,ug‘—cscK metrics in [w].

m (Uniqueness/phase transition) For each X O T,

p admits a unique }

Afreeze 1= SUP {)\ E I | critical point for every X < A

is always finite (never +00).
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Properties of u*-entropy

Theorem (1. '19)

m (Existence) Critical points of u* always exist regardless of the
existence of ,ug‘—cscK metrics in [w].

m (Uniqueness/phase transition) For each X O T,

p admits a unique }

Afreeze 1= SUP {)\ E I | critical point for every X' < \

is always finite (never +00).

m (Extremal limit) Let £€* be the unique critical point of u* for
A < Areoze- Then A& converges to the extremal vector field £oxt as
A tends to —oo.

The extremal vector field &y is the unique critical point of

[ )= tepur— [ wn (Fimp= [y [ o)
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Behavior of y*-entropy: typical example

We can explicitly compute u* of CP* ¢ U(1). For & = x.nn € u(1),

2sinh x

(f)—271'(1—t nhX)—i—)\(—l—i— ) — Alog

X
tanh x

Kept

u )\freeze(C'Dlv _K(CPI) = 4.
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Behavior of y*-entropy: typical example

We can explicitly compute u* of CP* ¢ U(1). For & = x.nn € u(1),

2sinh x

(&) =2r(1 -

) — Alog

X
hx) AL tanh x

Kept

tan

| )\freeze((CPl, —K@pl) = 47.
m There actually exists a ,ug\—cscK metric for exactly two £ # 0 (and
& =0) when \ > 4.

m As \ — 0o, the family of (non-cscK) p*-cscK metrics wy, admits a
family of diffeomorphisms f, : D> — C C CP?! from a disk of radius
V2 such that fjwy converges to the flat metric. (while £, does not
converge to a diffeomorphism onto C. )
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plot | 1 e A

1]
o

Graphs of uA (x.n)/ 2m

. . |25mh|\x'
POE T danhey T freez?

2sinhc)
plot 242 —Blug|f] A =67

x
tanhoo
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Closedness of framework

= (Scaling) w: p-cscK metric = ¢~ tw: pgp-cscK metric.

m (Product) (X,wx), (Y,wy): u*-cscK metrics with the same A and
with respect to vector fields x, £y, respectively =
(X x Y,wx @ wy): pr-cscK metric with respect to £x @ £y .
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Closedness of framework

= (Scaling) w: p-cscK metric = ¢~ tw: pgp-cscK metric.

m (Product) (X,wx), (Y,wy): u*-cscK metrics with the same A and
with respect to vector fields x, £y, respectively =
(X x Y,wx @ wy): pr-cscK metric with respect to £x @ £y .

m (Perturbation of \) 3 p*-cscK metric in [w] with A < \; for the first
eigenvalue A\; of A — Ve = 3 pt-cscK metric in the same [w] for
Ae(A—€eX+e).

m (Perturbation of Kahler class) We can also perturb Kahler classes
under the above condition.
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Closedness of framework

= (Scaling) w: p-cscK metric = ¢~ tw: pgp-cscK metric.

m (Product) (X,wx), (Y,wy): u*-cscK metrics with the same A and
with respect to vector fields x, £y, respectively =
(X x Y,wx @ wy): pr-cscK metric with respect to £x @ £y .

m (Perturbation of \) 3 p*-cscK metric in [w] with A < A; for the first
eigenvalue A\; of A — Ve = 3 pt-cscK metric in the same [w] for
Ae(A—€eX+e).

m (Perturbation of Kahler class) We can also perturb Kahler classes
under the above condition.

m (Propagation) 3 extremal metric in [w] = p*-cscK metric in the
same [w] for A < Afreeze and also for A > Afreege-

m (Uniqueness) Convexity of weighted Mabuchi functional shows that
p*-cscK metrics are unique for A < Afreese. (Lahdili)



p-cscK metric and puK-stability (Eiji Inoue)

L Introduction to ji-cscK metric — special features

Calabi ansatz on Py (L & O)

Consider the ruled manifold Px(L & O) for a positive L on an algebraic
curve ¥. Let F denote a fibre and B = {(x,(0: 1)) | x € £} denote the
section at infinity. The Kahler cone is given by

degl
{aF+bB|b>O,Z>— e,f 1.

Theorem (1. '20)

Every Kihler class in the cone {aF + bB | a, b > 0} admits a pu*-cscK
metric for every A > 0 (for some &).

For g(X) > 2 and small £, the Kahler class aF + bB does not admit
extremal metrics. (rel. K-unstable = no u*-cscK metrics for A < 0. )
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Calabi ansatz on CP?#CP? = P (O(1) @ O)

= The anti-canonical class —Kx of X = CP?#CP? = Pcp (O(1) ® O)
admits both KRs and extremal metric (no cscK metrics).

m Calabi ansatz: 3 p*-cscK metrics for every A € R (with a negative
xn = &2 /n = (6/11) - £* /€ext) connecting KRs and extremal metric.

A
15

\— M (% from -9to 9)
5
-5 a

x

m We can see 2.9 X 27 < Afreeze < 3 X 2.
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4. How to formulate puK-stability? — equivariant calculus
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Remarks

Recall
n  (Kx.L(=1)
n+1 (L)

DF(X,E) = (K)’?/CPI-E.H) — (E~(n+1)).

m In moduli context, test configurations appear by pulling back the
universal family ¢ on Hilb along C*-equivariant morphisms
C — Hilb, which is not necessarily normal.

= We can define DF also for non-normal (X, £) by using homology
Todd class 7(O%) = [X] — k5 + - - € Ag(X) instead of K. (cf.
Fulton, Edidin-Graham)

m The intersection formula is useful to see the behavior of DF (X, L)
along the normalization and resolutions of X.

Recall

(Ric + Ol )ev ewtH "
I _fX o + fX g _ Iog/ Wt
Jxe Jxe X
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pFutaki invariant of test configuration

(X, L): T-equivariant polarized manifold (scheme)
For £ € t, we define the ug—Futaki invariant of a T-equivariant test
configuration (X, L) by the following equivariant intersection formula:

B (e pree™) () — (et )(e)
(Eve(etr))?
When X is smooth, this is equivalent to:
2f2(Ricg1 + 05O ) et Jx €779 — [ (Ric,, 4 O )e“ 0 [ 21O
(J; e+0)? )
where Rlcrel = Ric(ﬁ) — m*Ric(wepr) for some metrics €, wepr on

X,CPL.
We can similarly define

eR.

Futg(X, L):=4

Futy (X, £) := Futd(X, £) +
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K-semistability

A T-polarized manifold is ;J,E‘K—semistable if Futg‘ is non-negative for any
test configuration.

Theorem (I. '20 + Lahdili '19)

= If c1(L) admits a p-cscK metric, then (X, L) is p1} K-semistable.

m If (X, L) is p*K-semistable for A\ < 0, then (X, L) is relatively
K-semistable.

Recall:

m If (X, L) admits and extremal metric, then it admits p*-cscK metrics
for A < 0and A > 0.

m Even if (X, L) is p*K-semistable for A > 0, (X, L) may not be
relatively K-semistable.
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Generalization of CM line bundle

Theorem (1. '20)

For A € R and £ € t, there exists a characteristic class Dgu’\ assigning
Depr(X /B, L) € HZ(B,R) for each T x G-equivariant family of
polarized schemes (X /B, L) over smooth G-variety B which enjoys the
following:

Naturality: f*Dep?(X/B, L) = Dep(X'/B', L) for

X — X

]

B —f,B

p-Futaki invariant: Dep?(X/C, L) = Futg‘(X,ﬁ).nv for any
T-equivariant test configuration (X, £)
CM line bundle: Dop (X /B, L) = —(‘L‘%)CIG(CI\/I(X/B,Lﬁ))
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Application

Combining with Chen—Sun’s deep analysis on Kahler—Ricci flow and the
analytic openness of pK-semistable locus established in the previous
work, we can show that pK-semistable locus of a Q-Fano family is Zariski
open on the base. Then we get the following result on algebraicity.

Theorem (1. '20)

The moduli space of Fano manifolds with KRs is an algebraic space.

| also have a plan for compactifying the moduli space (in progress).
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|dea of construction — the case A = 0 (to economize space)

Recall the following expression of ;*-entropy:
o Jx(Ric+ Op)erts
- fX ewtp

Both [, (Ric + Ou)e“ ™ and [, e/ are the integration of equivariant
forms. In other words, we can regard these as the pushforward of the
equivariant cohomology classes

Kx —~ €' et™ € Hr(X,R) := [ ] H¥(X,R)
k=0

along p : X — pt, which are elements of I-AIT(pt,]R) =3 §ktv and are
the Taylor expansion (at 0 € t) of the functionals [, (Ric 4 Clp)e*t*,
Jx €°t* on t. For a G-equivariant polarized family (X' /B, L), we put

W*(Iix/g.eﬁ)

I“LgC'/B,[: = 27TW S I:IG(B7R)
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|dea of construction — Sketch of equivariant calculus

(Differential at £ along G) For £ € t, we introduce a differential
operation
Dﬁ: #XG(BaR)_)H%(BvR)

for some subring H%., o(B,R) of A1y (B, R) where T acts on B
trivially. When G = {1} and B = pt, H%, (B, R) is identified with
the ring of real analytic functions on t.

(Convergence result) For T x G-equivariant polarized family
(X/B, L), we can show that p1} g  is in H, c(B,R), using
Cartan model of equivariant deRham current homology. The
element Depy 5 » € HZ (B, R) is what we want!

(Equivariant Grothendieck-Riemann-Roch) Naturality and the
identification with CM line bundle comes from the equivariant
Grothendieck-Riemann-Roch theorem by Edidin-Graham.

(Localization formula) Using the equivariant localization formula, we
A
can see Dgp,f{,/(c’ﬁ = Futg (X, £).n".
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Thank you for listening!
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5. Bonus talk: Beyond YTD conjecture
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Beyond YTD conjecture: Perelman’s p-entropy

Define i : H(X, [w]) — R by

pMw) = sup W(w,f)
fEC(X)

where

WA w, f) = /X(s(w)—i-if—)\(n—i—f))efw"//xefw”—AIog (%/Xefw”).

Theorem (to appear)

The functional f2* is smooth when A < 0 (mountain pass theorem).
m lts critical points of fi* are precisely u*-cscK metrics (for some ¢).
m The critical points are global minimizer.
= A Kahler metric w is pi2-cscK metric iff o (w) = p?(§).
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JuK-stability

Beyond YTD conjecture: Non-archimedean p-entropy

puna s HYAX L) = R

Theorem (Essentially proved in |. '20)

If a ‘test configuration’ ¢¢ € HNA(X, L) associated to a vector field
maximizes iy, then (X, L) is ug K-semistable.

Conjecture

sup pya < inf it

® X admits a p*-cscK metric w
o ) = inf @ o M) = sup e
® X is p*K-semistable with respect to &
= pna(9e) =suppna <= ppa(ge) = inf i,
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L K stability

Remarks: Han-Li's result when L = —Kx

Berman—Witt-Nystrom proved that (X, —Kx) is 2™ K-polystable
with respect to special degenerations if X admits a KRs (=

u2™-cscK metric).

Recently, J. Han and C. Li introduced G-uniform g-Ding stability
‘DQ,IA(¢) > JQ’A(¢>)’ and proved the equivalence of G-uniform
g-Ding stability of (X, —Kx) for ‘maximal’ G is equivalent to the
existence of KR g-soliton.

They also show that the (G-uniform) g-Ding stability of (X, —Kx)
is equivalent to that with respect to special degenerations, using
MMP with scaling. The proof works also for MQ’A. (I guess it works

A
also for Futg. )

g-Mabuchi stability for g = e{&~) must be equivalent to
p1g K-stability. (X is determined from ¢. )

m Thus, 3IKRs on X <= (X, —Kx) is u*>"K-polystable.
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