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Abstract. This is the second in a series of two papers studying µ-cscK met-
rics and µK-stability from a new perspective, inspired by observations on µ-
character in [Ino3] and on Perelman’s W -entropy in the first paper [Ino4].

This second paper is devoted to studying a non-archimedean counterpart
of Perelman’s µ-entropy. The concept originally appeared as µ-character of

polarized family in the previous research [Ino3], where we used it to introduce

an analogue of CM line bundle adapted to µK-stability.
We firstly show some differential of the characteristic µ-entropy µ̌λ

ch is the

minus of µλ-Futaki invariant, which connects µλK-semistability to the maxi-
mization of characteristic µλ-entropy. It in particular provides us a criterion

for µλK-semistability working without detecting the vector ξ involved in the
µλ
ξ -Futaki invariant. We observe a family of filtrations {Fξ+τ(X ,L)}τ∈[0,∞) as-

sociated to a test configuration (X ,L) and a vector field ξ acting on (X,L) to

consider the differential. We conceptualize such family of filtrations as polyhe-

dral configuration and study its generalities. The concept implicitly appeared
in many literatures involved in R-test configuration.

In the latter part, we propose a non-archimedean pluripotential approach

to the maximization problem. In order to adjust the characteristic µ-entropy
µ̌λ

ch to Boucksom–Jonsson’s non-archimedean framework, we introduce a nat-

ural modification µ̌λ
NA which we call non-archimedean µ-entropy. We extend

the non-archimedean µ-entropy from the set of test configurations to a space

Eexp
NA (X,L) of non-archimedean psh metrics on the Berkovich space XNA,

which is endowed with a complete metric structure. We introduce moment

measure
∫
χDφ on Berkovich space for this sake, which can be considered as

a hybrid of Monge–Ampère measure and Duistermaat–Heckman measure.

We also compare our µ-framework with other frameworks: H-entropy frame-

work in the context of Kähler–Ricci flow and Calabi energy framework in the
context of Calabi flow. Some illustrations by toric examples are attached in

Appendix.
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1. Main results

In this second paper of the series, we explore an invariant for test configuration
called µ-entropy in the first paper [Ino4] and its connection to µK-semistability
introduced in [Ino3] (see also [Lah1, Ino2]). This paper consists of three parts.

In the first part, section 2, we study family of filtrations associated to equivariant
family of polarized schemes over affine toric variety, which we call polyhedral con-
figuration, and variation of µ-entropy along such family of filtrations. In particular,
we observe µ-entropy maximization implies µK-semistability, which motivates us
to study the existence and the uniqueness of maximizers of the µ-entropy.

To find a maximizer of a functional defined on an infinite dimensional space,
it is often effective to study suitable completions and extension of the functional
to the completions. The rest two parts are devoted to this attempt. We adapt
our framework to Boucksom–Jonsson’s non-archimedean pluripotential theory [BJ1,
BJ2, BJ3, BJ4], which provides completions PSHNA(X,L), E1NA(X,L), . . . of the
space of equivalence classes of filtrations/test configurations.

Similarly as in the case of the non-archimedean Mabuchi invariant (a variant
of Donaldson–Futaki invariant which fits into the non-archimedean formalism), to
extend the µ-entropy, we would express equivariant intersections by some inte-
gration on Berkovich space. Different from the case of Mabuchi invariant, the
non-archimedean Monge–Ampère measure MA(φ) is not suitable for our purpose,
and there is another measure on Berkovich space concerned with equivariant in-
tersections of higher moments. For a normal test configuration (X ,L) and a Borel
measurable function χ on R, the measure is expressed as∫

χD(X ,L) =
∑

E⊂X0

ordEX0

∫
R
χDH(E,L|E).δvE .

We call it moment measure. For χ = 1R, it gives the non-archimedean Monge–
Ampère measure. For χ = e−t, it provides a measure suitable for µ-entropy.

In the second part, section 3, we construct the measure
∫
χDφ for general non-

archimedean psh metric φ ∈ E1NA(X,L) of finite energy class. To construct the mea-
sure, we firstly observe the non-archimedean Monge–Ampère measure MA(φ∧τ) of
the rooftop φ∧τ for non-archimedean metric φ = φ(X ,L) ∈ HNA(X,L) associated to
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test configuration and τ ∈ R. Similarly as the above expression of the moment mea-
sure, it is concerned with the primary decomposition of the Duistermaat–Heckman
measure: DH(X ,L) =

∑
E⊂X0

ordEX0 · DH(E,L|E). Secondly, we study a gener-
alization of the Duistermaat–Heckman measure for test configuration to general
non-archimedean psh metric φ ∈ PSHNA(X,L), based on the monotonic continuity
of

∫
[τ,∞)

DH(Xi,Li) along decreasing nets φ(Xi,Li) ∈ HNA(X,L). Then the measure∫
χDφ is constructed in a measure theoretic way based on these observations. The

total mass
∫∫

XNA χDφ :=
∫
XNA

∫
χDφ is equal to

∫
R χDHφ.

In the last part, section 4, we firstly study a metric space (EexpNA (X,L), dexp) con-
sisting of non-archimedean psh metrics of finite exponential moment energy Eexp.
The metric dexp originates from Orlicz norm, a generalization of Lp-norm. The
topology induced from dexp is stronger than any dp-topology for 1 ≤ p < ∞ and
is weaker than d∞-topology (uniform convergence). Under the hypothesis on the
continuity of envelopes, which is valid for smooth X (see section 3.2.7), we show the
completeness of the metric space. We then show the µ-entropy µ̌λ

NA has a natural
upper semi-continuous extension to EexpNA (X,L), which is finally expressed as

µ̌λ
NA(φ) = −

∫
XNA(2πAX + λφ)

∫
e−tDφ + E2πKX+λL

exp (φ)∫∫
XNA e−tDφ

− λ log
∫∫

XNA

e−tDφ.

At last, we discuss maximization problem for the non-archimedean µ-entropy and
relation to other works. In Appendix, we observe some toric examples to illustrate
our theory.

In this article, we restrict our interest to schemes of locally finite type over
the field C, for which we have convergence results on equivariant intersections (cf.
[Ino3]). A polarized scheme (resp. polarized variety) (X,L) is a pair of a pure
n-dimensional projective scheme (resp. projective integral scheme) X over C and

an ample Q-line bundle L over X: L is a pair L = (l, L̂) = (1/l)L̂ of a positive

integer l and an ample line bundle L̂ on X. For instance, for a Q-Fano variety
X, we consider L = −KX = (l, (ω⊗l

X )∨) for sufficiently divisible l so that (ω⊗l
X )∨

is invertible. We denote by A1 the affine space C and by Gm the multiplicative
group C×. Torus means algebraic torus T = N⊗Gm, where N ∼= Zr is a finite rank
lattice. We denote by t = N⊗R the associated real Lie algebra. We identify it with
the Lie algebra of the closed torus Treal := N ⊗U(1) via ξ 7→ d

dt |t=0 exp(t2π
√
−1ξ).

Now we explain the main results for each section.

1.1. Characteristic µ-entropy and µK-semistability.

1.1.1. Introduction to characteristic µ-entropy. In [Ino3], we introduced an equi-

variant characteristic class µ̌λ
G(X/B,L) ∈ ĤG(B,Q) for G-equivariant family of

polarized schemes with intent to construct an analogy of CM line bundle in the
context of µK-stability. For a test configuration (X ,L), the base B = A1 is Gm-
equivariantly homotopic to a point with the trivial Gm-action, so that we can iden-
tify the characteristic class µ̌λ

Gm
(X/B,L) ∈ ĤGm(A1,Q) = Ĥ(CP∞,Q) with an in-

finite power series
∑

i=1 aix
i ∈ QJxK by identifying x with c1(O(−1)) ∈ H2(CP∞),

which is the equivariant first Chern class c1,Gm(C1) ∈ H2
Gm

(pt) of the weight one
representation C1 of Gm. It is shown in [Ino3] that this series compactly absolutely
convergent to a real analytic function on R. For a normal test configuration (X ,L),
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the functional can be expressed as

µ̌ch(X ,L; ρ) =
(KX .e

L)− ρ(KGm

X̄/P1 .e
L̄Gm ; ρ)∫

R e
−ρtDH(X ,L)

,

σ̌(X ,L; ρ) =
∫
R(n− ρt)e

−ρtDH(X ,L)∫
R e

−ρtDH(X ,L)

− log

∫
R
e−ρtDH(X ,L),

µ̌λ
ch(X ,L; ρ) = µ̌ch(X ,L; ρ) + λσ̌(X ,L; ρ)

for ρ ∈ R. Here
• we put (eL) = (L·n)/n! and (KX .e

L) = (KX .L
·n−1)/(n− 1)!,

• the Gm-equivariant intersection (KGm

X̄/A1 .e
L̄Gm ; ρ) on the compactification

(X̄ , L̄) is defined by some infinite sum of cup products of equivariant coho-
mology classes (see section 2.3.1 for the precise definition),
• the Duistermaat–Heckman measure DH(X ,L) is associated to the Gm-action

on the central fibre and is normalized by
∫
R DH(X ,L) = (eL).

We call this µ̌λ
ch(X ,L; ρ) the characteristic µ-entropy, distinguishing it with the

non-archimedean µ-entropy we later introduce.
By the equivariant localization and the equivariant Grothendieck–Riemann–

Roch theorem, we can localize the equivariant intersection to the central fibre (cf.
Definition 2.22 and Proposition 2.33):

(KX .e
L)− ρ(KGm

X̄/P1 .e
L̄Gm ; ρ) = (κGm

X0
.eLGm ; ρ),

using a Gm-equivariant homology class κGm

X0
derived from the equivariant homol-

ogy Todd class τGm

X0
(OX0) (cf. [EG2, Ino3]). Or conversely, we can express the

integrations by equivariant intersections on the compactification X̄ :∫
R
e−ρtDH(X ,L) = (XGm

0 .eLGm ; ρ) = (eL)− ρ(eL̄Gm ; ρ),∫
R
(n− ρt)e−ρtDH(X ,L) = (XGm

0 .LGm .e
LGm ; ρ) = (L.eL)− ρ(L̄Gm .e

L̄Gm ; ρ).

Here we note (L.eL) = (L·n)/(n− 1)!. We remind

(1)
1

k!

∫
R
(−ρt)kDH(X ,L) =

(L·n+k
Gm
|X0 ; ρ)

(n+ k)!
=

(L·n+k)

(n+ k)!
−
ρ(L̄·n+k

Gm
; ρ)

(n+ k)!
,

where (L·n+k)
(n+k)! = 0 for k > 0 and

ρ(L̄·n+k
Gm

;ρ)

(n+k)! = 0 for k = 0. We explain the precise

definition of these equivariant intersections in section 2.3.1.
A proper vector (or often called just vector in this article) on (X,L) is an el-

ement ξ ∈ t of the real Lie algebra of a torus T acting on (X,L). For integral
ξ ∈ N ⊂ t, we can assign a product configuration X × A1 endowed with the di-
agonal action of Gm derived from the group homomorphism Gm → T associated
to ξ. We can define the characteristic µ-entropy µ̌λ

ch(X,L; ξ) for a proper vector
ξ, using the expression localized to the central fibre. This is compatible with the
above characteristic µ-entropy for product configuration associated to integral (or
rational) ξ. This is the original form of characteristic µ-entropy appeared in [Ino2]
as µ-volume functional, in which we generalize Tian–Zhu’s volume minimization
argument for Kähler–Ricci soliton to µ-cscK metric. It is proved there that there
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exists a proper vector maximizing µ̌ch(X,L; •) among all proper vectors when X
is smooth. We will see the properness can be extended to X with klt singularities.

As explained in section 2.1.1, we can assign filtrations for test configuration and
proper vector. This leads to the following study.

1.1.2. Characteristic µ-entropy and µK-semistability. We firstly study the charac-
teristic µ-entropy for finitely generated filtrations, generalizing the above descrip-
tion. We begin with studying the characteristic µ-entropy of some geometric ob-
ject (X/Bσ,L; ξ), which we call polyhedral configuration (see Definition 2.14 and
Definition 2.22). It then turns out that any finitely generated filtration is asso-
ciated to some polyhedral configuration (no unique choice) in Proposition 2.20,
and the characteristic µ-entropy is indeed an invariant for filtrations in Proposi-
tion 2.29. Studying a variation of the characteristic µ-entropy along geometric
family {F(X/Bσ,L;ξ)}ξ∈σ of filtrations, we obtain the following criterion for µK-
semistability.

Theorem 1.1 (Summary of section 2.3.3, section 4.2.9). Let (X,L) be a polarized
scheme. Assume one of the following:

(1) There exists a proper vector ξopt on (X,L) such that

µ̌λ
ch(X,L; ξopt) ≥ µ̌λ

ch(X ,L; ρ)

for every test configuration (X ,L) and ρ ∈ Q≥0.
(2) X is a normal variety with only klt singularities, and for each test configu-

ration (X ,L; ρ) there exists a proper vector ξ on (X,L) such that

µ̌λ
ch(X,L; ξ) ≥ µ̌λ

ch(X ,L; ρ).

Then (X,L) is µ̌λK-semistable for any proper vector ξopt which maximizes the char-
acteristic µ-entropy among all proper vectors/test configurations/finitely generated
filtrations.

This result is an algebraic counterpart of Theorem 1.4 in [Ino4] on Perelman’s
µ-entropy. We will reinterpret this theorem as Theorem 1.10 in terms of non-
archimedean formalism. The latter criterion is more pragmatic: we no longer need
to detect the (transcendental) vector ξ for which (X,L) must be µ̌λ

ξK-semistable

to check its µλK-semistability. We only need to find a vector ξ for each test con-
figuration (X ,L; ρ) so that the above inequality holds. To show the latter claim,
we prove the properness of the µ-entropy µ̌λ

ch(X,L; •) for proper vectors. This is
proved for smooth X in [Ino2] in a differential geometric way and will be proved
for klt X in section 4.2.9 after establishing some non-archimedean pluripotential
theoretic formulae.

The following gives an extension of the above theorem. Analogous results for
other frameworks are known by [Der2] and [HL2]: the central fibre of an ‘optimal
degeneration’ is ‘semistable’ in a suitable sense depending on the framework.

Theorem 1.2 (Summary of section 2.3.3 and section 2.3.4). Let (X,L) be a po-
larized scheme. If a finitely generated filtration F maximizes µ̌λ

ch among all finitely
generated filtrations (or test configurations), then the central fibre (Xo(F),Lo(F))
of F is µ̌λK-semistable with respect to the proper vector ξo on Xo(F) induced by
the filtration F .
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See section 2.1.1 and Definition 2.19 for finitely generated filtration. The central
fibre (Xo(F),Lo(F)) of a finitely generated filtration F is defined by

Ro(F) :=
⊕
m∈N

⊕
λ∈R

ϖ−λFλRm/Fλ+Rm,(2)

(Xo(F),Lo(F)) := ProjRo(F).(3)

By Proposition 2.18, the central fibre (Xo(F),Lo(F)) can be identified with the
central fibre of a polyhedral configuration which represents the filtration.

1.1.3. Non-archimedean µ-entropy of test configuration. The characteristic µ-entropy
µ̌λ

ch gives a right concept in view of GIT on Hilbert scheme as studied in [Ino3].
However, analogously to Donaldson–Futaki invariant, this notion does not fits into
Boucksom–Jonsson’s non-archimedean pluripotential theory because it is not well-
behaved with respect to the normalized base change along zd : A1 → A1 due to bad
behavior of the canonical divisor: µ̌λ

ch(Xd,Ld; ρ) ̸= µ̌λ
ch(X ,L; dρ). This prevents

us to interpret µ̌λ
ch as a functional for non-archimedean metrics since the attempt

µ̌λ
ch(φ(X ,L;ρ)) := µ̌λ

ch(X ,L; ρ) is not well-defined for the associated non-archimedean
metric φ(X ,L;ρ) = φ(Xd,Ld;d−1ρ).

Similarly as Mabuchi invariant, we can refine this by using the equivariant log
canonical divisor:

K log,Gm

X̄/P1 := (KGm

X̄ + [X red,Gm

0 ])−ϖ∗(KGm

P1 + [0Gm ]) ∈ HGm
2n (X̄ ,Z).

The following variant fits into the non-archimedean formalism:

µ̌NA(X ,L; ρ) := 2π
(KX .e

L)− ρ(K log,Gm

X̄/P1 .eL̄Gm ; ρ)

(eL)− ρ(eL̄Gm ; ρ)
,(4)

µ̌λ
NA(X ,L; ρ) := µ̌λ

NA(X ,L; ρ) + λσ̌(X ,L; ρ)(5)

for a normal test configuration (X ,L; ρ). Since ((X0 − X red
0 ).eL; ρ) ≥ 0, we have

µ̌λ
NA(X ,L; ρ) ≥ µ̌λ

ch(X ,L; ρ) in general, where the equality holds when the central
fibre is reduced. Similarly as non-archimedean Mabuchi invariant (cf. [BHJ1,
Proposition 7.14]), we have µ̌λ

NA(Xd,Ld; ρ) = µ̌λ
NA(X ,L; dρ) as we explain below.

We observe the normalized base change behavior of the Gm-equivariant log

canonical homology class K log,Gm

X̄ ∈ HGm
2n−2(X̄ ). In the non-equivariant case, it

is observed in [LX, section 3]. (Note K log,Gm

X̄ is not a divisor on X̄ . It is a divi-

sor/reflexive sheaf on X̄ ×Gm
ElGm. See section 2.3.1. ) We write the effective

divisor X0 as
∑

i diEi and put Z := X sing ∪
∪

iE
sing
i ∪ (

∪
i ̸=j Ei∩Ej) ⊂ X . Around

Ei\Z, the test configuration X → A1 is locally expressed as ∆n+1 → A1 : (zi) 7→ zdi
i

(implicit function theorem), so that the normalized base change is locally expressed
in the following diagram:

(6)
⊔(d,di)∆n+1 ∆n+1

A1 A1

(z0,...,z

d
(d,di)

i ,...,zn)

z

di
(d,di)

i
z
di
i

wd

We put X ◦ := X \ Z and X ◦
d := Xd \ ν−1

d Z, where νd : Xd → X is the normalized

base change morphism. The Gm-equivariant Chow class K log,Gm

X (resp. K log,Gm

Xd
)

is the push-forward of the Gm-equivariant Chern class of the log cotangent bundle
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T log,∗X ◦ (resp. T log,∗X ◦
d ), which is locally spanned by dz1, . . . , z

−1
i dzi, . . . , dzn

around the boundary Ei \ Z. By the above local expression, we deduce that the
derivative of νd induce the isomorphism of log tangent bundles νd,∗ : T logX ◦

d
∼=

ν∗dT
logX ◦. (The derivative νd,∗ does not induce an isomorphism of the usual tangent

bundles TX ◦
d , TX ◦ as νd ramifies along the central fibre. ) Since the derivative is

functorially given, νd,∗ is equivariant with respect to the d-times scaled Gm-action
on ν∗dT

logX ◦. (Note νd is equivariant with respect to td : Gm → Gm. ) As Z has

codimension greater than one, we get (νd)∗K
log,Gm

X̄d
= dK log,Gm

X̄ as Gm-equivariant

Chow classes, with d-times scaled Gm-action on X̄ . Therefore, we obtain

(K log,Gm

X̄d/P1 .e
L̄d ; ρ) = (dK log,Gm

X̄/P1 .eL̄; dρ)

by the equivariant projection formula. This shows µ̌λ
NA(Xd,Ld; ρ) = µ̌λ

NA(X ,L; dρ)
as desired.

1.1.4. Towards non-archimedean formalism: moment measure of test configuration.
Now we explain how we use the moment measure

∫
χD(X ,L;ρ). We put

(7)

∫
χD(X ,L;ρ) :=

∑
E⊂X0

ordEX0

∫
R
χ(ρt)DH(E,L|E)(t).δρ.vE

for a normal test configuration (X ,L). Here vE denotes the valuation on X asso-
ciated to the prime divisor E ⊂ X as in Example 2.4, and δvE denotes the Dirac
measure on the space of valuations Val(X) charging vE .

Assume X is log canonical, in particular KX is Q-Cartier. Take a resolution
β : X̃ → X̄ so that the canonical rational map pX : X̃ 99K X × P1 → X extends
uniquely to a morphism of schemes. Then as in [BHJ1, Proposition 4.11], we have

K log,Gm

X̃/P1
− p∗XK

Gm

X =
∑

E⊂X̃0

AX(vE)ordEX0.E
Gm

as Gm-equivariant classes, where EGm denotes the Gm-equivariant class on X̃ asso-
ciated to the Gm-invariant irreducible component E of X̃0. It follows that we can
express µ̌NA(X ,L; ρ) as

−2π
∑

E AX(ρ.vE)ordEX0 · (EGm .eLGm ; ρ)

(eLGm |X0 ; ρ)
+ 2π

(KX .e
L)− ρ(p∗XK

Gm

X .eβ
∗L̄Gm ; ρ)

(eLGm |X0 ; ρ)
.

Now since

(EGm .eLGm ; ρ) =

∫
R
e−ρtDH(E,L|E)(t),

we have∑
E

AX(ρ.vE)ordEX0 · (EGm .eLGm ; ρ) =

∫
Val(X)

AX

∫
e−tD(X ,L;ρ),

(XGm
0 .eLGm ; ρ) =

∫
Val(X)

∫
e−tD(X ,L;ρ) =:

∫∫
Val(X)

e−tD(X ,L;ρ).

Thus we get the following expression of µ̌NA(X ,L; ρ):

−2π

∫
Val(X)

AX

∫
e−tD(X ,L;ρ)∫∫

Val(X)
e−tD(X ,L;ρ)

− 2π
EKX

exp (X ,L; ρ)∫∫
Val(X)

e−tD(X ,L;ρ)

,
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where we put

(8) EM
exp(X ,L; ρ) := −

(
(M.eL)− ρ(p∗XMGm .e

β∗L̄Gm ; ρ)
)

for a Q-line bundle M on X. We have a similar expression on σ̌ as we will observe
in Corollary 4.51.

Remark 1.3. We can find an analogy to moment map in the moment measure
D(X ,L;ρ) as follows. For a moment map µ : X → R of a U(1)-invariant Kähler
metric ω, consider the measure Dω,µ = (idX × µ)∗(ωn/n!) on X × R. Since the
support of the measure is the graph of the moment map, we can recover the moment
map from this measure. For continuous functions χ on R and g on X, we have∫

X

g

∫
R
χDω,µ =

∫
X

g · χ(µ) ωn/n!.

We speculate for subgeodesic rays {ϕs}s∈[0,∞), {ψs}s∈[0,∞) ⊂ E1(X,ω) subordi-
nate to φ,ψ ∈ E1NA(X,L), the following holds∫

XNA

ψ

∫
(−t)k

k!
Dφ = lim

s→∞
−
∫
X

(ddcψ − πψ̇s) ∧
(ddcωϕs − πϕ̇s)n+k

(n+ k)!
,

in particular∫
XNA

ψ

∫
e−tDφ = lim

s→∞
−
∫
X

(ddcψ − πψ̇s) ∧ edd
c
ωϕs−πϕ̇s .

Compare the formula (1) and [Ino4, Proposition 3.19]

The moment measure should be not confused with the weighted non-archimedean
Monge–Ampere measure constructed in [HL1]. The former reflects the higher mo-
ments of Gm-action on test configuration and the latter reflects the higher moments
of T -action on T -equivariant test configuration. The crucial difference is that Gm

acts non-trivially even on the base A1 while T acts only on X fibrewisely over A1.

1.2. Tomography of non-archimedean Monge–Ampère measure. The state-
ments here are described based on Boucksom–Jonsson’s global non-archimedean
pluripotential theory [BJ1, BJ2, BJ3, BJ4]. We review various terminologies and
notations in section 3.2. Here we just recall XNA denotes the Berkovich space
associated to X, PSHNA(X,L) denotes the set of non-archimedean psh metrics,
E1NA(X,L) denotes the finite energy class, HR

NA(X,L) denotes the set of non-
archimedean psh metrics assigned to finitely generated filtrations and HNA(X,L)
denotes the set of non-archimedean psh metrics assigned to test configurations:

HNA(X,L) ⊂ HR
NA(X,L) ⊂ E1NA(X,L) ⊂ PSHNA(X,L),

which are all subsets of

{ upper semi-continuous functions on XNA}.

1.2.1. Duistermaat–Heckman measure. In section 3.3, we study a generalization of
the Duistermaat–Heckman measure for test configurations to non-archimedean psh
metrics. This is used in the construction of moment measure.

Remark 1.4. Recently, M. Xia [Xia2] also constructed the Duistermaat–Heckman
measure for φ ∈ E1NA(X,L). Though the construction is different from ours, both
constructions give the same measure as these are continuous along decreasing nets
φi ↘ φ. Our construction is based on the monotonic continuity of moment energy
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Eχ(φ) along decreasing nets φi ↘ φ, which is observed in section 3.3.2. Xia’s
construction is based on observation on Okounkov body and is concerned with the
associated (archimedean) geodesic ray via E1NA(X,L) ↪→R1(X,ω) (cf. [BBJ]).

Theorem 1.5 (Summary of section 3.3.3, 3.3.4 and section 4.2.1). Let (X,L) be
a polarized variety. For a non-archimedean psh metric φ ∈ PSHNA(X,L), we can
assign a finite Borel measure DHφ on R with total mass

∫
R DHφ ≤ (eL) which is

characterized by the following properties:

• For φ(X ,L) ∈ HNA(X,L), we have DHφ(X ,L)
= DH(X ,L).

• For φi ↘ φ ∈ PSHNA(X,L), we have
∫
[τ,∞)

DHφi →
∫
[τ,∞)

DHφ.

Moreover, we have
∫
R χDHφi

→
∫
R χDHφ in the following cases:

(1) χ is tame in the sense of Definition 3.60 and φi ↘ φ ∈ PSHNA(X,L).
(2) χ is moderate in the sense of Definition 3.64 and φi ↘ φ ∈ E1NA(X,L).
(3) χ is continuous and has left bounded support, and a net {φi}i∈I ∈ E1NA(X,L)

converges to φ ∈ E1NA(X,L) in the strong topology.

For general φ ∈ PSHNA(X,L), we may have
∫
R DHφ < (eL) as χ = 1R is not

tame, while
∫
R DHφ = (eL) for φ ∈ E1NA(X,L). This is reminiscent of the fact that

the (archimedean) Monge–Ampère measure for general psh metric may lose mass
(cf. [GZ, Section 10]).

We also introduce moment energy Eχ(φ) and subspaces EχNA(X,L) ⊂ E1NA(X,L)
(see (72) and Definition 3.52) for non-constant increasing concave function χ on R.
In this article, increasing (resp. decreasing) means χ(t) ≤ χ(t′) for t ≤ t′ (resp.
χ(t) ≥ χ(t′) for t ≤ t′).

1.2.2. Moment measure. As we observe, the following construction is the key for
the extension of non-archimedean µ-entropy.

Theorem 1.6 (Summary of section 3.4.2). Let (X,L) be a polarized variety. For
φ ∈ E1NA(X,L) and a Borel measurable function χ on R with

∫
R |χ|DHφ < ∞,

we can assign a signed Radon measure
∫
χDφ on the Berkovich space XNA which

enjoys the following properties:

(1) For φ(X ,L) ∈ HNA(X,L) represented by a normal test configuration (X ,L),
we have ∫

χDφ(X ,L)
=

∑
E⊂X0

ordEX0

∫
R
χDH(E,L|E).δvE .

(2)
∫
χDφ is linear on χ. If χ ≥ 0, the measure

∫
χDφ is non-negative.

(3) For any pointwise convergent increasing sequence 0 ≤ χi ↗ χ, we have the
weak convergence of measures∫

χiDφ ↗
∫
χDφ.

(4) We have
∫∫

XNA χDφ :=
∫
XNA

∫
χDφ =

∫
R χDHφ.

(5) We have
∫
1RDφ = MA(φ) as measures.

(6) Suppose χ is moderate in the sense of Definition 3.64. Then for a convergent
decreasing net φi ↘ φ ∈ E1NA(X,L), we have the weak convergence of
measures ∫

χDφi
→

∫
χDφ.
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These properties characterize the measure
∫
χDφ.

The following formula on the Monge–Ampère measure of the rooftop φ ∧ τ (the
non-archimedean psh envelope of min{φ, τ}, see section 3.2.8) is the key in the con-
struction, which we call tomography of non-archimedean Monge–Ampère measure.

Proposition 1.7 (Summary of section 3.4.1). For any φ = φ(X ,L) ∈ HNA(X,L)
and τ ∈ R, we have

MA(φ ∧ τ) =
∑

E⊂X0

ordEX0

∫
(−∞,τ)

DH(E,L|E).δvE +

∫
[τ,∞)

DH(X ,L).δvtriv .

To show this, we observe in section 3.1 the primary decomposition of the Duistermaat–
Heckman measure DH(X ,L) =

∑
E⊂X0

ordEX0 ·DH(E,L|E) in terms of the filtration
Fφ associated to non-archimedean psh metric φ = φ(X ,L). We note this filtration
is different from the filtration F(X ,L) associated to test configuration in general:

Fφ = F̂(X ,L) is stabilized along normalized base change. The filtration Fφ is suit-
able for our purpose as we have Fφ∧τ = Fφ ∩ Fvtriv [τ ] (see section 3.2.8).

1.3. Non-archimedean µ-entropy on EexpNA (X,L).

1.3.1. The metric space EexpNA (X,L) and the non-archimedean µ-entropy. The non-
archimedean µ-entropy is concerned with exponential weight, so we have a special
interest in Eexp(φ) := E−e−t(φ) (see (72)). The following is a natural class to
consider the non-archimedean µ-entropy:

(9) EexpNA (X,L) := {φ ∈ PSHNA(X,L) | Eexp(φ;ρ) > −∞ for ∀ρ > 0}.

For φ ∈ EexpNA (X,L), we have Eexp(φ;ρ) = −
∫
R e

−ρtDHφ > −∞ (see Proposition

3.63 and Corollary 3.67), so we can consider the moment measure
∫
e−tDφ.

We study two topologies on EexpNA (X,L). One is the coarsest refinement of the
strong topology (d1-topology) which makes Eexp(φ;ρ) continuous for every ρ > 0
and the other is the metric topology induced from a metric dexp which is modeled on
Orlicz norm for exponential weight. We refer to these topologies as Eexp-topology
and dexp-topology, respectively.

Theorem 1.8 (Summary of section 4.1.3, 4.1.5, 4.1.6 and section 4.2.3). Let (X,L)
be a polarized variety. There exists a metric dexp on EexpNA (X,L) for which we have
the following.

(1) For every ρ > 0, Eexp(φ;ρ) is continuous with respect to dexp-topology.
Namely, dexp-topology is finer than Eexp-topology.

(2) Pointwisely convergent decreasing nets are dexp-convergent. In particular,
HNA(X,L) ⊂ EexpNA (X,L) is dense.

(3) The metric space (EexpNA (X,L), dexp) is complete when X is smooth.

We may replace the smoothness assumption in the last claim with the continuity
of envelopes for (X,L) (see section 3.2.7).

Theorem 1.9 (Summary of section 4.2.4, 4.2.5, 4.2.7 and section 4.2.8). Let (X,L)
be a polarized variety. We have the following continuity results for Eexp-topology
on EexpNA (X,L).
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(1) For every strongly convergent sequence ψi → ψ ∈ E1NA(X,L) (or uniformly
convergent sequence ψi → ψ ∈ C0(XNA)) and every Eexp-convergent se-
quence φi → φ ∈ EexpNA (X,L), we have∫

XNA

ψi

∫
e−tDφi

→
∫
XNA

ψ

∫
e−tDφ.

(2) For a Q-line bundle M on X, the functional EM
exp on HNA(X,L) defined by

(8) extends continuously to EexpNA (X,L).
(3) Suppose X has only klt singularities, then we have the greatest lower semi-

continuous extension of the log discrepancy AX to XNA. In this case, the
functional

HNA(X,L)→ R : µ̌λ
NA(φ) + 2π

∫
XNA

AX

∫
e−tDφ

extends continuously to EexpNA (X,L). As a consequence, µ̌λ
NA on HNA(X,L)

extends to EexpNA (X,L) as an upper semi-continuous function.

As for (3), we must assume X is log canonical for the existence of lsc extension of
the log discrepancy AX to XNA. Indeed, since XNA is compact, any lsc extension
of AX must be bounded from below, but if X is not log canonical, then we have
AX(v) < 0 for some v ∈ XNA and hence infv∈XNA AX(v) ≤ limρ→∞AX(ρ.v) =
−∞, which is a contradiction. At the moment, we assume X is klt to ensure the lsc
extension of AX : in this case, the lsc extension is given by putting AX(v) =∞ for
v ∈ XNA \Xval. See the proof in [BJ2] for the lower semi-continutiy. The author
speculates the lsc extension of AX exists for general log canonical X. We note in
the log canonical case, we must put AX = 0 on the closure of {v ∈ Val(X) | AX(v)},
which makes the lower semi-continuity nontrivial.

1.3.2. Non-archimedean µ-entropy and optimal degeneration. To reformulate The-
orem 1.1 and Theorem 1.2 in the non-archimedean formalism, we must compare
the characteristic µ-entropy µ̌λ

ch(Fφ) and the non-archimedean µ-entropy µ̌λ
NA(φ)

for φ ∈ HR
NA(X,L) (see section 3.2.6 for Fφ). The problem can be reduced to the

continuity of the log discrepancy AX along some geometric family of valuations.
We will check this for valuations associated to proper vectors. As a consequence, we
get µ̌λ

NA(φξ) = µ̌λ
ch(X,L; ξ) for proper vectors (Proposition 4.56) and thus obtain

the following reformulation.

Theorem 1.10 (Summary of section 2.3.3 and section 4.2.9). Let (X,L) be a
polarized normal variety with only klt singularities. If for each φ ∈ HNA(X,L)
there exists a proper vector ξ on (X,L) such that

µ̌λ
NA(φξ) ≥ µ̌λ

NA(φ),

then (X,L) is µ̌λK-semistable for some proper vector ξopt which maximizes the non-
archimedean µ-entropy among all proper vectors (or among all φ ∈ HNA(X,L)).

Now let us combine this with analytic results in the first paper [Ino4]. Here µ̌λ
Per

denotes the Perelman’s µ-entropy. We use the convention in [Ino4], which has the
reverse sign compared to the original one [Per].

Corollary 1.11. Let (X,L) be a polarized smooth variety. For λ ∈ R, the following
(c) implies (b), and (b) implies (a).

(a) (X,L) is µ̌λ
ξK-semistable.
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(b) µ̌λ
NA(φξ) = supφ∈HNA(X,L) µ̌

λ
NA(φ).

(c) µ̌λ
NA(φξ) = infωϕ∈H(X,L) µ̌

λ
Per(ωϕ).

Proof. Theorem 1.5 in [Ino4] directly implies (c) ⇒ (b):

µ̌λ
NA(φξ) = inf

ωϕ∈H(X,L)
µ̌λ

Per(ωϕ) ≥ sup
φ∈HNA(X,L)

µ̌λ
NA(φ) ≥ µ̌λ

NA(φξ).

Here note the last inequality is not trivial as φξ ∈ HR
NA(X,L) \ HNA(X,L) for

irrational ξ ∈ t, but it follows by the continuity on ξ thanks to Proposition 4.56.
The implication (b) ⇒ (a) is nothing but Theorem 1.10. □

The author speculates these conditions are actually equivalent.

Corollary 1.12. Let (X,L) be a polarized smooth variety. If there is a µλ
ξ -cscK

metric ω on (X,L) for λ ≤ 0, then we have

µ̌λ
NA(φξ) = sup

φ∈HNA(X,L)

µ̌λ
NA(φ).

In particular, (X,L) is µλ
ξK-semistable.

Proof. This is a consequence of the above corollary and Theorem 1.4 in [Ino4] which
states

µ̌λ
NA(φξ) = µ̌λ

Per(ω) = inf
ωϕ∈H(X,L)

µ̌λ
Per(ωϕ).

□

Though the µK-semistability of µ-cscK manifold is not new (cf. [Lah1], [Ino3]
and [AJL]), the proof relies on a completely different perspective from the pre-
vious one concerned with the boundedness and the slope of µ/weighted-Mabuchi
functional.

Since µ̌λ
NA is only upper semi-continuous, we cannot immediately deduce

sup
φ∈Eexp

NA (X,L)

µ̌λ
NA(φ) = sup

φ∈HNA(X,L)

µ̌λ
NA(φ)

from the density of HNA(X,L) ⊂ EexpNA (X,L). This problem can be reduced to
the following conjecture, which is analogous to Conjecture 4.81 for the usual non-
archimedean entropy.

Conjecture 1.13 (Regularization of exponential entropy). Let (X,L) be a polar-
ized normal variety with only klt singularities. For any φ ∈ EexpNA (X,L), there exists
a sequence {φi} ⊂ HNA(X,L) converging to φ in Eexp/dexp-topology (or prefarably
it is a convergent decreasing sequence) such that

lim
i→∞

∫
XNA

AX

∫
e−tDφi

=

∫
XNA

AX

∫
e−tDφ.

In [Ino4], we proved

sup
φ∈HNA(X,L)

µ̌λ
NA(φ) ≤ inf

ωϕ∈H(X,L)
µ̌λ

Per(ωϕ)

and for λ ≤ 0 the equality holds at least when there exists a µλ-cscK metric. (At
the moment, we cannot replace HNA(X,L) in the left hand side with a slightly
large HR

NA(X,L), which is plausible in view of maximization problem. However, it
would be a consequence of a result in coming [BJ5] as we remark below. ) The
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author speculates the equality holds in general, even for extended µ-entropies. See
also analogous Conjecture 4.75 in Calabi energy framework.

Conjecture 1.14 (Minimax conjecture for µ-entropy). Let (X,L) be a polarized
normal variety with only klt singularities. Then for λ ≤ 0 we have

sup
φ∈Eexp

NA (L)

µ̌λ
NA(φ) = sup

φ∈HR
NA(L)

µ̌λ
NA(φ) = inf

ωϕ∈H(L)
µ̌λ

Per(ωϕ) = inf
ωϕ∈Eexp(L)

µ̌λ
Per(ωϕ)

with an appropriate definition of Eexp(X,L) and Perelman’s µ-entropy µ̌λ
Per(ωϕ) for

ωϕ ∈ Eexp(X,L).

Compared to Theorem 1.10, the following theorem just rephrases Theorem 1.2
as we currently assume µ̌λ

NA(φ) = µ̌λ
ch(Fφ).

Theorem 1.15. Let (X,L) be a polarized normal variety with only klt singu-
larities. If µ̌λ

NA is maximized by φ ∈ HR
NA(X,L) on HR

NA(X,L) and µ̌λ
NA(φ) =

µ̌λ
ch(Fφ), then the central fibre (Xo(φ),Lo(φ)) = ProjRo(Fφ) is reduced and µ̌λK-

semistable with respect to the proper vector ξφo induced by the filtration Fφ.

The reducedness of the central fibre is a general phenomenon for the filtration Fφ

associated to φ ∈ HR
NA(X,L) (see section 3.2.6). In this article, we only check the

equality for φ ∈ HNA(X,L) and φξ for proper vectors. However, it would be proved
in coming [BJ5] that the log discrepancy AX has a desired property we discuss in
section 4.2.9, which implies the condition µ̌λ

NA(φ) = µ̌λ
ch(Fφ) follows immediately

by the assumption φ ∈ HR
NA(X,L).

1.3.3. Maximization problem for non-archimedean µ-entropy. We are now inter-
ested in finding a maximizer of µ̌λ

NA in HR
NA(X,L). What we benefit from the

non-archimedean formalism is some sort of completeness of the domain EexpNA (X,L)
and the semi-continuity of µ-entropy as we stated in Theorem 1.8 and Theorem
1.9. With this in mind, we would split the maximization problem into two parts:

(1) (Existence) Firstly, find a maximizer in EexpNA (X,L).
(2) (Regularity) Then show the maximizer is actually in HR

NA(X,L).

This kind of reduction is often effective for maximization problem. Indeed, we
employed such reduction in the proof of [Ino4, Theorem 2.2] (cf. [Rot]) which shows
the existence of maximizing momentum fω for Perelman’s W-entropy W̌λ(ω, f).
The author speculates for λ ≤ 0 the maximizing momentum fω for W̌λ(ω, f) would
define a flow ωt of Kähler metrics: µ-flow equation ω̇t = ddcfωt

. Then it is likely
that a maximizing non-archimedean psh metric φ ∈ EexpNA (X,L) for µ̌λ

NA could be
interpreted as the limit of such flow. This is still a far-off dream, but seems plausible
as indeed such picture for Kähler–Ricci flow on Fano manifold, the Hamilton–Tian
conjecture, is completely realized in H-entropy formalism (cf. [He, CSW, DS, HL2,
BLXZ]). We also refer to analytic result for Calabi flow [Xia1]. We will discuss these
works from our non-archimedean perspective in section 4.3.1 and section 4.3.3.

The following conjecture seems more down to earth. By the upper semi-continuity
of µ̌NA, the subset is closed in Eexp/dexp-topology. See also analogous Conjecture
4.77 in Calabi energy framework.

Conjecture 1.16 (Properness of µ-entropy). Let (X,L) be a polarized normal
variety with only klt singularities. Then the subset{

φ ∈ EexpNA (X,L)
∣∣∣ supφ = 0, µ̌NA(φ) ≥ C

}
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is compact with respect to Eexp-topology.

The author speculates the klt assumption cannot be simply replaced with log
canonical assumption in this conjecture (cf. [Hat]).

Proposition 1.17. Assuming Conjecture 1.16, there exists a maximizer φλ
opt ∈

EexpNA (X,L) of µ̌λ
NA for each λ ≤ 0.

Proof. We recall µ̌λ
NA = µ̌NA+λσ̌ and σ̌ is bounded from below by Remark 4.44. It

follows that for λ ≤ 0 µ̌NA = µ̌λ
NA−λσ̌ is bounded from below along a maximizing

sequence φi ∈ EexpNA (X,L): µ̌λ
NA(φi) ↘ sup µ̌λ

NA. Since µ̌λ
NA is normalization free,

we may normalize φi so that supφi = 0. Then by the above conjecture, we have a
convergent subsequence φj → φ in EexpNA (X,L) in Eexp-topology. Since µ̌

λ
NA is upper

semi-continuous with respect to Eexp-topology, the limit φ attains the maximum
of µ̌λ

NA. □

For Calabi–Yau variety and canonically polarized variety, we can show the trivial
metric maximizes the non-archimedean µ-entropy. This can be regarded as a refor-
mulation of Odaka’s theorem [Oda1] in our µ-entropy formalism. Here we assume
X has only klt singularieties at the moment in order to ensure the lsc extension of
the log discrepancy to XNA. The claim can be extended to the log canonical case
as soon as the lsc extension is realized for log canonical varieties.

Theorem 1.18 (Summary of section 4.2.10). Let (X,L) be one of the following:

• X has only klt singularities and KX ≡ 0,
• or X has only klt singularities and KX > 0 and L = KX .

Then for every λ ≤ 0, the trivial metric φtriv maximizes the non-archimedean µ-
entropy µ̌λ

NA on EexpNA (X,L). In particular, (X,L) is K-semistable (actually K-stable
under the klt assumption).

1.3.4. Relation to other works. For a Q-Fano variety (X,L) = (X,−KX) (a Q-
Gorenstein variety with only klt singularities whose anti-canonical sheaf has ample
reflexive power), the non-archimedean µ-entropy µ̌2π

NA is related to the following
H-entropy:

(10) ȞNA(φ) := − inf
x∈Xdiv

(AX(x) + φ(x))− log

∫∫
XNA

e−tDφ.

We have µ̌2π
NA(φ) ≤ 2πȞNA(φ) in general.

The following theorem can be understood as a non-archimedean counterpart of
[DS]:

inf
ωϕ∈H(X,L)

µ̌2π
Per(ωϕ) = inf

ωϕ∈H(X,L)
2πH(ωϕ).

The existence part is due to [HL2, BLXZ].

Theorem 1.19 (Summary of section 4.3.1). Let (X,L) = (X,−KX) be a Q-Fano
variety. Then we have

sup
φ∈Eexp

NA (L)

µ̌2π
NA(φ) = sup

φ∈HR
NA(L)

µ̌2π
NA(φ) = sup

φ∈HR
NA(L)

2πȞNA(φ) = sup
φ∈Eexp

NA (L)

2πȞNA(φ).

The maximums are attained by some common φF ∈ HR
NA(X,L) associated to a

finitely generated filtration F with µ2πK-semistable Q-Fano central fibre.
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We return to the case of general polarized varieties. We can show the following
extension of the extremal limit observation in [Ino2].

Theorem 1.20 (Summary of section 4.3.2). Let (X,L) be a polarized normal

variety with only klt singularieties. For φ ∈ PSHbdd
NA (X,L), we have

lim
ρ→+0

ρ−1(µ̌−ρ−1

NA (φ;ρ)− µ̌−ρ−1

NA (0)) = CNA(φ).

Here CNA is a non-archimedean counterpart of Calabi energy, which is introduced
in [Ino4]. The functional CNA is not scaling invariant CNA(φ;ρ) ̸= CNA(φ): it
is rather quadratic on ρ. Its maximizer along ρ > 0 gives the non-archimedean
variant of normalized Donaldson–Futaki invariant 1

2(eL)
(2πMNA(φ)/∥φ̄∥)2 when φ

destabilizes (X,L). There is an analogous story for CNA as µ̌λ
NA and ȞNA. We will

discuss this and its Ding version in section 4.3.

1.3.5. Toric illustration. For toric test configurations, we can compute the non-
archimedean µ-entropy by integrations on the moment polytope.

Proposition 1.21. Let (X,L) be a polarized toric (normal) variety and P be the
associated moment polytope. For a toric test configuration (X ,L) with ample L̄,
take the piecewise affine convex function q on P so that Q = {(µ, t) ∈ P ×R | 0 ≤
t ≤ −q(µ)} denotes the moment polytope of (X̄ , L̄), then we have

µ̌NA(X ,L; ρ) = −2π
∫
∂P

eρqdσ∫
P
eρqdµ

,(11)

σ̌(X ,L; ρ) =
∫
P
(n+ ρq)eρqdµ∫

P
eρqdµ

− log

∫
P

eρqdµ.(12)

More generally, for a T -invariant non-archimedean psh metric φ ∈ EexpNA (X,L),
we can assign a lower semi-continuous convex function qφ on P which enjoys the
integrability condition

∫
P
eρqdµ < ∞ for every ρ > 0. Then assuming Conjecture

1.13, we have the same formula for µ̌λ
NA(φ). These are explained in Appendix.
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adháı Dervan, Masafumi Hattori and Tomoyuki Hisamoto for their interest and
helpful discussions at every occasion.

RIKEN

2. Characteristic µ-entropy and µK-semistability

2.1. Algebraic preliminaries.

2.1.1. Filtration. We firstly recall some notions and terminologies related to filtra-
tion used throughout this article. We put N := {0, 1, 2, . . . , } and N+ = {1, 2, . . .}.
For d ∈ N+, we put N(d) := {m ∈ N | d divides m}.

Let (X,L) be a polarized scheme. We put Rm := H0(X,L⊗m), R :=
⊕

m∈NRm

and R(d) :=
⊕

m∈N(d) Rm. We also put Nm := dimCRm.

A filtration F of (X,L) is a collection of linear subspaces {FλRm ⊂ Rm}λ∈R,m∈N(d)

for some d ∈ N+ which satisfies the following: for every λ, λ′ ∈ R and m,m′ ∈ N(d)

(1) Fλ−Rm = FλRm for Fλ−Rm :=
∩

λ′<λ Fλ′
Rm.

(2)
∑

λ∈R FλRm = Rm,
∩

λ∈R FλRm = 0.

(3) FλRm · Fλ′
Rm′ ⊂ Fλ+λ′

Rm+m′ .
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In particular, we have FλRm ⊂ Fλ′
Rm for λ′ ≤ λ. We use the notation F1 ⊂ F2

when Fλ
1Rm ⊂ Fλ

2Rm for every λ ∈ R and m ∈ N(d) for some sufficiently divisible
d ∈ N+. We identify two filtrations F1,F2 if F1 ⊂ F2 and F2 ⊂ F1.

We put

Fλ
trivRm :=

{
Rm λ ≤ 0

0 λ > 0
.

Example 2.1. Recall a test configuration (X ,L) of a polarized scheme (X,L) is
a Gm-equivariant proper flat family ϖ : (X ,L) → A1 of polarized schemes en-
dowed with a Gm-equivariant relatively ample Q-line bundle L and an isomorphism
(X,L) ∼= (X1,L|X1

). For a test configuration (X ,L) (not necessarily normal), we
assign the following filtration:

(13) Fλ
(X ,L)Rm := {s ∈ H0(X,L⊗m) | ϖ−⌈λ⌉s̄ extends to a section of L⊗m}.

This is Z-graded: Fλ = F⌈λ⌉. Later, in section 3.1 and the subsequent section,

we observe a variant F̂(X ,L) for a normal test configuration (X ,L). It is Q-graded
and is identified with a filtration Fφ(X ,L)

recovered from the non-archimedean psh

metric φ(X ,L) associated to (X ,L).

Example 2.2. When we have a torus action (X,L) ⟲ T , for a vector ξ ∈ t = N ⊗R,
we assign

(14) Fλ
ξ Rm := {s ∈ H0(X,L⊗m) | ⟨µ, ξ⟩ ≥ λ for every µ ∈M with sµ ̸= 0},

using the weight decomposition s =
∑

µ∈M sµ. For irrational ξ ∈ t, the filtration is
not Q-graded.

For integral η ∈ N , we can assign a product configuration (Xη
A1 , L

η
A1) endowed

with the diagonal action induced by η. Then we have Fη = F(Xη

A1
,Lη

A1
) as s̄(x, t) =

(s.t)(x) =
∑

µ∈M t⟨µ,η⟩sµ(x).

In some arguments, it is convenient to use non-archimedean norm instead of
filtration. A non-archimedean norm on a vector space V over (the trivially valued
non-archimedean field) C is a map ∥ · ∥ : V → [0,∞) satisfying

• ∥v∥ = 0 iff v = 0.
• ∥au+ bv∥ ≤ max{∥u∥, ∥v∥} for u, v ∈ V and a, b ∈ C.

We note the second condition implies ∥av∥ = ∥v∥ for a ̸= 0. A basis {ei}ri=1 of V
is called diagonal with respect to ∥ · ∥ if it satisfies

∥
∑
i

aiei∥ = max{∥ei∥ | ai ̸= 0}.

It is known by [BE] there always exists such a basis. For a quotient space V/W ,
we can induce a non-archimedean norm on V/W by

∥[v]∥V/W := inf{∥v′∥V | v′ ∈ [v]},
which is equivalent to declare

− log ∥[v]∥V/W ≥ λ ⇐⇒ ∃v′ ∈ [v] s.t. − log ∥v′∥V ≥ λ.

For a filtration F of (X,L), we associate a non-archiemedean norm ∥ · ∥Fm on Rm

by

(15) ∥s∥Fm := inf{e−λ | s ∈ FλRm}.
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Since the filtration is left continuous Fλ− = Fλ, we have

− log ∥s∥Fm ≥ λ ⇐⇒ s ∈ FλRm

− log ∥s∥Fm = λ ⇐⇒ s ∈ FλRm \ Fλ+Rm.

For a filtration F and d ∈ N+, we put

σmin,d(F) := inf
m∈N(d)

m−1 sup{λ ∈ R | FλRm = Rm},(16)

σmax,d(F) := sup
m∈N(d)

m−1 inf{λ ∈ R | FλRm = 0}.(17)

A filtration is linearly bounded if σmin,d(F) and σmax,d(F) is finite for some d.

2.1.2. Valuation. A valuation on an irreducible variety X is a map v : C(X) →
(−∞,∞], where C(X) denotes the field of rational functions, satisfying

• v(f) =∞ if and only if f = 0,
• v(f) = 0 for f ∈ C×,
• v(fg) = v(f) + v(g),
• v(f + g) ≥ min{v(f), v(g)}.

We in particular have the trivial valuation vtriv: vtriv(f) = 0 iff f ̸= 0.

Example 2.3. For a birational map X ′ 99K X from a normal variety X ′ and a
prime divisor E ⊂ X ′ and c ∈ Q≥0, we can assign a valuation v = c.ordE . We call
a valuation divisorial if it is of this form or trivial.

Example 2.4 ((cf. [BHJ1])). For a normal test configuration X of X and an irre-
ducible component E ⊂ X0 of the central fibre, we assign the following valuation

(18) vX ,E =
ordE ◦ p∗X
ordEX0

,

using the canonical rational map pX : X 99K X × A1 → X. We often abbreviate
vX ,E as vE .

These valuations vE are divisorial by [BHJ1, Lemma 4.1]. Conversely, by [BHJ1,
Theorem 4.6], any divisorial valuation v can be written as v = vE for some irre-
ducible component E ⊂ X0 of the central fibre of some test configuration X of
X.

Example 2.5. When we have a torus action X ⟲ T , for a vector ξ ∈ t = N ⊗R, we
assign the following valuation

(19) vξ(f) := inf{⟨µ, ξ⟩ | fµ ̸= 0} = inf{λ ∈ R |
∑

⟨µ,ξ⟩=λ

fµ ̸= 0},

using the weight decomposition f =
∑

µ∈M fµ.
Similarly as Example 2.2, we have vη = vXη

A1
,X for η ∈ N .

Example 2.6 (Quasi-monomial valuation (cf. [JM])). Consider a proper birational
morphism X ′ → X from a smooth variety X ′ and an snc divisor D =

∑r
i=1Ei on

a Zariski neighbourhood of a schematic point η ∈ X ′. Take a regular system of
parameters z1, . . . , zr of the regular local ring OX′,η of a schematic point η ∈ X ′

so that zi defines Ei. By Cohen’s structure theorem, the m-adic completion ÔX′,η
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is isomorphic to (ÔX′,η/m)Jz1, . . . , zrK. Thus f ∈ OX′,η can be written as f =∑
β∈Nr cβz

β in ÔX′,η. For α ∈ [0,∞)r, we assign the following valuation

vα(f) := min{⟨α, β⟩ | cβ ̸= 0}.
This is independent of the choice of the regular system. We call such a valuation
quasi-monomial and denote by QMη(X

′, D) ∼= [0,∞)r the set of valuations given
as above.

For a valuation v on a projective variety X with a polarization L, we define a
filtration Fv[σ] by

(20) Fλ
v [σ]Rm := {s ∈ Rm | v(s) +mσ ≥ λ} = Fλ−mσ

v Rm.

Here we put v(s) := v(s/e) for s ∈ Rm = H0(X,L⊗m) by taking a Zariski local
generator e of L⊗m around the center of the valuation v, which exists by the
properness of X. We obviously have Fv[σ

′] ⊂ Fv[σ] for σ
′ ≤ σ. Since v(s) ≥ 0, we

have Fλ
v [σ]Rm = Rm for λ ≤ mσ, so that σmin,d(Fv[σ]) ≥ σ. We call a valuation

v linear growth if Fv = Fv[0] is linearly bounded, i.e. σmax,d(Fv) < ∞ for some
d. It is known that every quasi-monomial valuation including divisorial valuation
is linearly bounded.

Example 2.7. Let ξ be a proper vector on (X,L) and take sufficiently divisible d so
that there is a section e ∈ H0(X,L⊗d) which does not vanish around the center of

vξ. For m ∈ N(d)
+ and s ∈ H0(X,L⊗m), we have

0 ≤ vξ(s) = vξ(s/e
m/d)

= inf{λ ∈ R |
∑

⟨µ,ξ⟩=λ

(s/em/d)µ ̸= 0}

= inf{λ ∈ R |
∑

⟨µ′,ξ⟩=λ

sµ′ ̸= 0} − m

d
inf{λ ∈ R |

∑
⟨µ′′,ξ⟩=λ

eµ′′ ̸= 0},

so we get

inf{λ ∈ R |
∑

⟨µ′′,ξ⟩=λ

eµ′′ ̸= 0} = inf
s∈H0(X,L⊗m)

inf{λ ∈ R |
∑

⟨µ′,ξ⟩=λ

sµ′ ̸= 0}

= sup{λ ∈ R | Fλ
ξ Rm = Rm} = dσmin,d(Fξ).

It follows that Fvξ [σmin,d(Fξ)] = Fξ.

For a filtration F and a valuation v, we put

(21) σv = σv(F) := inf{σ ∈ R | F ⊂ Fv[σ]}.
As we see later, we have σv(F(X ,L)) = φ(X ,L)(v) for the filtration F(X ,L) and the
non-archimedean metric φ(X ,L) associated to a test configuration (X ,L). More
generally, assuming the continuity of envelopes, we can assign a non-archimedean
psh metric φF for a general linearly bounded filtration, and then σv coincides with
the value φF (v) of the associated non-archimedean metric φF for v of linear growth.

We use σv to describe the Duistermaat–Heckman measure of an irreducible com-
ponent E of the central fibre of a normal test configuration in terms of the filtra-

tions F̂(X ,L),FvE [σ]. In the argument, we need to compute σv along normalized
base change. Approving the fact σv = φ(v) (see Proposition 3.15), this is explained
in [BHJ1, BJ1, BJ2, BJ3, BJ4] based on non-archimedean perspective, however,
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it is also possible to explain this in a more direct algebraic perspective. Multiple
viewpoints would be good for readers, so we display the proofs. This observation
also provides a way to access Boucksom–Jonsson’s non-archimedean pluripotential
theory, which we really need from section 3.2.

For any σ < σmin,d(F), we have FmσRm = Rm, so that we have Fmσ
v [σ′]Rm =

Rm for any σ′ > σv(F). Taking s ∈ Rm which does not vanish at the center of v, we
have v(s) = 0. Then Fmσ

v [σ′]Rm = Rm implies σ′ ≥ σ. Thus we get σv ≥ σmin,d.
On the other hand, for any σ > σmax,d(F), we have FmσRm = 0, so that we have
F ⊂ Ftriv[σ]. Meanwhile, Ftriv[σ] ⊂ Fv[σ] for any valuation v, so we get σv ≤ σ.
Thus we get also σv ≤ σmax,d. Therefore, we have

(22) σmin,d(F) ≤ σv(F) ≤ σmax,d(F).
In particular, σv is finite for linearly bounded filtration.

For a filtration F for (X,L) and ρ ∈ R+, we put

(23) Fλ
;ρRm := Fρ−1λRm.

We have Fv;ρ[σ] = Fρv[ρσ], so σρv(F;ρ) = ρσv(F).

2.1.3. Spectral measure. We recall

(24) Fλ+Rm :=
∑
λ′>λ

Fλ′
Rm =

∪
λ′>λ

Fλ′
Rm

may differ from FλRm. For a linearly bounded filtration F on R and for each
m ∈ N(d), we associate the following measure νm(F) on R:

(25) νm(F) := 1

mn

∑
λ∈R

(dimFλRm/Fλ+Rm).δλ/m.

Note our normalization constant 1/mn is different from that 1/Nm in [BHJ1]. It is
shown by [CM] (cf. [BC]) that there exists a compactly supported measure ν∞(F)
on R such that ∫

R
χνm(F)→

∫
R
χν∞(F)

for every continuous χ on R (note the supports of measures are bounded). We call
ν∞(F) the spectral measure of F . For F = F(X ,L) associated to a test configuration
(X ,L), we denote the spectral measure by DH(X ,L) and call it the Duistermaat–
Heckman measure. There is a relative construction introduced in [BJ2], which we
review in section 4.1.1.

2.1.4. Affine toric variety. Here we review affine toric geometry in order to clarify
our notations in polyhedral configuration. Let N be a finite rank lattice and M
be the dual lattice over Z. Let T = N ⊗ Gm be the algebraic torus associated
to N . For ξ ∈ N and µ ∈ M , we denote by χξ : Gm → T the one parameter
subgroup associated to ξ and by χµ : T → Gm the character associated to µ. We
have χµ ◦ χξ(z) = z⟨µ,ξ⟩.

The exponential map exp : C → Gm induces a group homomorphism exp :
N ⊗ C → T . We have χµ(exp(ξ)) = e⟨µ,ξ⟩ for ξ ∈ N ⊗ C and µ ∈ M . The kernel
of this map is 2π

√
−1N ⊂ N ⊗ C.

A cone σ ⊂ t is called (i) strictly convex, (ii) full-dimensional and (iii) rational
polyhedral if (i) it is convex and it does not contain a line, (ii) its interior is
non-empty and (iii) it is the intersection of finitely many half spaces H+

i = {ξ ∈
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t | ⟨µi, ξ⟩ ≥ 0} for µi ∈ M . We call a cone satisfying (i)–(iii) toric cone. (Usually
(i) is not assumed. )

For a toric cone σ ⊂ t, the affine toric variety Bσ associated to σ is given by

Bσ := Spec(C[σ∨ ∩M ]).

Closed points of Bσ correspond to semigroup homomorphisms x : (σ∨ ∩M,+) →
(C,×), where the latter is the multiplicative semigroup, not a group (cf. [CLS]).
We denote by o ∈ Bσ the point corresponding to the homomorphism

o : σ∨ ∩M → C : µ 7→

{
1 µ = 0

0 µ ̸= 0

and denote by 1 ∈ Bσ the point corresponding to the homomorphism

1 : σ∨ ∩M → C : µ 7→ 1.

The T -action on Bσ is given by (x.t)(µ) = χµ(t)x(µ) for x ∈ Bσ, t ∈ T and
µ ∈ σ∨ ∩M . Since (x. exp(−ρξ))(µ) = e−ρ⟨µ,ξ⟩x(µ), we have

lim
ρ→∞

x. exp(−ρξ) = o ∈ Bσ

for every interior point ξ ∈ σ◦ ⊂ t.

2.1.5. Toric vector bundle and weight filtration. Let E be a T -equivariant vector
bundle over an affine toric variety Bσ. For e ∈ E1, we denote by ē the rational
section of E given by ē(τ) = e.τ for τ ∈ T ⊂ Bσ. For a rational section s of E
and t ∈ T , we define a rational section s.t of E by (s.t)(b) := s(b.t−1).t. Finally,
for a rational section s of E and µ ∈ M , we define a rational section χ−µs by
(χ−µs)(τ) = χ−µ(τ)s(τ) for τ ∈ T .

For e ∈ E1 and t ∈ T , we have ē.t = ē as

(ē.t)(τ) = ē(τt−1).t = (e.τt−1).t = e.τ = ē(τ).

Conversely, any rational section s satisfying s.t = s can be written as s = ē for
e = s1.

For a rational section s of E and µ ∈M , we have (χ−µs).t = χµ(t)(χ−µ(s.t)) as

((χ−µs).t)(b) = (χ−µs)(bt−1).t = (χ−µ(b)χ−µ(t−1)s(bt−1)).t

= χµ(t)(χ−µ(b)(s.t)(b)) = χµ(t)(χ−µ(s.t)(b)).

It follows that (χ−µē).t = χµ(t)(χ−µē) for e ∈ E1 and µ ∈ M and conversely, any
rational section s satisfying s.t = χµ(t)s can be written as s = χ−µē for e = s1.

For µ ∈M , we consider the following subspaces of E1

Fµ
E := {e ∈ E1 | χ−µē extends to a global section of E},(26)

Fµ+
E :=

∑
µ′⪈σµ

Fµ′

E .(27)

Proposition 2.8. Let Io be the defining ideal of o ∈ Bσ. Then we have

H0(Bσ, E) =
⊕
µ∈M

χ−µFµ
E ,

H0(Bσ, Io ⊗ E) =
⊕
µ∈M

χ−µFµ+
E .
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Proof. We note E|T is trivial as the T -action is free on T ⊂ Bσ, so that H0(T,E)
decomposes into eigenspaces H0(T,E) ∼= C[M ]⊕r =

⊕
µ∈M (Cχµ)⊕r, even though

the representation H0(T,E) is infinite dimensional. Since H0(Bσ, E) → H0(T,E)
is injective, the weight decomposition of H0(T,E) inherits to H0(Bσ, E):

H0(Bσ, E) =
⊕
µ∈M

H0(Bσ, E)µ,

where H0(Bσ, E)µ consists of s ∈ H0(Bσ, E) with s.t = χµ(t)s.
As explained, we can write s ∈ H0(Bσ, E)µ as s = χ−µē for some e ∈ E1. Since

s is a global section, we have e ∈ FµE1. Thus we get

H0(Bσ, E)µ = χ−µFµ
E ,

which proves the first claim.
Since Bσ is affine, we have

H0(Bσ, Io ⊗ E) = H0(Bσ, Io)⊗H0(Bσ,O) H
0(Bσ, E).

On the other hand, we have

H0(Bσ,O) = C[σ∨ ∩M ], H0(Bσ, Io) =
⊕

0 ̸=µ∈σ∨∩M

C.χµ.

Then the last claim follows by

H0(Bσ, Io ⊗ E) =
⊕

0 ̸=µ̃∈σ∨∩M

C.χµ̃ ⊗C[σ∨∩M ]

⊕
µ∈M

χ−µ′
Fµ′

E

=
∑

0 ̸=µ̃∈σ∨∩M

⊕
µ′∈M

χ−(µ′−µ̃)Fµ′

E =
⊕
µ∈M

χ−µ
∑

µ′⪈σµ

Fµ′

E =
⊕
µ∈M

χ−µFµ+
E .

□
Proposition 2.9. Let E,E′ be a T -equivariant vector bundle over Bσ and ϕ : E ↠
E′ be a T -equivariant surjective map of vector bundles. Then Fµ

E′ is the image of
Fµ

E along ϕ1 : E1 ↠ E′
1.

Proof. By the above proposition, we can identify Fµ
E withH0(Bσ, E)µ and Fµ

E′ with
H0(Bσ, E

′)µ. Since the induced map H0(Bσ, E) → H0(Bσ, E
′) is T -equivariant

and surjective, H0(Bσ, E
′)µ is the image of H0(Bσ, E)µ by Schur’s lemma, which

shows the claim. □
We introduce a partial order ≤σ on M :

(28) µ ≤σ µ
′ ⇐⇒ µ′ − µ ∈ σ∨ ∩M.

Then we have
µ ≤σ σ

′ ⇒ Fµ′

E ⊂ F
µ
E .

We also define
µ ⪇σ µ

′ ⇐⇒ µ ≤σ µ
′ and µ ̸= µ′.

We can describe Fµ
E using a ‘diagonal’ basis of E1 as follows.

Lemma 2.10. For any T -equivariant vector bundle E over an affine toric variety
Bσ, there exists a basis {ei}ri=1 of E1 and a collection of characters {µi ∈ M}ri=1

such that each rational section χ−µi ēi extends to a regular section of E and
{χ−µi ēi}ri=1 gives a trivialization of E. For such basis, we have

Fµ
E = ⟨ei | µi ≥σ µ⟩.
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The first claim is equivalent to the following: E is T -equivariantly isomorphic to
the pull-back p∗Eo = Eo of the fibre Eo over the fixed point o ∈ Bσ along p : Bσ →
o: the trivial bundle Bσ × Eo endowed with the T -action (b, v).t = (b.t, v.t).

Proof. As Bσ is affine, for any basis {eo,i}ri=1 of Eo, we can take sections {si}ri=1

of E so that each si(o) = eo,i. Take {eo,i}ri=1 so that each eo,i is an eigenvector
of a character µi ∈ M . In this case, we can take each si as an eigensection of
µi, hence si = χ−µi ēi for ei = si(1) ∈ E1, by replacing the original si with the
eigencomponent aiµisiµi appearing in the weight decomposition si =

∑
µ aiµsiµ:

si(o) = aiµisiµi(o). Since o ∈ Bσ is in the closure of any T -orbit, the set of points
of Bσ such that {si(b)} does not form a basis of Eb is empty, so that {si}ri=1 gives
a trivialization of E.

Finally, we compute

Fµ
E = {

∑
i

aiei | ai ̸= 0⇒ χµi ēi = χµi−µχµēi ∈ H0(Bσ, E)}

= {
∑
i

aiei | ai ̸= 0⇒ χµi−µ ∈ H0(Bσ,O)}

= ⟨ei | µi ≥σ µ⟩.
□

Proposition 2.11. We have

Fµ
E ∩ F

µ′

E =
∑

µ′′≥σµ,µ′

Fµ′′

E .

Proof. For µ′′ ≥σ µ, µ
′, we have Fµ′′

E ⊂ Fµ
E ∩F

µ′

E . Take a basis {ei}ri=1 of E1 as in
the above lemma. Then the reverse inclusion follows by

Fµ
E ∩ F

µ′

E = ⟨ei | µi ≥σ µ, µ
′⟩ ⊂

∑
µ′′≥σµ,µ′

Fµ′

E .

□

For ξ ∈ σ and λ ∈ R, we put

(29) Fλ
E,ξ :=

∑
⟨µ,ξ⟩≥λ

Fµ
E ⊂ E1.

Taking a basis {ei}ri=1 of E1 as in the above lemma, we can express it as

(30) Fλ
E,ξ = ⟨ei | ⟨µi, ξ⟩ ≥ λ⟩.

Then we can easily check the following.

• Fλ′

E,ξ =
∩

λ<λ′ Fλ
E,ξ,

• Fλ
E,ξ = 0 for λ ≥ maxi⟨µi, ξ⟩ and Fλ

E,ξ = E1 for λ ≤ mini⟨µi, ξ⟩.
The family of filtrations {FE,ξ}ξ∈σ recover the weight filtration Fµ

E by

Fµ
E =

∩
⟨µ,ξ⟩≥λ,ξ∈σ

Fλ
E,ξ.

We put

(31) Fλ+
E,ξ :=

∑
λ<λ′

Fλ
E,ξ.
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For µ ⪇σ µ′ and ξ ∈ σ◦, we have ⟨µ, ξ⟩ < ⟨µ′, ξ⟩, so that we have an inclusion

Fµ+
E ⊂ F ⟨µ,ξ⟩+

E,ξ for ξ ∈ σ◦. It induces a map

Fµ
E/F

µ+
E → F ⟨µ,ξ⟩

E,ξ /F ⟨µ,ξ⟩+
E,ξ .

Proposition 2.12. For ξ ∈ σ◦, we have a canonical isomorphisms

Fλ
E,ξ/Fλ+

E,ξ
∼=

⊕
⟨µ,ξ⟩=λ

Fµ
E/F

µ+
E
∼= Eo,λ :=

⊕
⟨µ,ξ⟩=λ

Eo,µ,

where Eo,µ denotes the eigenspace of the character µ ∈M : Eo =
⊕

µ∈M Eo,µ.

Proof. We remark for µ ̸= µ′ with ⟨µ, ξ⟩ ≤ ⟨µ′, ξ⟩, we have µ′′ ⪈σ µ for every
µ′′ ≥σ µ, µ

′, so that we get

Fµ
E ∩ F

µ′

E =
∑

µ′′≥σµ,µ′

Fµ′′

E ⊂
∑

µ′′⪈σµ

Fµ′′

E ⊂ Fµ+
E .

We firstly see the map Fµ
E/F

µ+
E → Fλ

E,ξ/F
λ+
E,ξ is injective for µ with ⟨µ, ξ⟩ = λ.

The kernel consists of the image of Fµ
E ∩F

λ+
E,ξ =

∑
⟨µ′,ξ⟩>λ F

µ
E ∩F

µ′

E . By the above

remark, we have Fµ
E ∩ F

λ+
E,ξ ⊂ F

µ+
E , which proves the injectivity.

For µ ̸= µ′ with ⟨µ, λ⟩ = ⟨µ, ξ⟩, we have Fµ
E ∩F

µ′

E ⊂ F
µ+
E ∩Fµ′+

E . It follows that

Fµ
E/F

µ+
E ∩ Fµ′

E /Fµ′+
E = 0, hence the sum of the subspaces Fµ

E/F
µ+
E ⊂ Fλ

E,ξ/F
λ+
E,ξ

is a direct product.
Since

Fλ
E,ξ/Fλ+

E,ξ =
∑

⟨µ,ξ⟩=λ

Fµ
E/F

µ
E ∩ F

λ+
E,ξ,

the map
⊕

⟨µ,ξ⟩=λ F
µ
E/F

µ+
E → Fλ

E,ξ/F
λ+
E,ξ is surjective. Therefore, we obtain the

first isomorphism.
To see the second isomorphism, we construct an isomorphism Eo,µ → Fµ

E/F
µ+
E .

As in the previous lemma, for each eo ∈ Eo,µ, we can find e ∈ Fµ
E satisfying

(χ−µē)(o) = eo. The element [e] ∈ Fµ
E/F

µ+
E is independent of the choice of such e.

Indeed, take another e′ ∈ Fµ
E with (χ−µē′)(o) = eo, then since (χ−µe− e′)(o) = 0,

we have χ−µe− e′ ∈ H0(Bσ, Io⊗E), hence e− e′ ∈ Fµ+
E by Proposition 2.8. Thus

we get a well-defined linear map Eo,µ → Fµ
E/F

µ+
E : eo 7→ [e]. The inverse map is

given by [e] 7→ (χ−µē)(o), which is well-defined as (χ−µē)(o) = 0 for e ∈ Fµ+
E . □

Let σ ⊂ NR and σ′ ⊂ N ′
R be toric cones and ϕ∗ : N ′ → N be a morphism of

lattices which induces a linear map ϕ∗ : NR → N ′
R mapping σ′ into σ: ϕ∗(σ

′) ⊂ σ.
Then we have the induced morphism ϕ : Bσ′ → Bσ of toric varieties, which maps
o to o and 1 to 1. Since (ϕ∗E)1 = E1, we can compare FE and Fϕ∗E .

Proposition 2.13. We have

Fµ′

ϕ∗E =
∑

ϕ∗µ≥σ′µ′

Fµ
E ,

Fλ
ϕ∗E,ξ′ = Fλ

E,ϕ∗ξ′

for ξ′ ∈ σ′.
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Proof. Take a basis {ei}ri=1 of E1 as in the previous lemma. Then the basis {ϕ∗ei =
ei}ri=1 of ϕ∗E1 = E1 enjoys the same property for the collection {ϕ∗µi ∈M ′}ri=1 of
weights. Thus we have

Fµ′

ϕ∗E = ⟨ei | ϕ∗µi ≥σ′ µ′⟩ =
∑

ϕ∗µ≥σ′µ′

⟨ei | µi ≥σ µ⟩ =
∑

ϕ∗µ≥σ′µ′

Fµ
E .

As a consequence, we get

Fλ
ϕ∗E,ξ′ =

∑
⟨µ′,ξ′⟩≥λ

Fµ′

ϕ∗E =
∑

⟨µ′,ξ′⟩≥λ

∑
ϕ∗µ≥σ′µ′

Fµ
E =

∑
⟨ϕ∗µ,ξ′⟩≥λ

Fµ
E = Fλ

E,ϕ∗ξ′ .

□

2.2. Polyhedral configuration and family of filtrations.

2.2.1. Polyhedral configuration. Now we introduce polyhedral configuration. The
notion is a simple generalization of test configuration to general affine toric base
Bσ. Let (X,L) be a polarized scheme.

Definition 2.14 (polyhedral configuration). Let σ ⊂ t be a toric cone. A σ-
configuration of (X,L) is a T -equivariant proper flat family of polarized schemes
π : (X ,L) → Bσ endowed with a T -equivariant relatively ample Q-line bundle L
and an isomorphism ι : (X,L)

∼−→ (X1,L|X1
).

We call the fibre Xo over the point o ∈ Bσ the central fibre and the fibre X1 over
the point 1 ∈ Bσ the general fibre.

A T -equivariant relatively ample Q-line bundle is a pair L = (l, L̂) of a positive

integer l and a T -equivariant relatively ample line bundle L̂. We often denote L̂
by lL. An isomorphism of T -equivariant Q-line bundles L,L′ is a T -equivariant
isomorphism of line bundles L⊗m := (lL)⊗m/l ∼= (l′L′)⊗m/l′ =: (L′)⊗m for some
m ∈ Z dividing l, l′.

We often identify L with its equivariant first Chern class c1,T (L) = l−1c1,T (lL) ∈
H2

T (X ,R), whereas we later make use of the Q-line bundle structure of L in order
to assign a family of filtrations {F(X ,L;ξ)}ξ∈σ.

For an element ξ ∈ σ∩N , we associate a Gm-equivariant morphism expξ : A1 →
Bσ by

t 7→

{
1.χξ(t) = (µ 7→ t⟨µ,ξ⟩) t ̸= 0

0 t = 0
.

For a σ-configuration (X/Bσ,L), we denote by (Xξ,Lξ) the pull-back along χξ. It
gives a (non-normal) test configuration of (X,L).

Example 2.15. Let (X,L) be a polarized scheme with a T -action. For any toric
cone σ ⊂ t, we can construct a σ-configuration

(32) (Xσ, Lσ) = (X ×Bσ, L×Bσ)

whose T -action is given by (x, b).t = (x.t, b.t).
A similar construction can be applied to test configuration. Let (X ,L) be a

T -equivariant test configuration of a T -equivariant polarized scheme (X,L). For a
toric cone σ ⊂ t, we get a [0,∞)× σ-configuration
(33) (Xσ,Lσ) = (X ×Bσ,L ×Bσ)

whose Gm × T -action is given by (x, b).(s, t) = (x.s.t, b.t).
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Example 2.16. Let X ↪→ CPN be the Kodaira embedding by the linear system
|mL|. It defines a point [X] of Hilbert scheme Hilb(CPN ). For a torus T ′-action
on CPN , the T ′-equivariant morphism f : T ′ → Hilb(CPN ) : t 7→ [X].t of schemes
gives a rational map f : B′ 99K Hilb(CPN ) from a projective toric variety B′ ⊃ T ′.

By resolving the indeterminancy, we obtain a T ′-equivariant morphism f̃ : BΣ →
Hilb(CPN ) from a normal projective toric variety BΣ associated to a fan Σ. Blowing
up further if necessary, we may assume each σ ∈ Σ is strictly convex. Fix σ ∈ Σ and
put t := Rσ, then σ is full-dimensional in t. Let T ⊂ T ′ be the subtorus associated
to t. Then Bσ⊂t = Bσ/(T

′/T ) is a toric T -variety and we have a T -equivariant
morphism Bσ⊂t → BΣ. We obtain a σ-configuration (X/Bσ,L) by pulling back

the universal family (U ,O(1)|U )→ Hilb(CPN ) along f̃ |Bσ⊂t
.

2.2.2. Polyhedral configuration and family of filtrations. We assign a family of fil-
trations {F(X ,L;ξ)}ξ∈σ to a polyhedral configuration (X/Bσ,L). As we will see,
each filtration in the family is finitely generated, and conversely, every finitely gen-
erated filtration can be obtained in this way (but not canonical). In the study of
K-stability, the practical use of general finitely generated filtration is firstly unveiled
in [CSW] (see also [Sze2]). It is called R-degeneration in [DS] and R-test config-
uration in [BJ4]. A gemstone of polyhedral configuration is appeared in [HL2],
where polyhedral configuration is recognized as a geometric realization of a single
finitely generated filtration. Here we strengthen polyhedral configuration is useful
because it realizes an intuitive treatment of family of filtrations rather than a single
filtration.

Let (X/Bσ,L) be a polyhedral configuration with L = (l, L̂). In what follows,
we take d ∈ N+ so that R(d) =

⊕
m∈N(d) Rm is generated in Rd, l divides d and

Riπ∗L⊗m = 0 for every i ≥ 1 and m ∈ N(d). Then π∗L⊗m is locally free for
m ∈ N(d), hence gives a T -equivariant vector bundle. We can identify the fibre
(π∗L⊗m)1 of 1 ∈ Bσ with Rm = H0(X,L⊗m) via the given isomorphism ι : (X,L) ∼=
(X1,L|X1). We also have

Hi(X ,L⊗m) =

{
H0(Bσ, π∗L⊗m) i = 0

0 i > 0

and

Hi(X , IXo
⊗ L⊗m) =

{
H0(Bσ, Io ⊗ π∗L⊗m) i = 0

0 i > 0

by Leray spectral sequence. (Note Bσ is affine. )
For µ ∈M and m ∈ N(d), we put

Fµ
(X ,L)Rm := {s ∈ H0(X,L⊗m) | χ−µs̄ extends to a section of L⊗m}(34)

= Fµ
π∗L⊗m(π∗L⊗m)1.

We obviously have

(35) Fµ
(X ,L)Rm · Fµ′

(X ,L)Rm′ ⊂ Fµ+µ′

(X ,L)Rm+m′ .

We can recover the σ-configuration (X/Bσ,L) from {Fµ
(X ,L)}µ∈M as follows.
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Proposition 2.17. There are natural isomorphisms of rings:

S(Bσ) := C[σ∨ ∩M ] ∼=
⊕
µ∈M

χ−µFµ
(X ,L)R0,(36)

R(X ,L) :=
⊕

m∈N(d)

H0(X ,L⊗m) ∼=
⊕

m∈N(d)

⊕
µ∈M

χ−µFµ
(X ,L)Rm,(37)

R(Xo,L|Xo
) :=

⊕
m∈N(d)

H0(Xo,L|⊗m
Xo

) ∼=
⊕

m∈N(d)

⊕
µ∈M

χ−µ
Fµ

(X ,L)Rm

Fµ+
(X ,L)Rm

.(38)

where we put

Fµ+
(X ,L)Rm :=

∑
µ′⪈σµ

Fµ′

(X ,L)Rm.

Proof. The first line follows by

Fµ
(X ,L)R0 =

{
C −µ ∈ σ∨ ∩M
0 otherwise

.

By Proposition 2.8, we have

H0(X ,L⊗m) = H0(Bσ, π∗L⊗m) =
⊕
µ∈M

χ−µFµ
(X ,L)Rm.

We obviously have (χ−µs̄)(χ−µ′
s̄′) = χ−(µ+µ′)ss′ for s ∈ Rm, s

′ ∈ Rm′ , so the
isomorphism preserves the ring structures, hence we get the second line.

Again by Proposition 2.8, we have

H0(X , IXo
⊗ L⊗m) =

⊕
µ∈M

χ−µFµ+
(X ,L)Rm.

Thanks to the cohomology vanishing, we compute

H0(Xo,L|⊗m
Xo

) = H0(X ,L⊗m)/H0(X , IXo
⊗ L⊗m)

=
⊕
µ∈M

χ−µ(Fµ
(X ,L)Rm/Fµ+

(X ,L)Rm),

which proves the last line. □

For ξ ∈ σ and λ ∈ R, we put

(39) Fλ
(X ,L;ξ)Rm :=

∑
⟨µ,ξ⟩≥λ

Fµ
(X ,L)Rm ⊂ Rm.

We obviously have Fλ
(X ,L;ρξ)Rm = Fρ−1λ

(X ,L;ξ)Rm. As in the previous section, we

can check that F(X ,L;ξ) gives a filtration of (X,L). The linearly boundedness is less
obvious. It is a consequence of the finite generation of the filtration, which we will
see later.

Similarly as in the previous section, the family of filtrations {F(X ,L;ξ)}ξ∈σ recov-
ers the weight filtration {Fµ

(X ,L)}, hence also the polyhedral configuration (X/Bσ,L).
We can also recover the central fibre (Xo,Lo) from any F(X ,L;ξ) with ξ ∈ σ◦.
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Proposition 2.18. For a σ-configuration (X/Bσ,L) and ξ ∈ σ◦, we have canonical
isomorphisms

Fλ
(X ,L;ξ)Rm/Fλ+

(X ,L;ξ)Rm
∼=

⊕
⟨µ,ξ⟩=λ

χ−µ(Fµ
(X ,L)Rm/Fµ+

(X ,L)Rm) ∼=
⊕

⟨µ,ξ⟩=λ

H0(Xo,L|⊗m
Xo

)µ,

which induces an isomorphism of graded rings

R(Xo,L|Xo)
∼=

⊕
m∈N(d)

⊕
λ∈R

ϖ−λ(Fλ
(X ,L;ξ)Rm/Fλ+

(X ,L;ξ)Rm).

Proof. The isomorphisms are given by Proposition 2.12. □
Let σ ⊂ NR and σ′ ⊂ N ′

R be toric cones and ϕ∗ : N ′ → N be a morphism of
lattices which induces a linear map ϕ∗ : NR → N ′

R mapping σ′ into σ: ϕ∗(σ
′) ⊂ σ.

Pulling back a σ-configuration (X/Bσ,L) along ϕ : Bσ′ → Bσ, we obtain a σ′-
configuration (X ′/Bσ′ ,L′). Since ϕ∗π∗L⊗m = π′

∗(L′)⊗m by cohomology vanishing,
we have

Fλ
(X ′/Bσ′ ,L′;ξ′) = F

λ
(X/Bσ,L;ϕ∗ξ′)

for ξ′ ∈ σ′ by Proposition 2.13.

2.2.3. Finitely generated filtration. For F = F(X ,L;ξ), we denote ∥·∥Fm by ∥·∥(X ,L;ξ)
m .

Take d so that R(d) =
⊕

m∈N(d) Rm is generated in Rd. For a non-archimedean

norm ∥ · ∥ on Rd, we can associate the following associated filtration F∥·∥ on R(d):

for m ∈ N(d),

(40) Fλ
∥·∥Rm = ⟨

m/d∏
i=1

si | si ∈ Rd, − log

m/d∏
i=1

∥si∥ ≥ λ⟩.

Taking a diagonal basis x1, . . . , xNm of Rm with respect to ∥·∥, we can also write
it as

Fλ
∥·∥Rm =

{ ∑
|I|=m/d

aIx
I
∣∣∣ ∑

i∈I

λi ≥ λ for aI ̸= 0.
}
,

where we put λi := − log ∥xi∥.
Definition 2.19 (finitely generated filtration). We call F finitely generated if
F|R(d) = F∥·∥ for some d and some non-archimedean norm ∥ · ∥ on Rd. This is
equivalent to

FλRm =
∑

|I|=m/d,∑
i∈I λi≥λ

∏
i∈I

FλiRd

for some d and every m ∈ N(d).

The following is observed in [HL2].

Proposition 2.20. The filtration F(X ,L;ξ) is finitely generated. Conversely, every
finitely generated filtration is obtained in this way (for ξ ∈ σ◦).

Proof. Since the ring R =
⊕

m≥0

⊕
µ∈M ϖ−µFµRm is finitely generated, we can

take finite collections x1, . . . , xNd ∈ Rd and µ1, . . . , µNd
∈ M with xi ∈ FµiRd (xi

may overlap) so that for m ∈ N(d) every element s ∈ FµRm can be written as

s =
∑

|I|=m/d,∑
i∈I µi=µ

aIx
I .
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By the definition of the filtration, every element s ∈ FλRm can be written as∑
⟨µ,ξ⟩≥λ s

µ with sµ ∈ FµRm. On the other hand, we can write sµ as
∑

|I|=m/d,
∑

i∈I µi=µ a
µ
I x

I .

As a consequence, s ∈ FλRm can be written as

s =
∑

|I|=m/d,∑
i∈I⟨µi,ξ⟩≥λ

aIx
I .

It follows that

FλRm =
{ ∑

|I|=m/d,∑
i∈I⟨µi,ξ⟩≥λ

aIx
I
}

=
∑

|I|=m/d,∑
i∈I⟨µi,ξ⟩≥λ

∏
i∈I

F ⟨µi,ξ⟩Rd,

which shows the finite generation.
Conversely, assume F is finitely generated. Take d so that R(d) and F|R(d) is

generated in Rd. Take a diagonal basis x1, . . . , xNd ∈ Rd with respect to ∥·∥ = ∥·∥Fd
and put λi := − log ∥xi∥. Consider the torus T ′ = (Gm)Nd action on Rd given by
xi.(t1, . . . , tNd

) = tix
i and put ξ := (λ1, . . . , λNd

) ∈ RNd = t′. Then FλRdl is the
image of

Fλ
∥·∥S

lRd = {
∑
|I|=l

aIx
⊗I |

∑
i∈I

λi ≥ λ for aI ̸= 0} =
⊕

⟨µ,ξ⟩≥λ

(SlRd)µ

along SlRd ↠ Rdl.
Now we embed X into the projective space CPNd−1 = P(Rd), using the di-

agonal basis x1, . . . , xNd . As in Example 2.16, we can construct a T ′-equivariant
morphism f ′ : B′ → Hilb(CPNd−1) from a proper normal toric variety B. For
ξ = (λ1, . . . , λNd

) ∈ t′, take the minimal cone σ ∈ Σ with ξ ∈ σ and put
t := Rσ, T := (t ∩N ′)⊗Gm. Regarding σ as a cone in t, we have ξ ∈ σ◦. For the
affine toric variety Bσ ⊃ T , we get a σ-configuration (X/Bσ,L) by pulling back
the universal family (U ,O(1)1/d|U ) over the Hilbert scheme along f : Bσ → B′ →
Hilb(CPNd−1). By the construction, X is a closed subscheme of Bσ×CPNd−1 with
the flat projection π : X → Bσ.

Now we claim F|R(dl) = F(X ,L;ξ)|R(dl) for sufficiently large l. For the relatively

ample O(1) on Bσ×CPNd−1/Bσ, take large l so that Riπ∗(IX ⊗O(m/d)) = 0 and
Riπ∗O(m/d)|X = 0 for every i ≥ 1 and m ∈ N(dl). Then π∗O(m/d)|X is locally
free and we have a T -equivariant surjection π∗O(m/d) ↠ π∗O(m/d)|X of vector
bundles. By Proposition 2.9, Fµ

(X ,L)Rm for m ∈ N(dl) is the image of

Fµ

(Bσ×CPNd−1/Bσ,O(1))
H0(CPNd−1,O(m/d)) = (Sm/dRd)µ

along H0(CPNd−1,O(m/d)) = Sm/dRd ↠ Rm. Thus the filtration Fλ
(X ,L;ξ)Rm is

the image of

Fλ
(Bσ×CPNd−1/Bσ,O(1);ξ)H

0(CPNd−1,O(m/d)) =
⊕

⟨µ,ξ⟩≥λ

(Sm/dRd)µ = Fλ
∥·∥S

m/dRd.

Therefore, we get Fλ
(X ,L;ξ)Rm = Fλ

∥·∥Rm for every m ∈ N(dl). □
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We note the graded ring

(41) R(X ,L;ξ) :=
⊕
m≥0

⊕
λ∈⟨M,ξ⟩

ϖ−λFλ
(X ,L;ξ)Rm

is not finitely generated over C as the base ring

(42) SBσ,ξ :=
⊕

λ∈⟨M,ξ⟩

ϖ−λFλ
(X ,L;ξ)R0,

is not finitely generated over C. We can see this in the following example.

Example 2.21. Consider M = N = Z2, σ = [0,∞)2 ⊂ N ⊗ R. For irrational

ξ = (1,
√
2) ∈ σ, we have µ = µ′ ∈M iff ⟨µ, ξ⟩ = ⟨µ′, ξ⟩. It follows that

SBσ,ξ
∼= C[Pξ]

for the monoid

Pξ = {µ ∈M | ⟨µ, ξ⟩ ≤ 0}.
The ring C[P ] is finitely generated over C iff the monoid P is finitely generated.

However, the monoid Pξ = {(m1,m2) ∈ Z2 | m1 + m2

√
2 ≤ 0} is not finitely

generated.

2.3. Variational formula on characteristic µ-entropy.

2.3.1. Equivariant intersection. Equivariant intersection is a basic language for de-
scribing µK-stability and our µ-entropy of test configurations. We briefly explain
the concept below. The readers can find further information in [EG1, GS, GGK]
and in Appendix of [Ino3].

Let X be a complex n-dimensional compact complex space with a holomorphic
right T -action. For a T -equivariant homology class DT ∈ HT

2n−2(X;R) and a T -
equivariant cohomology class LT ∈ H2

T (X;R), we define the equivariant intersection
(DT .L·n+k−1

T ) ∈ Skt∨ by the equivariant push-forward to the point:

(DT .L·n+k−1
T ) := p∗(D

T ⌢ L⌣n+k−1
T ) ∈ HT

−2k(pt).

We can identify (DT .L·n+k−1
T ) with a polynomial function on t of degree k via

the Poincaré duality HT
−2k(pt) = H2k

T (pt) and the Chern–Weil isomorphism

Φ : H2k
T (pt,R) ∼= Skt∨

which maps cT1 (Cχ) to −χ for χ ∈ M ⊂ t∨, where Cχ is the T -equivariant line
bundle over the point whose right action is given by z.t = χ(t)z. (Alternatively,
consider Cχ endowed with the right action z.t = χ(t)−1z. Then cT1 (Cχ) is mapped
to χ via Φ. The associated left action on Cχ is given by t.z = χ(t)z. ) This
sign convention is equivalent to choosing ℏ = 1 for the Chern–Weil isomorphism
ℏΦ in [Ino3]. We denote by (DT .L·n+k−1

T ; ξ) the value of the polynomial at ξ ∈ t.

When T = Gm, we write (DGm .L·n+k−1
Gm

; ρ.η) as (DGm .L·n+k−1
Gm

; ρ) for ρ ∈ R and
the generating vector η ∈ N ⊂ t corresponding to the identity id : Gm → Gm.

By definition, equivariant intersection is the intersection on the infinite dimen-
sional Borel construction X ×T ET . We can identify the equivariant intersection
with the usual finite dimensional (relative) intersection in the following way. Take

a basis {χi} of the character lattice M of T and put ElT :=
∏rkT

i=1(Cl+1
χi
\ 0) for

l ≫ k, which is a finite dimensional approximation of the classifying space ET .
We consider the right T -action on ElT induced by χi, and denote by X ×T ElT
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the quotient (X × ElT )/T with respect to the diagonal action. By the construc-
tion of the equivariant homology, DT is identified with a homology class of degree
(2n−2)+2lrkT on X×T ElT . On the other hand, LT gives a degree 2 cohomology

class on X ×T ElT . Therefore we may identify DT ⌢ L·n+k−1
T with a homology

class of degree −2k+2lrkT on X ×T ElT and (DT .L·n+k−1
T ) with its push-forward

along X ×T ElT → ElT/T , which lives in H2k(ElT/T ) = H2k
T (pt) by the Poincare

duality. This construction is independent of the choice of ElT by [EG1].
Let w =

∑∞
k=0 akx

k be a real analytic function on R which extends to an entire
holomorphic function on C. Using the equivariant resolution of X and the Cartan
model of equivariant cohomology, we showed in [Ino3] that the following infinite
series is compactly absolutely-convergent and hence gives a real analytic function
on t:

(43) (DT .w(LT ); ξ) :=

∞∑
k=0

ak(D
T .L·k

T ; ξ).

In the study of µK-stability, we applied this to the case w(t) = et. We often
abbreviate (DT .w(LT ); ξ) as (D.w(L); ξ).

In the first article, we computed equivariant intersection using equivariant dif-
ferential form. See [Ino3] and [GS, GGK] for the equivalence of two calculations.

2.3.2. µ-Futaki invariant. Let ξ be a proper vector on (X,L) and T be the torus
generated by ξ. For λ ∈ R, a polarized scheme (X,L) is called µ̌λ

ξK-semistable

if F̌utλξ (X ,L) ≥ 0 for every T -equivariant test configuration (X ,L). It is shown

in [Lah1] and is reformulated in [Ino3] that if a smooth polarized manifold (X,L)
admits a µ̌λ

ξ -cscK metric (= µλ
−ξ/2-cscK metric), then (X,L) is µ̌λ

ξK-semistable.

Here the µ-Futaki invariant F̌utλξ (X ,L) := Dξµ̌(X ,L) + λDξσ̌(X ,L) for a normal

test configuration (X ,L) is defined by the following equivariant intersection:

Dξµ̌(X ,L) := 2π
(KT

X̄/CP 1 .e
L̄T ; ξ) · (eLT ; ξ)− (KT

X .e
LT ; ξ) · (eL̄T ; ξ)

(eLT ; ξ)2
,

Dξσ̌(X ,L) :=
(L̄T .e

L̄T ; ξ) · (eLT ; ξ)− (LT .e
LT ; ξ) · (eL̄T ; ξ)

(eLT ; ξ)2
− (eL̄T ; ξ)

(eLT ; ξ)
.

For general non-normal test configuration, we replace the equivariant canonical di-
visor class KT

X̄/CP 1 with an equivariant Chow class κTX̄/CP 1 as explained in [Ino3],

which fits into equivariant Grothendieck–Riemann–Roch theorem for general scheme
(cf. [EG2]). For a polarized normal variety, the µ̌λ

ξK-semistability is equivalent to

F̌utλξ (X ,L) ≥ 0 for every T -equivariant normal test configuration (X ,L).

2.3.3. Characteristic µ-entropy of polyhedral configuration.

Definition 2.22 (µ-entropy of polyhedral configuration). For a σ-configuration
(X/Bσ,L), we put

µ̌ch(X ,L; ξ) := 2π
(κTX0

.eLT |X0 ; ξ)

(eLT |X0 ; ξ)
∈ R,(44)

σ̌(X ,L; ξ) := (LT |X0 .e
LT |X0 ; ξ)

(eLT |X0 ; ξ)
− log(eLT |X0 ; ξ) ∈ R(45)
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and

(46) µ̌λ
ch(X ,L; ξ) := µ̌ch(X ,L; ξ) + λσ̌(X ,L; ξ).

Proposition 2.23. The map µ̌λ
ch(X ,L; •) : σ → R is real analytic in the sense

that it extends to a real analytic function on t.

Proof. This is a consequence of [Ino3, Proposition 3.7]. □

Theorem 2.24. Let (X,L) be a T -polarized scheme. For ξ ∈ t and a T -equivariant
test configuration (X ,L), we have

d

dρ

∣∣∣
ρ=0

µ̌λ
ch(Xσ,Lσ; ξ + ρ.η) = −F̌utλξ (X ,L)

for arbitrary σ ⊂ t with ξ ∈ σ.

Remark 2.25. This is essentially observed in [Ino3], where we introduced the µ-
Futaki invariant as a derivative of µ-character. The Taylor series of the µ-entropy
is identified with the µ-character

µ̌λ
T×Gm

(Xσ,Lσ) ∈ ĤT×Gm
(A1 ×Bσ,R)

under the Chern–Weil isomorphism

ĤT×Gm(A1 ×Bσ,R)
|{o}−−→ ĤT×Gm({o},R)

1Φ−−→ Ŝ(t∨ × R).

It follows by [Ino3, Proposition 3.3, Corollary 3.17] that

d

dρ

∣∣∣
ρ=0

µ̌λ
ch(Xσ,Lσ; ξ + ρ.η) = 1⟨Dξµ̌

λ
T×Gm

(X ,L), η⟩ = −F̌utλξ (X ,L),

which proves the result.

We give a more direct proof in the following.

Proof. By the localization formula for T×Gm-equivariant cohomology class on CP 1

with the trivial T -action, we have

(eLT×Gm |X0 ; (ρ, ξ)) = −ρ(eL̄T×Gm ; (ρ, ξ)) + (eLT ; ξ),

(eLT×Gm |X0 ; (ρ, ξ)) = −ρ(L̄T .e
L̄T×Gm ; (ρ, ξ)) + (LT .e

LT ; ξ),

(κX0
.eLT×Gm |X0 ; (ρ, ξ)) = −ρ(KX̄/P1 .eL̄T×Gm ; (ρ, ξ)) + (KT

X .e
LT ; ξ),

which shows

d

dρ

∣∣∣
ρ=0

(eLT×Gm |X0 ; (ρ, ξ)) = −(eL̄T ; ξ),

d

dρ

∣∣∣
ρ=0

(eLT×Gm |X0 ; (ρ, ξ)) = −(L̄T .e
L̄T ; ξ),

d

dρ

∣∣∣
ρ=0

(κX0
.eLT×Gm |X0 ; (ρ, ξ)) = −(KX̄/P1 .eL̄T ; ξ).

It follows that

d

dρ

∣∣∣
ρ=0

µ̌ch(Xσ,Lσ; (ρ, ξ)) = −2π
(KT

X̄/P1 .e
L̄T ; ξ) · (eLT ; ξ)− (κTX .e

LT ; ξ) · (eL̄T ; ξ)

(eLT ; ξ)2
,

d

dρ

∣∣∣
ρ=0

σ̌(Xσ,Lσ; (ρ, ξ)) = −
(L̄T .e

L̄T ; ξ) · (eLT ; ξ)− (LT .e
LT ; ξ) · (eL̄T ; ξ)

(eLT ; ξ)2
+

(eL̄T ; ξ)

(eLT ; ξ)
.
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Thus we get
d

dρ

∣∣∣
ρ=0

µ̌λ
ch(Xσ,Lσ; ξ + ρ.η) = −F̌utλξ (X ,L)

□

Corollary 2.26. Let (X,L) be a polarized scheme. If there exists a proper vector
ξ on (X,L) such that

µ̌λ
ch(X,L; ξ) = sup

(X/Bσ,L;ζ)

µ̌λ
ch(X ,L; ζ),

then (X,L) is µ̌λ
ξK-semistable.

Proof. Since µ̌λ
ch(Xσ,Lσ; ξ + ρ.η) ≤ µ̌λ

ch(X,L; ξ) = µ̌λ
ch(Xσ,Lσ; ξ), we get

F̌utλξ (X ,L) = −
d

dρ

∣∣∣
ρ=0

µ̌λ
ch(Xσ,Lσ; ξ + ρ.η) ≥ 0.

□

Since µ̌λ
ch(X ,L; ζ) is continuous on ζ, we may restrict the range of the supremum

to test configurations (X ,L; ρ) with ρ ∈ Q≥0 as claimed in Theorem 1.1.

Theorem 2.27. Let (X,L) be a polarized normal variety with only klt singulari-
ties. Suppose for every test configuration (X ,L) and ρ ∈ Q≥0, there exists a proper
vector ξ on (X,L) such that

µ̌λ
ch(X,L; ξ) ≥ µ̌λ

ch(X ,L; ρ),
then (X,L) is µλK-semistable with respect to some ξopt maximizing the character-
istic µ-entropy.

Proof. This is a consequence of the above corollary and the properness of the µ-
entropy for proper vectors, which is proved for X with klt singularities in Corollary
4.59. We note the properness is proved for smooth X also in [Ino2] by a differential
geometric method. □

A slight modification of the proof yields the following.

Theorem 2.28. If a polyhedral configuration (X/Bσ,L; ξ) maximizes µ̌λ
ch among

all polyhedral configurations, then the central fibre (X,L) = (Xo,L|Xo) is µ̌λ
ξK-

semistable with respect to all T -equivariant test configurations for T = (expRξ)C ⊂
Aut(X,L).

Proof. Let (X ,L) be a T -equivariant test configuration of (X,L). Fixing isomor-

phisms H0(X o,L
⊗k
o ) ∼= H0(X,L⊗k) ∼= H0(X,L⊗k), we endow a T ×Gm-action on

H0(X,L⊗k). This gives a T × Gm-action on Hilb of P(H0(X,L⊗k)∨). Fixing a
T -equivariant relative embedding of (X/Bσ,L) into Bσ × P(H0(X,L⊗k)∨), we get
a morphism Bσ → Hilb.

Consider the T × Gm-equivariant morphism f : Bσ × (A1 \ 0) → Hilb : (b, t) 7→
[Xb,Lb].t. By the construction, we have limt→0 f(o, t) = [X o,Lo]. Take a T ×Gm-

equivariant resolution B̃ → Bσ × A1 of the indeterminancy of the rational map
f : Bσ × A1 99K Hilb. Let Σ̃ be the fan associated to the toric variety B̃. Since
any maximal torus equivairant resolution of a toric variety is a refinement of the
associated fan, we can find a cone σ̃ ∈ Σ̃ such that σ̃ ⊂ σ × [0,∞) and (ξ, ρ) ∈ σ̃◦

for any small ρ > 0 by the irrationality of ξ. Let φ : Bσ̃ → B̃ → Bσ × A1 be the
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associated affine toric variety and (X̃ , L̃) → Bσ̃ be the pull-back of the universal
family on Hilb. Since we have limt→∞ exp t.(ξ, ρ) = o ∈ Bσ̃, limt→∞ φ(exp t.(ξ, ρ))
is mapped to the unique T × Gm-fixed point o ∈ Bσ × A1. Thus we get a natural
T ×Gm-equivariant isomorphism (X̃o, L̃o) ∼= (X o,Lo).

It follows that

µ̌λ
ch,(X,L)(X σ,Lσ; (ξ, ρ)) = µ̌λ

ch(X o,Lo; (ξ, ρ)) = µ̌λ
ch(X̃o, L̃o; (ξ, ρ)) = µ̌λ

ch,(X,L)(X̃ , L̃; (ξ, ρ)).

Since

µ̌λ
ch,(X,L)(X̃ , L̃; (ξ, ρ)) ≤ µ̌λ

ch,(X,L)(X ,L; ξ) = µ̌λ
ch,(X,L)(ξ) = µ̌λ

ch,(X,L)(X σ,Lσ; (ξ, 0)),

we get

−Futλ(X,L)(X ,L) =
d

dt

∣∣∣
ρ=0

µ̌λ
ch,(X,L)(X σ,Lσ; (ξ, ρ)) ≤ 0,

which proves the theorem. □

2.3.4. Characteristic µ-entropy via associated filtration. We observe the µ-entropy
µ̌λ

ch(X ,L; ξ) can be recovered from the associated filtration F(X ,L;ξ).
Let (X/Bσ,L) be a σ-configuration. For ξ ∈ σ, we consider the following endo-

morphism Hm,ξ of H0(Xo,L⊗m|Xo):

(47) Hm,ξ(s) :=
d

dρ

∣∣∣
ρ=0

s. exp(ρ.ξ) = Hm,ξ(s) =
∑
µ∈M

⟨µ, ξ⟩sµ,

where in the latter expression we use the weight decomposition s =
∑

µ∈M sµ. By
Proposition 2.18, we have

dimKer(Hm,ξ − λ) = dimFλ
(X ,L;ξ)Rm/Fλ+

(X ,L;ξ)Rm.

Now we can express the µ-entropy via the associated filtration as follows.

Proposition 2.29. Let (X/Bσ,L) be a σ-configuration. For the measures νm
associated to the filtration F(X ,L;ξ) (see section 2.1.3), we have∫

R
e−tνm =

1

mn
Tr(e−m−1Hm,ξ)

= (eL|X0 ; ξ)− m−1

2
(κX0

.eL|X0 ; ξ) +O(m−2).

In particular, we have

(48) µ̌ch(X ,L; ξ) = −4π lim
m→∞

m log

∫
R e

−tνm(F(X ;L;ξ))∫
R e

−tν∞(F(X ;L;ξ))
,

hence the characteristic µ-entropy of polyhedral configuration is an invariant of
finitely generated filtration.

Proof. Let λ1 < λ2 < · · · < λp be the eigenvalues of Hm,ξ. We have∫
R
e−tνm =

1

mn

p∑
i=1

dimKer(Hm,ξ − λi).e−λi/m

=
1

mn
Tr(e−m−1Hm,ξ) =

1

mn
χT (X0,L⊗m|X0

;m−1ξ).
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By the equivariant Riemann–Roch theorem [EG2, Ino3], we can compute the last
term as

1

mn
χT (X0,L⊗m|X0 ;m

−1ξ) =
1

mn
(τX0(OX0).e

mL|X0 ;m−1ξ)

=
1

mn

(
([X0].e

mL|X0 ;m−1ξ)− 1

2
(κX0

.emL|X0 ;m−1ξ) + · · ·
)

= (eL|X0 ; ξ)− m−1

2
(κX0

.eL|X0 ; ξ) +O(m−2),

where the last equality follows by the following lemma. □

Lemma 2.30. Let X be a compact topological space. For α ∈ HT
2k(X,R), L ∈

H2
T (X,R) and β ∈ R×, we have

(α.eβL;β−1ξ) = βk(α.eL; ξ).

Proof. The claim follows from

(α.eβL;β−1ξ) =

∞∑
l=0

1

l!
βl(α.Ll;β−1ξ) =

∞∑
l=0

1

l!
βlβk−l(α.Ll; ξ) = βk(α.eL; ξ).

□

Example 2.31. We check our sign convention in the above proposition. Consider
the simplest case X = Bσ = A1 with σ = [0,∞).η. The line bundle L = X × C is
endowed with the Gm-action (x, s).t = (x.t, s.t). In this case, we have

τGm

X0
(OX0) = 1, LGm |X0 = −η∨,

so that we get

(τX0(OX0).e
L|X0 ;x.η) = e−x.

On the other hand, we have

Tr(e−Hx.η ) = e−x

as Hx.η(s) = (d/dρ)|ρ=0(e
ρxs) = x.s.

Using the formula (48), we can define the characteristic µ-entropy for general
linearly bounded filtration as follows:

σ̌(F) :=
∫
R(n− t)e

−tν∞(F)∫
R e

−tν∞(F)
− log

∫
R
e−tν∞(F),

µ̌ch(F) := −4π lim
m→∞

m log

∫
R e

−tνm(F)∫
R e

−tν∞(F)
,

µ̌λ
ch(F) := µ̌ch(F) + λσ̌(F).

Alternatively, imitating [Sze2], we put

♭µ̌λ
ch(F) := lim

d→∞
µ̌λ

ch(Fd)

where Fd is the finitely generated filtration associated to the norm ∥ · ∥Fd . Both
definitions seems not so tractable compared to the non-archimedean µ-entropy, so
we leave a further exploration and just put the following example.
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Example 2.32 (Example 3.8 in [BJ4]). We consider a graded norm ∥ · ∥• on R =⊕
m∈NH

0(CP 1,O(m)) = C[x, y] defined by

∥f∥m =

{
em x ∤ f
1 x | f

.

Let F denote the associated filtration. We have νm(F) = 1
m+1δ−1 + m

m+1δ0 and

νm(Fd) =
∑m/d

i=1
1

m+1δ−1+(i−1)d/m+m+1−m/d
m+1 δ0 form ∈ N(d)

+ . We have ν∞(F) = δ0

and ν∞(Fd) =
1
ddµ|[−1,0] +

d−1
d δ0. In particular, F defines the trivial metric φtriv

by [BJ2, Theorem 4.16]. However, we have

µ̌ch(F) = −4π lim
m→∞

m log

∫
R e

−tνm(F)∫
R e

−tν∞(F)
= −4π(e− 1) < µ̌ch(Ftriv) = 0.

As for ♭µ̌ch, we note the filtration Fd is the filtration associated to a toric test
configuration whose associated convex function qd on the interval [0, 1] is given by
qd(t) = max{0, d(t− 1) + 1}. The central fibre of the test configuration is reduced
by [CLS, Proposition 4.1.1]. Then we have µ̌NA(φFd

) = µ̌ch(Fd), so by Proposition
5.7, we compute

µ̌ch(Fd) = −2π
eqd(0) + eqd(1)∫

R ν∞(Fd)
= −2π 1 + e

1
d (e− 1) + d−1

d

.

It follows that
♭µ̌ch(F) = lim

d→∞
µ̌ch(Fd) = −2π(e+ 1) < µ̌ch(F) < µ̌ch(Ftriv).

This in particular shows the non-archimedean µ-entropy is not continuous along
the convergent increasing sequence φFd

↗ φtriv of non-archimedean psh metrics,
but only upper semi-continuous.

2.3.5. µ-entropy of test configuration. We observe the characteristic µ-entropy is
equivalent to the µ-entropy of test configuration used in [Ino4], where we express
it by the equivariant intersection formula on the compactified total space X̄ . This
enables us to compare the µ-entropies of the normalized base change Xd → X .

Proposition 2.33. For a test configuration (X ,L), we have

µ̌ch(X ,L; ρ) = 2π
(KX .e

L)− ρ(κGm

X̄/CP 1 .e
L̄Gm ; ρ)

(eL)− ρ(eL̄Gm ; ρ)
,

σ̌(X ,L; ρ) = (L.eL)− ρ(L̄Gm .e
L̄Gm ; ρ)

(eL)− ρ(eL̄Gm ; ρ)
− log

(
(eL)− ρ(eL̄Gm ; ρ)

)
.

Proof. The claim follows by the localization formula on equivariant intersection
on CP 1 (cf. [GGK, Appendix C.7] or [Ino3, Example 2.6]) and [Ino3, Corollary
2.17]. □

We recall κGm

X̄/CP 1 = KGm

X̄/CP 1 for normal test configuration.

Proposition 2.34. Let (X,L) be a polarized scheme and (X ,L) be a test con-
figuration of (X,L). Let (X ′,L′ = β∗L) be another test configuration of (X,L)
dominating (X ,L) by the canonical rational morphism β : X ′ → X . If β is finite
away from a codimension two subscheme on the target, then we have

µ̌λ
ch(X ′,L′; ρ) ≥ µ̌λ

ch(X ,L; ρ).
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If moreover β is an isomorphism away from a codimension two subscheme on the
target X, then

µ̌λ
ch(X ′,L′; ρ) = µ̌λ

ch(X ,L; ρ).

Proof. The claim follows by the above proposition and [Ino3, Proposition 3.3]. □
Corollary 2.35. For any two test configurations (X ,L), (X ′,L′) of (X,L) which
are isomorphic to each other in codimension one (i.e. there is an isomorphism away
from codimension two subschemes of both X and X ′), we have

µ̌λ
ch(X ,L; ρ) = µ̌λ

ch(X ′,L′; ρ).

Corollary 2.36. If X is normal, then

µ̌λ
ch(X ν , ν∗L; ρ) ≥ µ̌λ

ch(X ,L; ρ)
for the normalization ν : X ν → X .

Let (X ,L) be a normal test configuration. We denote by νd : (Xd,Ld)→ (X ,L)
the normalized base change of a test configuration (X ,L) along the finite morphism
zd : A1 → A1. The morphism νd is Gm-equivariant with respect to the d-times
scaled action on X . Let (X ′

d,L′
d) denote the (non-normalized) base change of (X ,L),

then we have µ̌λ
ch(X ′

d,L′
d; ρ) = µ̌λ

ch(X ,L; dρ) from the definition of µ̌λ
ch. Thus we

get the following. Compare µ̌λ
NA(Xd,Ld; ρ) = µ̌λ

NA(X ,L; dρ) explained in section
1.1.3.

Corollary 2.37. If X is normal, then we have

µ̌λ
ch(Xd,Ld; ρ) ≥ µ̌λ

ch(X ,L; dρ).

3. Tomography of non-archimedean Monge–Ampère measure

In the rest of this article, we assume (X,L) is a polarized normal variety, for
simplicity.

3.1. Primary decomposition via filtration. In this section, we study the pri-
mary decomposition of the Duistermaat–Heckman measure

DH(X ,L) =
∑

E⊂X0

ordEX0 ·DH(E,L|E).

More precisely, we recover the measure from the associated filtration F̂(X ,L), which
will be identified with the filtration Fφ associated to the non-archimedean psh
metric φ = φ(X ,L). This is the key observation in the construction of moment
measure for general non-archimeden psh metrics.

3.1.1. Primary ideal associated to valuation. Recall for a (not necessarily normal)
test configuration (X ,L), we associate the following (Z-graded) filtration:

Fλ
(X ,L)Rm := {s ∈ H0(X,L⊗m) | ϖ−⌈λ⌉s̄ extends to a section of L⊗m}

= F⌈λ⌉
(X ,L)Rm.

As it is Z-graded, we have

σv(F(X ,L)) = inf{σ ∈ R | Fλ
(X ,L) ⊂ F

λ
v [σ] for ∀λ ∈ Z}.

Proposition 3.1 (Lemma A.5 in [BJ4]). For a test configuration (X ,L), we have

σv(F(X ,L)) = σv(F(Xν ,ν∗L)).
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Proof. Since F(X ,L) ⊂ F(Xν ,ν∗L), we have σv(F(X ,L)) ≤ σv(F(Xν ,ν∗L)). To see the
reverse inequality, we must show that F(X ,L) ⊂ Fv[σ] implies F(Xν ,ν∗L) ⊂ Fv[σ]
for every v and σ.

Take sufficiently divisible m so that all the higher cohomology vanish. By the
definition of normalization, every element f ∈ H0(X ν , ν∗L⊗m) is integral over X ,
hence we have d ≥ 1 and σi ∈ H0(X ,L⊗im) such that fd+f1f

d−1+· · ·+fd = 0. We
expand fi =

∑
λ∈Zϖ

−λsi,λ using si,λ ∈ Fλ
(X ,L)Rim. For s ∈ Fµ

(Xν ,ν∗L)Rm, putting

f = ϖ−µs, we obtain ϖ−dµ(sd + s1,µs
d−1 + s2,2µs

d−2 + · · · + sd,dµ) = 0. Now

assume F(X ,L) ⊂ Fv[σ], then we have − log ∥si,iµ∥Fv[σ] ≥ − log ∥si,iµ∥(X ,L)
im ≥ iµ.

Since − log ∥td∥Fv[σ] = −d log ∥t∥Fv [σ], we get

−d log ∥s∥Fv [σ] = − log ∥s1,µsd−1 + s2,2µs
d−2 + · · ·+ sd,dµ∥Fv [σ]

≥ min
1≤i≤d

{iµ− (d− i) log ∥s∥Fv [σ]},

hence − log ∥s∥Fv[σ] ≥ µ. Therefore we get s ∈ Fv[σ]
µ, which shows the claim. □

We note the following weight decomposition:

R(X ,L) =
⊕
m≥0

Rm :=
⊕
m≥0

H0(X ,L⊗m) =
⊕
m≥0

⊕
λ∈Z

ϖ−λFλ
(X ,L)Rm.

Lemma 3.2. Let (X ,L) be a (not necessarily normal) test configuration. Then we
have the following.

(1) The subset

Iv :=
⊕
m≥0

⊕
λ∈Z

ϖ−λ(Fλ
(X ,L) ∩ F

λ+
v [σv])Rm ⊂ R(X ,L)

is a (homogeneous) prime ideal with R+ ̸⊂ Iv and the subset

I+1
v :=

⊕
m≥0

⊕
λ∈Z

ϖ−λ(Fλ
(X ,L) ∩ F

λ+1
v [σv])Rm ⊂ R(X ,L)

is a (homogeneous) primary ideal with
√
I+1
v = Iv.

(2) The schematic point of X = ProjC[t]R(X ,L) corresponding to Iv is the

center of the Gauss extension G(v):

G(v)(
∑
λ∈Z

ϖλhλ) := min
λ∈Z

(v(hλ) + λ).

Note for σ > σv, we have⊕
m≥0

⊕
λ∈Z

ϖ−λ(Fλ
(X ,L) ∩ F

λ+
v [σ])Rm = R(X ,L)

as Fλ
(X ,L)Rm ⊂ Fλ

v [σv]Rm ⊂ Fλ+
v [σ]Rm.

Proof. Take two elements f1, f2 ∈ R(X ,L). We can write these as

fi =
∑
j∈Ii

ϖ−λj
i sji ,

where Ii is a finite index set and sji ∈ Fλj
iRmj

i
. Since Fλj

iRmj
i
⊂ Fλj

i
v [σv]Rmj

i
, we

have v(sji ) +mj
iσv ≥ λ

j
i .
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We have fi ∈ Iv iff v(sji ) +mj
iσv > λji . Note

f1f2 =
∑

j∈I1,k∈I2

ϖ−(λj
1+λk

2 )sj1s
k
2 .

The subset Iv is obviously closed under sum of two elements and is homogeneous.
Now suppose f1 ∈ Iv, then since

v(sj1s
k
2) + (mj

1 +mk
2)σv = (v(sj1) +mj

1σv) + (v(sk2) +mk
2σv) > λj1 + λk2 ,

we have f1f2 ∈ Iv. Thus Iv is ideal. We can similarly show that I+1
v is ideal.

We can check
√
I+1
v = Iv as follows. For f1 ∈ Iv, take ϵ > 0 so that v(sj1) +

mj
1σv ≥ λ

j
1 + ϵ for every j ∈ I1. Consider a multiple

fd1 =
∑

j1,...,jd∈I1

ϖ−
∑d

r=1 λjr
1

d∏
r=1

sjr1 .

Then since

v(

d∏
r=1

sjr1 ) + (

d∑
r=1

mjr
1 )σv =

d∑
r=1

(v(sjr1 ) +mjr
1 σv) ≥

d∑
r=1

λjr1 + dϵ

we have fd1 ∈ Iv for d with d ≥ ϵ−1.

Next suppose fi /∈ Iv, then we have v(sji )+m
j
iσv = λji . It follows that v(s

j
1s

k
2)+

(mj
1 +mk

2)σv = λj1 +λk2 , which shows f1f2 /∈ Iv. Thus Iv is prime ideal, hence I+1
v

is primary.
By our choice of σv, there is λ ∈ Z and s ∈ Fλ

(X ,L)Rm for m ≥ 1 such that

v(s) +mσv = λ, which is equivalent to ϖ−λs /∈ Iv. Thus R+ /∈ Iv.
Take f2 /∈ Iv∩Rm. By the construction of Proj, X \f−1

2 (0) is naturally identified
with SpecR(f2) where R(f2) = {f1/fn2 ∈ Rf2 | f1 ∈ Rnm, n ∈ N}, where Iv is
identified with {f1/fn2 ∈ Rf2 | f1 ∈ Iv ∩Rnm, n ∈ N}. Since

G(v)(f1/f
n
2 ) = G(v)(

∑
j∈I1

ϖ−λj
1sj1)− nG(v)(

∑
j∈I2

ϖ−λj
2sj2)

= min
j∈I1

(v(sj1)− λ
j
1)− nmin

j∈I2
(v(sj2)− λ

j
2)

By our choice of f2, we have v(s
j
2)−λ

j
2 = −mσv. Since v(sj1)−λ

j
1 ≥ −mσv, we have

G(v)(f1/f
n
2 ) ≥ 0. If f1 ∈ Iv, we have G(v)(f1/f

n
2 ) > 0. This proves the center of

v is Iv. □

3.1.2. Primary decomposition of the central fibre via filtration. Recall for a normal
test configuration X and an irreducible component E ⊂ X0, we have the following
associated valuation on X:

vE =
ordE ◦ p∗X
ordEX0

,

where pX : X 99K X × A1 → X denotes the canonical rational map.
For another normal test configuration X ′ and an irreducible component E′ ⊂ X ′

0,
we have vE′ = vE iff ordE′ = ordE as a valuation on X ×A1 ([BHJ1, Lemma 4.5]).

For an irreducible component Ẽ ⊂ X0 of a normal test configuration X̃ dominating
X via β, we put

(49) σẼ(X ,L) := σvẼ (F(X ,L)).
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For each irreducible component E ⊂ X0, we can find an irreducible component
Ẽ ⊂ X̃ with β(Ẽ) = E, for which we have ordẼ = ordE and vẼ = vE .

We have the following explicit formula on σẼ(X ,L). See also [BHJ1, Lemma

5.17], which shows σE ≤ ordE(L−L)
ordEX0

for E ⊂ X0.

Proposition 3.3 (Lemma A.6 in [BJ4]). Let (X ,L) be a test configuration and X̃
be a normal test configuration dominating both X and X × A1 over A1.

X̃

X X × A1

pX×ϖ̃β

Let L̃ := β∗L and L̃A1 := p∗XL be the pull-backs of the Q-line bundles. Then for

any irreducible component Ẽ ⊂ X̃0, we have

σẼ(X ,L) =
ordẼ(L̃ − L̃A1)

ordẼX̃0

.

Proof. We note for s ∈ Rm

vẼ(s) = vẼ(s/eL⊗m) =
ordẼ(s̄/eL̃⊗m

A1
)

ordẼX̃0

=
ordẼ(s̄/eL̃⊗m)

ordẼX̃0

−m
ordẼ(L̃ − L̃A1)

ordẼX̃0

.

Suppose s ∈ Fλ
(X ,L)Rm, we have

ordẼ(s̄/eL̃⊗m )

ordẼX̃0
≥ λ, so vẼ(s) +m

ordẼ(L̃−L̃A1 )

ordẼX̃0
≥ λ.

Thus we obtain σẼ ≤
ordẼ(L̃−L̃A1 )

ordẼX̃0
.

To see the reverse inequality, it suffices to show that there exists λ ∈ Z,m ∈ N(d)

and s ∈ FλRm satisfying

vẼ(s) +m
ordẼ(L̃ − L̃A1)

ordẼX̃0

= λ.

Indeed for such s ∈ FλRm, we have s /∈ Fλ
vẼ

[σ] for σ <
ordẼ(L̃−L̃A1 )

ordẼX̃0
. For s ∈ Rm,

put

λ(s) := − log ∥s∥(X ,L) = sup{λ | ϖ−⌈λ⌉s̄ ∈ H0(X ,L⊗m)}.
Since {ϖ−λs̄ | λ ∈ Z, s ∈ FλRm} generates H0(X ,L⊗m) over C, {ϖ−λ(s)s̄ | s ∈
Rm} generates H0(X ,L⊗m) over C[t]. It follows that we get s ∈ Rm such that
ϖ−λ(s)s̄|Ẽ ̸= 0 for sufficiently large m with globally generated L⊗m|X0

. For this

s, we have ordẼ(s̄/eL̃⊗m) = ordẼ(ϖ
λ(s)) = λ(s)ordẼX̃0, hence we obtain vẼ(s) =

λ(s)−m ordẼ(L̃−L̃A1 )

ordẼX̃0
, which shows the claim. □

Let X be a normal test configuration. By [BHJ1, Lemma 4.5], we have

G(vE) =
ordE

ordEX0
,

which in particular shows IvE = IE thanks to Lemma 3.2. Thus for irreducible
components E,E′ ⊂ X0, vE = vE′ implies E = E′. We have IX red

0
=

∩
E⊂X0

IvE .
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Since X is normal, the central fibre does not have embedded points ([BHJ1,
Proposition 2.6], so that primary decomposition of the ideal IX0 is unique. It is
given by the primary ideals I+1

vE .

Corollary 3.4. We have

I+1
vE = {

∑
m

ϖ−λm .s̄m |
ordE(ϖ

−λm .s̄m)

ordEX0
≥ 1}.

In particular, we obtain the following primary decomposition:

IX0
=

∩
E⊂X0

I+1
vE .

Proof. Since

ordE(s̄m)

ordEX0
= vE(sm) +m

ordẼ(L̃ − L̃)
ordẼX̃0

,

we compute

I+1
vE = {

∑
m

ϖ−λm .s̄m | vE(sm) +m
ordẼ(L̃ − L̃)

ordẼX̃0

≥ λm + 1}

= {
∑
m

ϖ−λm .s̄m |
ordE(ϖ

−λm .s̄m)

ordEX0
≥ 1}.

This shows

IX0 = OX .ϖ =
∩

E⊂X0

I+1
vE .

□

3.1.3. Primary decomposition of the Duistermaat–Heckman measure. In what fol-
lows, we consider normal test configuration. We denote by XE

0 ⊂ X the (non-
reduced) subscheme corresponding to the primary ideal I+1

vE :

R(XE
0 ,L|XE

0
) =

⊕
m∈N(d)

H0(XE
0 ,L|⊗m

XE
0
) =

⊕
m∈N(d)

Rm/(Rm ∩ I+1
vE ).

The Gm-action on (XE
0 ,L|XE

0
) gives the weight decomposition

Rm/(Rm ∩ I+1
vE ) =

⊕
λ∈Z

ϖ−λ
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+1
vE [σE ])Rm

.

Similarly, we have

R(E,L|E) =
⊕

m∈N(d)

H0(E,L|⊗m
E ) =

⊕
m∈N(d)

Rm/(Rm ∩ IvE )

and the weight decomposition

Rm/(Rm ∩ IvE ) =
⊕
λ∈Z

ϖ−λ
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+
vE [σE ])Rm

.
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Now we can compute the Duistermaat–Heckman measure of primary components
via the associated filtration. Recall

DH(XE
0 ,L|XE

0
) := lim

m→∞

1

mn

∑
λ∈Z

dimH0(XE
0 ,L⊗m|XE

0
)λ.δλ/m(50)

= ordEX0 ·DH(E,L|E).

Proposition 3.5. We have

lim
m→∞

1

mn

∑
λ∈Z

dim
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+
v [σv])Rm

.δλ/m =

{
DH(E,L|E) v = vE for E ⊂ X0

0 v /∈ {vE | E ⊂ X0}

lim
m→∞

1

mn

∑
λ∈Z

dim
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+1
v [σv])Rm

.δλ/m =

{
ordEX0 ·DH(E,L|E) v = vE for E ⊂ X0

0 v /∈ {vE | E ⊂ X0}

Proof. As we already noted, we have

H0(XE
0 ,L|XE

0
)λ =

Fλ
(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+1
vE [σE ])Rm

and

H0(E,L|E)λ =
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+
vE [σE ])Rm

,

which shows the claim for v = vE .
As for v /∈ {vE | E ⊂ X0}, thanks to the following lemma, we have Iv ̸= IE for

any irreducible component E ⊂ X0. It follows that the dimension of the irreducible
subscheme Zv ⊂ X0 associated to the prime ideal Iv is less than n, so that we have

lim
m→∞

1

mn
dimH0(Zv,L⊗m|Zv

) = 0.

Then the claim follows by

H0(Zv,L⊗m|Zv ) = Rm/(Rm ∩ Iv) =
⊕
λ∈Z

ϖ−λ
Fλ

(X ,L)Rm

(Fλ
(X ,L) ∩ F

λ+1
v [σv])Rm

.

□

Lemma 3.6. For a general valuation v onX, we have v = vE if and only if Iv = IE .

Proof. The stalk OX ,E of the generic point of E is DVR by the normality, so that
we can take a uniformizer u ∈ m: any f ̸= 0 ∈ OX ,E can be written as f = aun by
unique a ∈ OX ,E \ m and n ∈ N. By Lemma 3.2, E is the center of G(v), so that
we have G(v)(f) ≥ 0 for f ∈ OX ,E and G(v)(f) > 0 for f ∈ m ⊂ OX ,E . Then since
G(v)(aun) = nG(v)(u), we must have G(v) = G(v)(u) · ordE . Since G(v)(ϖ) = 1,
we must have G(v)(u) = (ordEX0)

−1. This shows G(v) = G(vE) and hence v = vE
by restriction. □
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3.1.4. Valuations along the normalized base change. Here we recall some facts ob-
served in [BHJ1].

Proposition 3.7. Let (X ,L) be a test configuration and X̃ be a normal test
configuration dominating both X and X × A1. Let νd : (Xd,Ld) → (X ,L), ν̃d :

X̃d → X̃ be the normalized base changes.

X̃d X̃

Xd X

Then for any irreducible component E′ ⊂ X̃d,0, we have

vE′ = d.vE

σE′(Xd,Ld) = d.σE(X ,L)

for the irreducible component E := ν̃d(E
′) ⊂ X̃0.

Proof. Since (ν̃d)∗X̃d,0 = (ν̃d)∗ϖ
∗
d(0) = ϖ∗(νd)∗(0) = X̃0, we compute

d.vE(f) = d.
ordEf ◦ pX̃X
ordEX̃0

=
ordE(ν̃d)∗div(f ◦ pX̃d

X )

ordE(ν̃d)∗X̃d,0

=
ordE′f ◦ pX̃d

X

ordE′X̃d,0

= vE′(f)

for f ∈ C(X).
Similarly, we compute

σE′(Xd,Ld) =
ordE′(L̃d − L̃d)

ordE′X̃d,0

=
ordE(ν̃d)∗ν̃

∗
d(L̃ − L̃)

ordE(ν̃d)∗X̃d,0

=
d.ordE(L̃ − L̃)

ordEX̃0

= d.σE(X ,L).

□

Proposition 3.8. For any normal test configuration X and d, we have the following
one to one correspondence via νd:

{irreducible components of X0}
E′ 7→E=νd(E

′)←−−−−−−−−→ {irreducible components of Xd,0}.

Moreover, we have

ordEX0 = (ordEX0, d) · ordE′Xd,0

(νd)∗E
′ = (ordEX0, d) · (E.L·n)

and (νd)∗E
′ = (ordEX0, d) · (E.L·n) as divisors, where (ordEX0, d) is the gcd.

Proof. As we have already used in our arguments, νd is surjective. Suppose νd(E
′
1) =

νd(E
′
2) = E. By the above proposition, we have vE1 = d.vE = vE2 , so that

IE′
1
= Id.vE = IE′

2
. This shows the injectivity of νd.

Now the multiplicity can be computed using the local coordinate expression (6)
of the normalized base change. □

The normality of X is essential here: for a non-normal test configuration X , the
number of the irreducible components of the central fibre of the normalization X ν

may increase from that of the original X . The author learned the following example
from Masafumi Hattori.
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Example 3.9 (Hattori’s example). Consider an elliptic curve X = {x30 + x31 + x32 =
0} ⊂ P2 and its test configuration X ′ defined as the integral image of the following
morphism

X × A1 → P2 × A1

((x0 : x1 : x2), t) 7→ ((x0 : x1 : tx2), t).

Explicitly, X ′ = {((z0 : z1 : z2), t) | t3z30 + t3z31 + z32 = 0}, which is endowed with
a Gm-action ((z0 : z1 : z2), t).τ = ((z0 : z1 : τz2), τ t). The central fibre of X ′ is
non-reduced 3P1, and the normalization is the trivial configuration X × A1.

On the central fibre, we have a degree 3 morphism ϕ : X → X ′
0 : (x0 : x1 : x2) 7→

(x0 : x1 : 0). Let X be the blowing up of X ′ at p = (1 : 1 : 0) ∈ X ′
0, over which the

morphism ϕ is étale. The central fibre consists of two irreducible components: one
is the proper transform of 3P1 and the other is the exceptional divisor E. By our
choice of p, E ∩ 3P1 consists of three distinct points. Consider the normalization
ν : X ν → X . Let β : X ν → X × A1 be the induced morphism.

X ν X

X × A1 X ′

ν

β

Since β(ν−1E) = ϕ−1(p) consists of three distinct points, we have three distinct
irreducible components E1, E2, E3 of ν−1E ⊂ X0. Each Ei is mapped onto E.

3.1.5. Stabilize (homogenize) the filtration F(X ,L). We continue to consider a nor-
mal test configuration (X ,L). By [BHJ1, Lemma 5.17], we have

(51) Fλ
(X ,L) =

∩
E⊂X0

Fλ
vE [σE ]

for λ ∈ Z. This is no longer true for λ ∈ R: the latter filtration may jump at λ ∈ Q
as vE(s) ∈ Q may be not integral when the central fibre X0 is not reduced.

For λ ∈ R, we put

(52) F̂λ
(X ,L) :=

∩
E⊂X0

Fλ
vE [σE ].

We obviously have F(X ,L) ⊂ F̂(X ,L).

Compared to the associated filtration F(X ,L), the new filtration F̂(X ,L) behaves
well under normalized base change.

Proposition 3.10. For a normal test configuration (X ,L), we have

(53) F̂(Xd,Ld) = F̂(X ,L);d.

Proof. Using the results in the previous subsection, we compute

FvE′ [σE′(Xd,Ld)] = Fd.vE
[d.σE(X ,L)] = (FvE

[σE(X ,L)]);d,

which proves the claim. □

Compared to this, we only have F(X ,L) ⊂ F(Xd,Ld);d−1 : for λ ∈ R,

Fλ
(X ,L) = F̂

⌈λ⌉
(X ,L) = F̂

d⌈λ⌉
(Xd,Ld)

= Fd⌈λ⌉
(Xd,Ld)

⊂ Fdλ
(Xd,Ld)

.
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When X0 is reduced, vE(s) +mσE = ordE(s̄)/ordEX0 = ordE(s̄) is an integer

for s ∈ Rm and m ∈ N(d), so that we have Fλ
vE [σE ] = F

⌈λ⌉
vE [σE ] and hence

(54) F̂λ
(X ,L) = F̂

⌈λ⌉
(X ,L) = F

⌈λ⌉
(X ,L) = F

λ
(X ,L)

for λ ∈ R.
By taking sufficiently divisible d so that Xd,0 is reduced, we get

(55) F̂λ
(X ,L) = F̂

dλ
(Xd,Ld)

= Fλ
(Xd,Ld;d−1)

for general normal (X ,L) and λ ∈ R. Therefore, we can understand F̂(X ,L) as the
stable limit of the replacement F(X ,L) 7→ F(Xd,Ld);d−1 . In particular, the filtration

F̂(X ,L) is finitely generated.

As a consequence, we get σvE (F̂(X ,L)) = σE(X ,L) for a Gm-invairant prime
divisor E over X centered on X0:

σvE (F̂(X ,L)) = σvE (F(Xd,Ld);d−1) = d−1σd.vE
(F(Xd,Ld)) = d−1σE′(Xd,Ld) = σE(X ,L).

3.1.6. Primary decomposition via F̂(X ,L). Now we compute the primary decompo-

sition via F̂(X ,L). Compare Proposition 3.5.

Proposition 3.11. Let (X ,L) be a normal test configuration and X̃ be a normal

test configuration dominating X . Then for any irreducible component Ẽ ⊂ X̃ , we
have

lim
m→∞

1

mn

∑
λ∈Q

dim
F̂λ

(X ,L)Rm

(F̂λ
(X ,L) ∩ F

λ+
vẼ [σẼ ])Rm

.δλ/m =

{
ordEX0 ·DH(E,L|E) vẼ = vE for E ⊂ X0

0 vẼ /∈ {vE | E ⊂ X0}
.

Proof. By the equivariant Riemann–Roch theorem (cf. [BHJ1, Corollary 3.4]), we
have

1

k!

∫
R
(−ρt)kDH(E,L|E) =

1

(n+ k)!
(EGm .LGm

|·(n+k)
E ; ρ)

for k ∈ N. Thus it suffices to show

ordEX0
(EGm .LGm

|·(n+k)
E ; ρ)

(n+ k)!
= lim

m→∞

1

mn

∑
λ∈Q

dim
F̂λ

(X ,L)Rm

(F̂λ
(X ,L) ∩ F

λ+
vE [σE ])Rm

(−ρλ/m)k

k!
.

Take d ∈ N+ so that the central fibre of the normalized base change Xd is
reduced. Then for the irreducible component E′ ⊂ Xd,0 corresponding to E ⊂ X0,
we have

ordEX0 · (EGm .LGm
|·(n+k)
E ; ρ) = ((E′)Gm .Ld,Gm

|·(n+k)
E′ ; ρ/d)
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by the equivariant projection formula (note νd is equivariant with respect to the
d-times scaling Gm-action on E). By Proposition 3.5, we compute

1

(n+ k)!
((E′)Gm .Ld,Gm |

·(n+k)
E′ ; ρ/d)

= lim
m→∞

1

mn

∑
λ′∈Z

dim
Fλ′

(Xd,Ld)
Rm

(Fλ′

(Xd,Ld)
∩ Fλ′+

vE′ [σE′ ])Rm

(−ρ/d.λ′/m)k

k!

= lim
m→∞

1

mn

∑
λ∈Q

dim
Fλ

(Xd,Ld);d−1Rm

(Fλ
(Xd,Ld);d−1 ∩ (Fd.vE [d.σE ])

λ+
;d−1)Rm

(−ρ/d.dλ/m)k

k!

= lim
m→∞

1

mn

∑
λ∈Q

dim
F̂λ

(X ,L)Rm

(F̂λ
(X ,L) ∩ F

λ+
vE [σE ])Rm

(−ρλ/m)k

k!
.

□

Proposition 3.12. For a normal test configuration (X ,L), an irreducible compo-
nent E ⊂ X0 and τ ∈ R, we have

ordEX0

∫
(−∞,τ ]

DH(E,L|E) = lim
m→∞

1

mn

∑
λ∈Q,λ≤mτ

dim
F̂λ

(X ,L)Rm

F̂λ
(X ,L) ∩ F

λ+
vE [σE ]Rm

.

Proof. The measure DH(E,L|E) is compactly supported and either a Dirac mass,
which is the case only when the Gm-action on E is trivial, or absolutely continuous
with respect to the Lebesgue measure.

In the former case, the claim is clear as vE = vtriv:

Fλ+
vE [σE ]Rm =

{
Rm λ < mσE

0 λ ≥ mσE
.

In the latter case, the claim follows by

lim
m→∞

1

mn

∑
λ∈Q,mτ<λ<mτ+ε

dim
F̂λ

(X ,L)Rm

F̂λ
(X ,L) ∩ F

λ+
vE [σE ]Rm

≤
∫
[τ,τ+ε]

DH(E,L|E) → 0

□

We use the following in the proof of Proposition 4.58.

Proposition 3.13. For a normal test configuration (X ,L) and an irreducible com-
ponent E ⊂ X0, we have

σE = inf suppDH(E,L|E).

Proof. For λ < mσE , we have Fλ+
vE [σE ]Rm = Rm, so that

∫
(−∞,τ ]

DH(E,L|E) = 0

for τ < σE by the above proposition. Thus we have σE ≤ inf suppDH(E,L|E).
On the other hand, we note for

λ
(m)
min := inf{λ ∈ R |

F̂λ
(X ,L)Rm

F̂λ
(X ,L) ∩ F

λ+
vE [σE ]Rm

̸= 0},
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we have λ
(m)
min/m = inf suppDH(E,L|E) for sufficiently divisible m. Indeed, for λ ∈

d−1Z, we have

F̂λ
(X ,L)Rm

F̂λ
(X ,L) ∩ F

λ+
vE [σE ]Rm

=
Fdλ

(Xd,Ld)
Rm

Fdλ
(Xd,Ld)

∩ Fdλ+
vE′ [σE′ ]Rm

= H0(E′,Ld|⊗m
E′ )dλ

for E′ ⊂ Xd,0 corresponding to E ⊂ X0. Take sufficiently divisible d so that the
central fibre of Xd is reduced, then we have

λ
(m)
min := d−1 inf{λ ∈ Z | H0(E′,Ld|⊗m

E′ )λ ̸= 0}.

Consider the product configuration of (E′,L|E′) associated to the Gm-action on E′.
Then by [BHJ1, section 5.5], we obtain

λ
(m)
min/m = d−1 inf suppDH(E′,Ld|E′ ) = inf suppDH(E,L|E)

for sufficiently divisible m.
Therefore, it suffices to show for any ε > 0 and for every sufficiently divisible

m, there exists λ ≤ m(σE + ε) such that
F̂λ

(X ,L)Rm

F̂λ
(X ,L)

∩Fλ+
vE

[σE ]Rm
̸= 0. We can simplify

this slightly: for ε > 0, we want to find m′, λ′ ≤ m′(σE + ε) and s′ ∈ Rm′ so that
vF (s

′) +m′σF ≥ λ′ for every F ⊂ X0 and vE(s
′) +m′σE = λ′.

Since F̂(X ,L) is finitely generated, there exist λ0 ∈ R, m0 ∈ N(d)
+ and s0 ∈

F̂λ0

(X ,L)Rm0
such that

vE(s0) +m0σE = λ0.

(See also the proof of Proposition 3.3. ) Since L is globally generated, we can take

l ∈ N(d)
+ and t ∈ Rl so that t does not vanish at all the centers of vF for F ⊂ X0.

Now for ε > 0, take large k so that

vE(s0) ≤ (m0 + kl)ε.

We put m′ := m0 + kl, s′ := s0t
k ∈ Rm′ and λ′ := λ0 + klσF . Then since

vE(s
′) = vE(s0t

k), we have

λ′ = vE(s
′) +m′σE ≤ m′(σE + ε).

On the other hand, since s0 ∈ F̂λ0

(X ,L)Rm0
, we have

vF (s
′) +m′σF = vF (s0) +m0σF + klσF ≥ λ0 + klσF = λ′

as desired. □

3.2. Non-archimedean pluripotential theory. In this section, we recall Boucksom–
Jonsson’s global pluripotential theory over trivially valued non-archimedean fields
developed in [BJ1, BJ2, BJ3, BJ4]. We exhibit proofs of some known results as we
would approach the theory in a slightly different manner based on observations in
the last section. The following diagram summarizes various constructions.
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Filtunif E1NA X lin

Filtf.g. C0 ∩ PSHNA M1(XNA) Xqm

TC nTC Xdiv

φF∪ ∪ MA(φ) δv

Fv

∪

∪

Fφ

∪φ(X ,L)

Here TC (resp. nTC) denotes the set of isomorphism classes of test configu-

rations (resp. normal test configurations), and Filtf.g denotes the set of finitely
generated filtrations (see Definition 2.19). Dashed arrows exist under the continu-
ity of envelopes (see section 3.2.7). We will explain the rest of notations in this
section.

There are many other approaches to non-archimedean psh metrics, the details of
which are beyond the author’s knowledge. See Introduction of [BJ3] for the history.

3.2.1. Berkovich space. Let X be a scheme of locally finite type over a field k.
Every schematic point y ∈ X (not necessarily closed) is the generic point of a
unique irreducible reduced subscheme Y ⊂ X. Let XNA

y := Val(Y ) denote the set
of valuations on Y . We note we assume v|k× = 0 for valuations.

The Berkovich space XNA associated to X is a topological space defined as
follows. We put

(56) XNA :=
⨿
y∈X

XNA
y .

The topology on XNA is the weakest topology which satisfies the following

(1) The forgetful map XNA → X : XNA
y 7→ y is continuous,

(2) For every Zariski open set U ⊂ X and f ∈ OX(U), the following function
is continuous:

(57) − log |f | : UNA → (−∞,∞] : v ∈ XNA
y 7→ v(f |Y ).

It is known (cf. [Berk, Thereom 3.5.3]) that XNA is (path-)connected, Hausdorff,
compact if and only if the scheme X is connected, separated, proper, respectively.
While XNA is not first countable (see example below), it is Fréchet–Urysohn space,
hence sequential, by [Poi, Theorem 5.3]. Namely, the closure of subsets coincide
with the sequential closure, hence every sequentially closed subset is closed. As a
consequence, for proper X, XNA is sequentially compact as well as compact.

For a non-archimedean/archimedean complete field k̂, we can apply an analo-

gous construction which reflects the non-archimedean/archimedean norm on k̂ to a

scheme of locally finite type over k̂: we assume v(f) = − log ∥f∥ for f ∈ k̂× in the
definition of valuation. From this perspective, the above definition of the Berkovich
space is a special case of such construction: we identify the field k with the trivially
valued non-archimedean field. The associated space is also called the Berkovich
analytification of X by this reason.
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We denote by X lin
y , Xqm

y and Xdiv
y the set of all linear growth, quasi-monomial

and divisorial valuations on Y , respectively. We put

Xval :=
⨿

y∈X(0)

XNA
y ⊂ XNA,(58)

Xdiv :=
⨿

y∈X(0)

Xdiv
y ⊂ XNA,(59)

where X(0) denotes the set of generic points of irreducible components of X. Then
Xdiv is dense in XNA as shown in [BJ3, Corollary 2.16]. We define X lin, Xqm in
the same way.

In the trivially valued case, there is a continuous action of the multiplicative
group R+ on XNA given by the scaling of valuation: (ρ.v)(f) = ρ · v(f). For a
function ψ : XNA → [−∞,∞) and ρ ∈ R+, we define a rescaled function ψ;ρ :
XNA → [−∞,∞) by

(60) ψ;ρ(v) = ρψ(ρ−1.v).

Example 3.14. The Berkovich space ΣNA of a smooth algebraic curve Σ over (the
trivially valued field) C is identified with

lim←−
D⊂Σ

TreeD,

where D runs over all finite subsets. Here we put

TreeD :=
⨿
z∈D

[0,∞]z/ ∼

where [0,∞]z are copies of the interval [0,∞] given for each closed point z ∈ S
and we identify all 0 ∈ [0,∞]z by ∼. For two finite subsets D ⊂ D′ ⊂ Σ, we have
the projection TreeD′ → TreeD, which makes {TreeD} into the inverse system.
The point [0] corresponds to the trivial valuation on Σ, each infinity ∞ ∈ [0,∞]z
corresponds to the trivial valuation on a closed point z ∈ Σ and each t ∈ (0,∞)z
corresponds to the valuation t.ordz. This example shows XNA is not first countable
nor separable in general.

We note this is different from the following topological space

lim−→
D⊂Σ

TreeD =
⨿
z∈Σ

[0,∞]z/ ∼,

though we have a bijective continuous map
⨿

z∈Σ[0,∞]z/ ∼→ ΣNA.

The above abstract topological description is enough for our purpose: we can
use Dini’s lemma and Riesz–Markov–Kakutani representation theorem on Radon
measures. We recall a Radon measure on a compact Hausdorff space X is a finite
Borel measure which is inner regular: we have

µ(B) = sup{µ(K) | B ⊃ K compact }

for every Borel set B ⊂ X.
We recall every finite Borel measure on R is both inner regular and outer regular:

we also have

µ(B) = sup{µ(U) | B ⊂ U open }
for every Borel set B ⊂ R. We will use this fact in several times.
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In the arhimedean case, every finite Borel measure on a manifold is known to
be inner regular, even outer regular. It would be comfortable if we have the same
property forXNA, however, it is pointed out in [Jon, Example 2.7] that this problem
could be sensitive to the choice of a model of ZFC. Anyway, this is not a nuisance
as we are only concerned with Radon measures in our theory.

The space XNA is endowed with a structure sheaf of local rings, which can be
considered as ‘analytic structure’ on XNA, though it only has algebraic information
in the trivially valued case, in principle. We do not consider such structure in this
article. Instead, the ‘analytic structure’ on XNA is reflected in the following:

• For a test configuration (X ,L), we assign a continuous function φ(X ,L) :

XNA → R.
• For a test configuration (X ,L), we assign a Radon measure MA(X ,L) on
XNA.
• Assume X has only klt singularities. Then the log discrepancy AX defined
on Xdiv by AX(c.ordE) = c(1 + ordE(KY/X)) extends to a lower semi-

continuous function AX : XNA → [0,∞]. See the remark after Theorem
1.9.

Now we are going to define non-archimedean psh metrics. In the archimedean
case, a psh metric on an ample line bundle L is a singular hermitian metric on L
which can be written as he−ϕ using a smooth hermitian metric h and an upper
semi-continuous function ϕ such that − log |s|2h + ϕ is pluri-subharmonic for every
local holomorphic section s of L. This definition relies on local notion of pluri-
subharmonicity.

Thanks to Bergman kernel approximation [Tian] and Demailly approximation
[BK], we have the following global characterization of psh metrics. Fix a refer-
ence metric h on L. We call a smooth function ϕ on X Fubini–Study potential
if he−ϕ is the pull-back of the canonical metric on (CPN ,O(1)) along some Ko-
daira embedding X ↪→ CPN . Then an upper semi-continuous function ϕ on X
gives a psh metric he−ϕ on L if and only if ϕ is the pointwise limit of a decreasing
sequence of Fubini–Study potentials ϕi ↘ ϕ. Boucksom–Jonsson’s definition of
non-archimedean psh metrics on (X,L) is modeled on this characterization.

3.2.2. Fubini–Study metrics. Recall we assume (X,L) is a polarized normal variety.
Since X is proper, we can assign the center c(v) ∈ Y (schematic point) for each

v ∈ Xval
y by the valuative criterion. For v ∈ Xval

y and a section s ∈ H0(X,L⊗m),

we put v(s) := v((s/e)|Y ) by taking a local generator e of L⊗m around the center
c(v). This is independent of the choice of e.

For a linearly bounded filtration F and (sufficiently divisible) d ∈ N+, we asso-

ciate a continuous function φ
(d)
F on XNA by

(61) φ
(d)
F (v) :=

1

d
max

i=1,...,Nd

{−v(si)− log ∥si∥Fd },

using a diagonal basis s1, . . . , sNd
of Rd with respect to ∥ · ∥Fd . This is independent

of the choice of the diagonal basis {si} as shown in the proof of the proposition

below. Since s1, . . . , sNd
have no common zeros, φ

(d)
F gives a continuous function

on XNA.
When F is finitely generated, φ

(d)
F is independent of the choice of sufficiently

divisible d as shown in [BJ2]. We denote it by φF for finitely generated F . For
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the finitely generated filtration F = F(X ,L;ξ) (resp. F = F(X ,L)) associated to a
polyhedral configuration (X/Bσ,L; ξ) (resp. a test configuration (X ,L)), we denote
φF by φ(X ,L;ξ) (resp. φ(X ,L)). We have φFtriv[τ ] = τ . We especially denote the
constant function 0 by φtriv.

Now recall we studied σv(F) = inf{σ ∈ R | Fλ ⊂ Fλ
v [σ] for ∀λ ∈ R} in the last

section. It is connected to non-archimedean psh metrics as we declared.

Proposition 3.15 (Proposition 2.16 in [BJ4]). For a linearly bounded filtra-

tion F , d|d′ ∈ N+ and v ∈ Val(X), we have φ
(d)
F (v) ≤ φ

(d′)
F (v) ≤ σv(F) and

limi→∞ φ
(di)
F (v) = σv(F) for any eventually sufficiently divisible sequence {di}: for

any p ∈ N+ there exists ip such that p divides di for every i ≥ ip. For a finitely
generated filtration F , we have

φF (v) = φ
(d)
F (v) = σv(F)

for sufficiently divisible d.

Proof. Take d ∈ N+ and a diagonal basis {si} of Rd as in the construction of φ
(d)
F .

Since {si} is diagonal, we compute

v(
∑
i

aisi) + log ∥
∑
i

aisi∥Fd ≥ min{v(si) | ai ̸= 0}+max{log ∥si∥Fd | ai ̸= 0}

≥ min{v(si) + log ∥si∥Fd | ai ̸= 0}.
It follows that

φ
(d)
F (v) =

1

d
sup{−v(s)− log ∥s∥Fd | 0 ̸= s ∈ Rd}.

For any l ∈ N+ and s ∈ Rd, we have

1

d
(−v(s)− log ∥s∥Fd ) ≤

1

dl
(−v(s⊗l)− log ∥s⊗l∥Fdl)

≤ 1

dl
sup{−v(s′)− log ∥s′∥Fdl | 0 ̸= s′ ∈ Rdl},

so that we get

φ
(d)
F (v) ≤ φ(dl)

F (v).

Now we note s ∈ FλRd iff − log ∥s∥Fd ≥ λ and s ∈ Fλ
v [σ]Rd iff v(s) + dσ ≥ λ. It

follows that F ⊂ Fv[σ] iff v(s) +mσ ≥ − log ∥s∥Fm for every m, so we get

φ
(d)
F (v) ≤ σv(F).

As for limi→∞ φ
(di)
F (v) = σv(F), we already know limi→∞ φ

(di)
F (v) ≤ σv(F).

Take σ ≥ limi→∞ φ
(di)
F (v). Then since σ ≥ limi→∞ φ

(di)
F (v) ≥ φ

(m)
F (v) for every

m ∈ N+, we have mσ ≥ −v(s) − log ∥s∥Fm for every m and s ∈ Rm, which implies

F ⊂ Fv[σ]. Thus we conclude σv(F) = inf{σ | F ⊂ Fv[σ]} ≤ limi→∞ φ
(di)
F (v).

When φ is finitely generated, we have φ
(d)
F = limi→∞ φ

(di)
F (v) = σv(F) for

sufficiently divisible d. □
Corollary 3.16 (Proposition 2.9 and Proposition A.3 in [BJ4]). We have φ(X ,L) =
φ(Xν ,ν∗L) for the normalization ν : X ν → X of a (non-normal) test configuration
(X ,L).

Proof. By the above proposition, it suffices to show σv(F(X ,L)) = σv(F(Xν ,ν∗L)),
which we proved in Proposition 3.1. □
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We put

(62) HNA(X,L) := {φ(X ,L) | (X ,L) : test configuration }.
As we observed in the above corollary, the map TC→ HNA(X,L) : (X ,L) 7→ φ(X ,L)

is not injective. As we will see in Corollary 3.26, we have φ(X1,L1) = φ(X2,L2) iff the
normalizations are isomorphic (X ν

1 , ν
∗L1) ∼= (X ν

2 , ν
∗L2). In other words, we have

nTC ∼= HNA(X,L).

Similarly, we put

(63) HR
NA(X,L) := {φF | F : finitely generated filtration }.

Polyhedral configuration (X/Bσ;L) gives a polyhedral structure on HR
NA(X,L):

put Φσ := {φ(X/Bσ;L;ξ)}ξ∈σ, then we have

HR
NA(X,L) =

∪
(X/Bσ ;L)

Φσ.

We can then discuss continuity, piecewise linearity and even piecewise smoothness
of a functional on HR

NA(X,L) by restricting the functional to each toric cone Φσ.
Among all, the continuity of the entropy

∫
XNA AXMA(φ) with respect to such

‘polyhedral topology’ is important. This would be studied in [BJ5]: ‘polyhedral
topology’ is enough strong as ‘C∞-topology’ in the archimedean analysis.

For a polyhedral configuration (X/Bσ,L; ξ) and ρ ∈ R+, we have

φ(X ,L;ρξ) = φ(X ,L;ξ);ρ

as F(X ,L;ρξ) = F(X ,L;ξ);ρ. On the other hand, F(Xd,Ld) ̸= F(X ,L;d) in general.
Nevertheless, these gives the same functions.

Corollary 3.17 (Lemma 2.22 in [BJ3]). For a test configuration (X ,L) and the
normalized base change (Xd,Ld), we have

φ(Xd,Ld) = φ(X ,L);d = φ(X ,L;d).

Proof. By Proposition 3.7, we have φ(Xd,Ld)(vE) = φ(X ,L);d(vE) for the valuation

vE associated to any irreducible component E ⊂ X̃0 of any normal test configuration
X̃ . As we noted, valuations of the form vE forms a dense subset Xdiv ⊂ XNA, so
the claim follows by the continuity of φ(X ,L). □

3.2.3. Non-archimedean psh metrics. A net of functions on XNA is a collection
{ψi : XNA → [−∞,∞)}i∈I of functions parametrized by a directed set I: I is
endowed with a preorder ≤ and for every i, j ∈ I there exists k ∈ I satisfying
i, j ≤ k. A decreasing net of functions is a net of functions satisfying ψj(x) ≤ ψi(x)
for every i ≤ j and x ∈ XNA. For any decreasing net of functions, the pointwise
limit ψ : XNA → [−∞,∞) exists, which we denote by ψi ↘ ψ. When ψi are
upper semi-continuous, the limit function is also upper semi-continuous. We may
assume the index set I has a minimum 0 ∈ I by restricting I to the cofinal subset
{i ∈ I | i ≥ 0} if necessary.

A (potenital of) non-archimedean psh metric on (X,L) is an upper semi-continuous
function φ : XNA → [−∞,∞) which is the pointwise limit of some decreasing net
of functions in HNA(X,L) and is not identically −∞. When we consider non-
archimedean psh metrics φ,φ′ on different line bundles L,L′, we write those as
(L,φ), (L′, φ′). We put

PSHNA(X,L) := { non-archimedean psh metrics on (X,L)}.
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Thanks to the compactness of XNA, the pointwise limit of any decreasing net in
PSHNA(X,L) is either in PSHNA(X,L) or identically −∞ (cf. [BJ1, BJ3]). Less
obviously, it is proved by [BJ3, Thoerem 9.11] that for φ ∈ PSHNA(X,L) there
exists a decreasing sequence {φi}i∈N ⊂ HNA(X,L) pointwisely converging to φ.
We will use this fact only for φ ∈ E1NA(X,L), which is much easier: E1NA(X,L) is
endowed with a metric, and pointwise convergence and the metric convergence are
equivalent for decreasing nets. We would find the proof in section 4.1.

What we must be careful for net is that various convergence theorems in measure
theory is invalid for net. As for monotone convergence theorem, we have the
following.

Proposition 3.18 (Proposition 7.12 in [Fol]). Let X be a compact Hausdorff
space and µ be a Radon measure on X. For an increasing net {fi}i∈I of lower
semi-continuous functions (resp. a decreasing net {gi}i∈I of upper semi-continuous
functions), we have

sup
i∈I

∫
X

fidµ =

∫
X

sup
i∈I

fidµ

(
resp. inf

i∈I

∫
X

gidµ =

∫
X

inf
i∈I

gidµ

)
.

Until section 4.1, except for section 3.4.3, we mainly discuss continuity along
decreasing nets and rather rely on monotonicity and the following Dini’s lemma.
In section 4.2, we show the continuity of various functionals on EexpNA (X,L) with re-
spect to the Eexp/dexp-topology, using the dominated convergence theorem to some
sequence of functions on R associated to a sequence {φi}i∈N. Since the dominated
convergence theorem is valid only for sequences, we must check the Eexp/dexp-
topologies on EexpNA (X,L) are sequential. This is obvious for dexp-topology once the
metric is constructed. As for Eexp-topology, we check it in Proposition 4.38

We frequently use Dini’s lemma of the following form. This relies on the com-
pactness of the Berkovich space XNA.

Lemma 3.19. Let {φi}i∈I ⊂ PSHNA(X,L) be a decreasing net which pointwisely
converges to φ ∈ PSHNA(X,L). For any φ̃ ∈ C0 ∩ PSHNA(X,L) with φ ≤ φ̃ and
ε > 0, there exists iε ∈ I such that φi < φ̃+ ε for every i ≥ iε.

Proof. Since φi − φ̃ is a decreasing net of usc functions, the subsets

Fi := {x ∈ XNA | φi(x) ≥ φ̃(x) + ε}

give a decreasing net of closed sets. Since
∩

i∈I Fi = ∅, we have Fj ⊂ Fi1∩· · ·∩Fik =

∅ for some i1, . . . , ik and every j ≥ i1, . . . , ik by the compactness of XNA. □

Recall the weak convergence of psh metrics in the archimedean case is defined
to be the L1-convergence with respect to the Lebesgue measure (cf. [GZ, Section
8]). This is equivalent to the convergence

∫
X
φiMA(ψ) →

∫
X
φMA(ψ) for every

smooth metric ψ as MA(ψ) is absolutely continuous with respect to the Lebesgue
measure and vice versa.

In the non-archimedean case, there is no Borel measure on XNA such that every
non-archimedean MA(ψ) is absolutely continuous with respect to the measure. The
latter characterization adapts the non-archimedean case (cf. [BJ3, Corollary 9.18]):
a net {φi}i∈I in PSHNA(X,L) is called weakly convergent to φ ∈ PSHNA(X,L) if
φi(v) → φ(v) for every divisorial valuation v ∈ Xdiv. It is equivalent to say
φi(v) → φ(v) for every quasi-monomial valuation v ∈ Xqm. For a decreasing net



II, NON-ARCHIMEDEAN µ-ENTROPY AND µK-STABILITY 53

{φi}i∈I ⊂ PSHNA(X,L), φi converges to φ pointwisely if and only if it converges
to φ weakly by [BJ3, Corollary 4.30].

Question 3.20. Is the weak topology on PSHNA(X,L) sequential?

We note supφ = φ(vtriv) for every φ ∈ PSHNA(X,L). Indeed, we can directly
check this for φF ∈ HR

NA(X,L) and then for φ ∈ PSHNA(X,L) by passing to the
limit of a regularization φi ↘ φ. It follows that supφi → supφ whenever φi → φ
weakly.

3.2.4. Finite energy class. For a test configuration (X ,L), we have

(L·n+1
)

(n+ 1)!
= −

ρ−1(LGm
|·n+1
X0

; ρ)

(n+ 1)!
=

∫
R
tDH(X ,L).

As shown in [BHJ1, BJ2], this depends only on the associated to non-archimedean

psh metric φ(X ,L) and 1
(n+1)! ((L

′
)·n+1) ≤ 1

(n+1)! (L
·n+1

) if φ(X ′,L′) ≤ φ(X ,L) (cf.

Lemma 3.48). The energy functional E : PSHNA(X,L)→ [−∞,∞) is defined by

(64) E(φ) := inf
{ (L·n+1

)

(n+ 1)!

∣∣∣ φ(X ,L) ≥ φ
}
.

We put

(65) E1NA(X,L) := {φ ∈ PSHNA(X,L) | E(φ) > −∞}.
The strong topology on E1NA(X,L) is the weakest refinement of the weak topology
inherited from PSHNA(X,L) such that E is continuous. As discussed in [BJ4], this
is equivalent to the metric topology of a distance d1, which we recall in section
4.1. Since the energy E is continuous along decreasing nets, for a decreasing net
{φi}i∈I ⊂ E1NA(X,L), φi converges to φ strongly if and only if it converges to φ
weakly.

3.2.5. Non-archimedean Monge–Ampère operator. The non-archimedean Monge–
Ampère measure of a normal test configuration (X ,L) is the measure on XNA

defined by

(66) MA(X ,L) := 1

n!

∑
E⊂X0

ordEX0 · (E.L·n).δvE .

Here δv denotes the Dirac measure charging v ∈ XNA. Since we have nTC ∼=
HNA(X,L), we may regard MA as a operator on HNA(X,L).

Let M(XNA) denotes the space of Radon measures on XNA with total mass
(eL). We put

(67) E∨(µ) := sup
φ∈E1

NA(X,L)

(E(φ)−
∫
XNA

φdµ)

for µ ∈M(XNA) and

(68) M1(XNA) := {µ ∈M(XNA) | E∨(µ) <∞}.
The strong topology of M1(XNA) is the coarsest refinement of the weak topology
induced fromM(XNA) which makes E∨ continuous.

We have MA(X ,L) ∈ M1(XNA). It is studied in [BJ1, BJ3] that there is a
unique extension of MA : HNA(X,L)→M1(XNA) to

MA : E1NA(X,L)→M1(XNA)
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which is continuous with respect to the strong topologies. In particular, we have
the following. Compare Proposition 4.30.

Theorem 3.21 (Lemma 5.28 or Theorem 7.3 in [BJ3]). If a net {φi}i∈I ⊂ E1NA(X,L)
strongly converges to φ ∈ E1NA(X,L) and either ψ ∈ C0(XNA) or ψ ∈ E1NA(X,L),
then we have

lim
i→∞

∫
XNA

ψMA(φi) =

∫
XNA

ψMA(φ).

Example 3.22 (Example 3.17 in [BJ3]). Consider (X,L) = (CP 1,O(1)). On each
branch [0,∞]z of XNA, the function log |s| : v 7→ −v(s) for s ∈ H0(CP 1,O(d)) is
identified with the linear function −ordz(s).t. It follows that φ ∈ HNA(CP 1,O(1))
can be written as

1

d
max

i
{−ordz(si).t+ λi}

on each branch [0,∞]z, which is a piecewise affine convex function. The slope of
each affine function takes value in [−1, 0] ∩Q as ordz(s) ∈ [0, d] ∩ Z.

On each branch (0,∞]z, the Monge–Ampère measure MA(φ) is given by the
distributional derivative (φ|(0,∞]z )

′′, which is concentrated on the non-smooth locus
of φ. The mass of (0,∞]z is the minus slope az of φ on [0, ε]z and the mass at the
trivial valuation 0 ∈ XNA is 1−

∑
z∈CP 1 az.

3.2.6. Filtration associated to continuous psh metric. For a continuous non-archimedean
psh metric φ ∈ C0 ∩ PSHNA(X,L), we put

Fλ
φRm :=

∩
v∈Val(X)

Fλ
v [φ(v)]Rm,(69)

− log ∥s∥φm := sup{λ ∈ R | s ∈ Fλ
φRm}(70)

= inf{mφ(v) + v(s) | v ∈ Val(X)}

for s ∈ Rm. We note Fφ;ρ
= (Fφ);ρ. We have Fφ ⊂ Fφ′ if and only if φ ≤ φ′.

Proposition 3.23. For φ ∈ C0 ∩ PSHNA(X,L), we have

σv(Fφ) = φ(v)

and limi→∞ φ
(di)
Fφ

= φ for any eventually sufficiently divisible sequence {di}.

Proof. Since φ is continuous, for any ε > 0, we can take φ̃ ∈ HNA(X,L) so that
φ ≤ φ̃ ≤ φ + ε by Lemma 3.19. Then we have Fφ̃−ε ⊂ Fφ ⊂ Fφ̃, so that we get
σv(Fφ̃−ε) ≤ σv(Fφ) ≤ σv(Fφ̃). By Proposition 3.15, we get φ̃(v) − ε ≤ σv(Fφ) ≤
φ̃(v). It follows that φ(v)−ε ≤ σv(Fφ) ≤ φ(v)+ε. As ε > 0 is arbitrary, we obtain
φ(v) = σv(Fφ).

Similarly, we have φ̃ = φF(d)
φ̃

≤ φ(d)
Fφ+ε

= φ
(d)
Fφ

+ ε for sufficiently divisible d again

by Proposition 3.15 and Fφ̃ ⊂ Fφ+ε. Thus we get φ
(d)
Fφ
≤ φ ≤ φ̃ ≤ φ

(d)
Fφ

+ ε, which

shows the uniform convergence φ
(d)
Fφ
↗ φ. □

Let F be a linearly bounded filtration. We recall φ
(d)
F (v) = d−1 sup{−v(s) −

log ∥s∥Fd | s ∈ Rd}, so we have

F
φ

(d)
F

=
∩

v∈Val(X)

Fv[d
−1 sup{−v(s)− log ∥s∥Fd | 0 ̸= s ∈ Rd}].
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We can easily check the following are equivalent conditions, using the density
Val(X) ⊂ XNA and Dini’s lemma.

(1) For any ε > 0 there exists d ∈ N+ such that F ⊂ F
φ

(d)
F

[ε].

(2) For any ε > 0 there exists d ∈ N+ such that σv(F) ≤ φ
(d)
F (v) + ε for every

v ∈ Val(X).

(3) The increasing sequence φ
(di)
F converges uniformly for some/any eventually

sufficiently divisible sequence {di}.
(4) The pointwise limit limi→∞ φ

(di)
F is continuous for some/any eventually

sufficiently divisible sequence {di}.
We call F uniformly approximated if one of the above equivalent conditions is
satisfied. We denote by Filtunif the set of all uniformly approximated filtrations.
For F ∈ Filtunif , we can assign a continuous non-archimedean psh metric φF =

limi→∞ φ
(di)
F ∈ C0 ∩ PSHNA(X,L).

By the above proposition, the filtration Fφ associated to φ ∈ C0∩PSHNA(X,L)
is uniformly approximated, and we have φ = φFφ . We note F ⊊ FφF in general.

Remark 3.24. In [BJ2], a similar construction for general linearly bounded fil-
tration is studied, assuming the continuity of envelopes (see section 3.2.7). For

general filtration, we have a lower semi-continuous limit limi→∞ φ
(di)
F . Since a

non-archimedean psh metric must be upper semi-continuous, we must replace this
function with an upper semi-continuous envelope. It is then non-trivial if this en-
velope is a non-archimedean psh metric without the continuity of envelopes.

Proposition 3.25. For a test configuration (X ,L) and its normalization ν : X ν →
X , we have

Fφ(X ,L)
= F̂(Xν ,ν∗L).

Proof. Since φ(X ,L) = φ(Xν ,ν∗L), we may assume (X ,L) is normal. By Proposition

3.15, we have F̂(X ,L) =
∩

E⊂X0
Fλ

vE [φ(vE)], so that we get Fφ(X ,L)
⊂ F̂(X ,L). To

see the reverse inclusion, take a sufficiently divisible d, then by (55) and Corollary
3.17, we get

F̂(X ,L) = F(Xd,Ld;d−1) ⊂ (Fφ(Xd,Ld)
);d−1 = Fφ(X ,L)

.

□

Corollary 3.26. We have φ(X ,L) = φ(X ′,L′) iff the normalizations are isomorphic.

Proof. We can recover the normalization (X ν , ν∗L) from the filtration F⌈λ⌉
φ . □

Corollary 3.27. For a test configuration (X ,L), we have

ν∞(Fφ(X ,L)
) = DH(X ,L).

Proof. We recall DH(X ,L) = DH(Xν ,ν∗L) by [BHJ1, Theorem 3.14]. This implies

DH(X ,L) = d−1
∗ DH(Xd,Ld) for the normalized base change (Xd,Ld). Take d so that

Xd,0 is reduced, then we have F(Xd,Ld;d−1) = F̂(Xν ,ν∗L) = Fφ(X ,L)
by (55). It follows

that

DH(X ,L) = d−1
∗ DH(Xd,Ld) = ν∞(F(Xd,Ld;d−1)) = ν∞(Fφ(X ,L)

).

□
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Corollary 3.28. For φ = φ(X ,L) ∈ HNA(X,L), Fφ is finitely generated. The
central fibre Xo(φ) := ProjRo(Fφ) is isomorphic to Xd,0 for sufficiently divisible d
for which Xd,0 is reduced.

Proof. This is a consequence of (55). □

The following is a non-trivial fact generalizing the above corollary. The proof
involves non-trivial results on affinoid algebra.

Theorem 3.29 (Theorem 2.3 in [BJ4]). For φ ∈ HR
NA(X,L), the associated filtra-

tion Fφ is finitely generated.

Proof. By [BJ4, Theorem 2.3], it suffices to show for a finitely generated filtration
F , ∥ · ∥φF

• is the homogenization of ∥ · ∥F• in the sense of [BJ4]. This is nothing but
[BJ4, Theorem 2.11]. □

The reducedness of the central fibre is also a general phenomenon.

Proposition 3.30. For φ ∈ C0(X) ∩ PSHNA(X,L), the ring Ro(Fφ) is reduced.

Proof. For a linearly bounded filtration F , we put

F̂ :=
∩

v∈Val(X)

Fv[σv(F)].

By Proposition 3.23, we have Fφ = F̂φ, so it suffices to show Ro(F̂) is reduced.
Take 0 ̸= [f ] ∈

⊕
m∈N

⊕
λ∈Rϖ

−λF̂λRm/F̂λ+Rm. We can write it as

[f ] = [
∑
i∈I

ϖ−λisi]

by a collection {(λi,mi) ∈ R×N}i∈I with no overlap and si ∈ F̂λiRmi
\ F̂λi+Rmi

.

The condition si ∈ F̂λiRmi \ F̂λi+Rmi is equivalent to v(si) +miσv = λi for all v.
Now for

[f ]d = [
∑

i1,...,id∈I

ϖ−
∑d

r=1 λir

d∏
r=1

sir ],

we have [f ]d = 0 iff for every (λ,m) ∈ R× N, either

Jλ,m := {(i1, . . . , id) ∈ Id |
d∑

r=1

mir = m,

d∑
r=1

λir = λ}

is an empty set or v(
∑

(i1,...,id)∈Jλ,m

∏d
r=1 sir ) + mσv > λ. Let (λi0 ,mi0) be the

minimum of {(λi,mi)}i∈I with respect to the lexicographical order. Then since the
collection {(λi,mi)}i∈I has no duplication, Jdλi0

,dmi0
is the singleton {(i0, . . . , i0)}.

Thus we get

v(
∑

(i1,...,id)∈Jλi0
,mi0

d∏
r=1

sir ) + dmi0 = dv(si0) + dmi0 = dλi0 ,

which proves [f ]d ̸= 0. Thus Ro(F̂) is reduced. □

Proposition 3.31. Let F be a finitely generated filtration. Then the ring Ro(F)
is reduced if and only if FφF = F .
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Proof. As we already see Ro(F) is reduced when FφF = F , it suffices to show the
converse. Assume the reducedness of Ro(F). By Proposition 2.20, we can find a
polyhedral configuration (X/Bσ,L) and ξ ∈ σ◦ such that F = F(X ,L;ξ). By the
assumption and Proposition 2.18, the central fibre of (X/Bσ,L) is reduced.

For η ∈ σ ∩ N , F(X ,L;η) is the filtration associated to a test configuration with

reduced central fibre, so we have F(X ,L;η) = F̂(X ,L;η) = Fφ(X ,L;η)
by (54) and

Proposition 3.25. By scaling, we get F(X ,L;η) = Fφ(X ,L;η)
also for η ∈ σ ∩NQ. To

show F(X ,L;η) = Fφ(X ,L;η)
for general η ∈ σ, it suffices to show that both ∥s∥F(X ,L;η)

m

and ∥s∥φ(X ,L;η)
m are continuous on η ∈ σ for each s ∈ Rm.

Take a basis {ei} of Rm and µi ∈M as in Lemma 2.10 for π∗L⊗m, then we have

− log ∥s∥F(X ,L;η)
m = min{⟨µi, η⟩ | s =

∑
i

aiei, ai ̸= 0},

so that it is continuous on η ∈ σ. This also shows that for φη := φ(X ,L;η), φηi

converges uniformly to φη if ηi → η ∈ σ. Therefore,

− log ∥s∥φ(X ,L;η)
m = inf{mφ(X ,L;η)(v) + v(s) | v ∈ XNA}

is continuous on η ∈ σ. □
3.2.7. Continuity of envelopes. Here we recall important consequences of the conti-
nuity of envelopes. The continuity of envelopes is not yet proved for general polar-
ized variety (X,L), so we would avoid using the hypothesis as possible. However,
it is crucial for the completeness of EexpNA (X,L).

Definition 3.32 (Continuity of envelopes [BJ1, BJ3]). We say the continuity of
envelopes holds for (X,L) if

P (f) := sup{φ ∈ PSHNA(X,L) | φ ≤ f}
is continuous for every continuous function f ∈ C0(XNA).

The smooth case is confirmed.

Theorem 3.33 (Theorem 4.52 in [BJ3] (cf. [BJ1])). The continuity of envelopes
holds for smooth (X,L).

The following are important consequences of the continuity of envelopes.

Theorem 3.34 (Corollary 4.58 in [BJ3]). Assume the continuity of envelopes for
(X,L). Then the subspace

{φ ∈ PSHNA(X,L) | supφ = 0}
is compact with respect to the weak topology.

Theorem 3.35 (Theorem 9.8 in [BJ3] (cf. [BJ1])). Assume the continuity of
envelopes for (X,L). Then the Monge–Ampère measure MA : E1NA(X,L)/R →
M1

NA gives a homeomorphism.

Theorem 3.36 (Proposition 7.4 in [BJ4]). Assume the continuity of envelopes for
(X,L). Then the filtration Fv associated to a valuation of linear growth v ∈ X lin

is uniformly approximated in the sense of the previous section. As a consequence,
φv := φFv

gives a continuous non-archimedean psh metric. Moreover, we have
MA(φv) = (eL).δv and φv(v) = 0, which characterizes φv.

Theorem 3.37 (Theorem B in [BJ4]). Assume the continuity of envelopes for
(X,L). Then the metric space (E1NA(X,L), d1) is complete.
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3.2.8. Existence of rooftops.

Definition 3.38. For φ,φ′ ∈ PSHNA(X,L), a non-archimedean psh metric φ̂ ∈
PSHNA(X,L) is called the rooftop of φ,φ′ if

• φ̂ ≤ min{φ,φ′} and
• for any φ′′ ∈ PSHNA(X,L) with φ

′′ ≤ min{φ,φ′}, we have φ′′ ≤ φ̂.
If the rooftop exists, it is unique. We denote it by φ∧φ′. We call attention that

our convention on ∧ is different from [BJ2, BJ3], where they just put φ ∧ φ′ :=
min{φ,φ′}: our φ ∧ φ′ corresponds to the envelope P (φ ∧ φ′) in their convention.

Lemma 3.39. If φ,φ′ ∈ C0 ∩ PSHNA(X,L) and φ̃ ∈ PSHNA(X,L) satisfies φ̃ ≤
min{φ,φ′} and φ′′ ≤ φ̃ for every φ′′ ∈ HNA(X,L) with φ

′′ ≤ min{φ,φ′}, then φ̃ is
the rooftop φ ∧ φ′.

Proof. For φ′′ ∈ PSHNA(X,L) with φ
′′ ≤ min{φ,φ′}, take a decreasing net {φ′′

i }i∈I ⊂
HNA(X,L) converging to φ′′. Since φ,φ′ are continuous, for any ε > 0 we can take
iε so that φ′′

i ≤ min{φ,φ′}+ ε for i ≥ iε by Lemma 3.19. Then by our assumption,
we get φ′′

i − ε ≤ φ̃, so that φ′′ ≤ φ̃ + ε for any rational ε > 0. Thus we obtain
φ′′ ≤ φ̃, which shows that φ̃ is indeed the rooftop. □
Proposition 3.40. For φ ∈ HNA(X,L) and τ ∈ Q, the rooftop φ ∧ τ exists in
HNA(X,L) without assuming the continuity of envelopes.

Proof. The path {φ;ρ}[0,1] connecting the trivial metric 0 and φ is a Fubini–Study
segment in the sense of [Remi, Definition 4.1.1]: we can write ϕ;ρ = φ;ρ + ϕtriv =
m−1 max{log |si|+ ρλi}. Then by the proof of [Remi, Lemma 5.2.1],

φ̂τ := inf
ρ∈[0,1]

{φ;ρ + (1− ρ)τ}

defines a Fubini–Study non-archimedean psh metric: φ̂τ ∈ HNA(X,L) for τ ∈ Q.
Here we strengthen the proof consists of a combinatorial argument and does not
rely on the continuity of envelopes. We show that this φ̂τ is the rooftop of φ, τ .
Since φ;0 + (1− 0)τ = τ and φ;1 + (1− 1)τ = φ, we have φ̂τ ≤ min{φ, τ}.

By the above lemma, it suffices to show φ′ ≤ φ̂τ for φ′ ∈ HNA(X,L) satisfying

φ′ ≤ min{φ, τ}. We note φ′ ≤ φ̂τ iff ∥ · ∥φ̂τ

m ≤ ∥ · ∥φ
′

m . Since

∥s∥φ̂
τ

m = sup
v∈Xval

e−v(s)−mφ̂τ (v) = sup
v∈Xval

sup
ρ∈[0,1]

e−v(s)−mρφ(ρ−1v)−m(1−ρ)τ ,

it suffices to bound e−v(s)−mρφ(ρ−1v)−m(1−ρ)τ . Putting v′ := ρ−1v, we compute

e−v(s)−mρφ(ρ−1v)−m(1−ρ)τ = (e−v′(s)−mφ(v′))ρ(e−mτ )1−ρ ≤ (∥s∥φm)ρ(∥s∥τm)1−ρ ≤ ∥s∥φ
′

m

as desired, where we used max{∥ · ∥φm, ∥ · ∥τm} ≤ ∥ · ∥φ
′

m . □
By the definition of the rooftop, we have φ2∧φ′

2 ≤ φ1∧φ′
1 for φ2 ≤ φ1, φ

′
2 ≤ φ′

1

if the rooftops exist. In particular, for decreasing nets {φi}i∈I , {φ′
j}j∈J , {φi ∧

φ′
j}(i,j)∈I×J gives a decreasing net if the rooftops exist. Here (i, j) ≤ (k, l) for

(i, j), (k, l) ∈ I × J iff i ≤ k and j ≤ l.
Proposition 3.41. Let {φi}i∈I , {φ′

j}j∈J ⊂ PSHNA(X,L) be decreasing nets con-
verging to φ,φ′ ∈ PSHNA(X,L), respectively. Suppose the rooftop φi ∧ φ′

j exists
for each (i, j) ∈ I × J . Then the rooftop φ ∧ φ′ exists if and only if the pointwise
limit of φi ∧ φ′

j exists in PSHNA(X,L) (⇔ the pointwise limit is not identically
−∞).
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Proof. Suppose φ∧φ′ exists. As φ∧φ′ ≤ φi∧φ′
j , we have lim(i,j)→∞(φi∧φ′

j)(x) ≥
(φ∧φ′)(x) for every x ∈ XNA. Since φ∧φ′ is not identically −∞, the limit is also
not identically −∞, so it exists in PSHNA(X,L).

Conversely, suppose the limit lim(i,j)→∞ φi∧φ′
j exists in PSHNA(X,L). We show

the limit satisfies the axiom of the rooftop φ,φ′. Since φi ∧ φ′
j ≤ min{φi, φ

′
j}, we

have lim(i,j)→∞ φi∧φ′
j ≤ min{φi, φ

′
j}. Thus we get lim(i,j)→∞ φi∧φ′

j ≤ min{φ,φ′}.
Take φ′′ ∈ PSHNA(X,L) so that φ′′ ≤ min{φ,φ′}. Then since φ′′ ≤ min{φi, φ

′
j},

we have φ′′ ≤ φi ∧ φ′
j . Thus we get φ′′ ≤ lim(i,j)→∞ φi ∧ φ′

j , which shows the
claim. □

Corollary 3.42. For φ ∈ PSHNA(X,L) and τ ∈ R, φ ∧ τ exists in PSHNA(X,L)
without assuming the continuity of envelopes. If φ ∈ E1NA(X,L), then φ ∧ τ ∈
E1NA(X,L).

Proof. Since φ+min{0, τ − supφ} ≤ φ, τ , we have φ+min{0, τ − supφ} ≤ φ ∧ τ
for φ ∈ HNA(X,L) and τ ∈ Q. For φ ∈ PSHNA(X,L) and τ ∈ R, take convergent
decreasing nets φi ↘ φ, τi ↘ τ so that φi ∈ HNA(X,L) and τi ∈ Q. Since

φ+min{0, τ − supφi} ≤ φi +min{0, τ − supφi} ≤ φi ∧ τi,

we have

φ+min{0, τ − supφ} ≤ lim
i→∞

φi ∧ τi,

so that the limit exists, hence φ ∧ τ exists.
If φ ∈ E1NA(X,L), then by the above estimate, we have

−∞ < E(φ) + min{0, inf
i
(τ − supφi)} ≤ E(φ ∧ τ),

hence φ ∧ τ ∈ E1NA(X,L). □

Proposition 3.43. Suppose φ,φ′ ∈ C0 ∩ PSHNA(X,L) and the rooftop φ ∧ φ′

exists in C0 ∩ PSHNA(X,L), then we have

Fφ∧φ′ = Fφ ∩ Fφ′ .

Proof. Since φ ∧ φ′ ≤ φ,φ′, we have Fφ∧φ′ ⊂ Fφ ∩ Fφ′ . On the other hand,
consider the non-archimedean metric φ′′

m ∈ HR
NA(X,L) associated to the filtration

F(m) := F∥·∥φ
m∨∥·∥φ′

m
generated by the norm ∥ · ∥φm ∨ ∥ · ∥φ

′

m = max{∥ · ∥φm, ∥ · ∥φ
′

m}.
Since F(m) ⊂ Fφ,Fφ′ , we have φ′′

m ≤ φ,φ′. Then by the property of the rooftop,
we get φ′′

m ≤ φ ∧ φ′. It follows that

F(m) ⊂ Fφ′′
m
⊂ Fφ∧φ′ .

Since Fλ
(m)Rm = (Fλ

φ ∩ Fλ
φ′)Rm, we get Fλ

φ ∩ Fλ
φ′ ⊂ Fφ∧φ′ for each m. □

Proposition 3.44. Assume the continuity of envelopes. For φ,φ′ ∈ C0∩PSHNA(X,L),
φ ∧ φ′ exists in C0 ∩ PSHNA(X,L).

Proof. Thanks to the continuity of envelopes, P (min{φ,φ′}) is in C0∩PSHNA(X,L).
The envelope clearly enjoys the property of rooftop. □

Question 3.45. Does φ ∧ φ′ exist in HNA(X,L) for φ,φ′ ∈ HNA(X,L)? Can we
show this without assuming the continuity of envelopes?

3.3. Moment energy and Duistermaat–Heckman measure.
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3.3.1. Well ordered diagonal basis. For φ ∈ C0 ∩ PSHNA(X,L) and a basis s =
(s1, . . . , sN ) of Rm = H0(X,L⊗m), we put

(71) λφi (s) := − log ∥si∥φm = sup{λ ∈ R | si ∈ Fλ
φRm}.

For φ ≤ φ′, we have λφi (s) ≤ λ
φ′

i (s) as Fφ ⊂ Fφ′ .
We recall a basis s is called diagonal with respect to φ if

∥
∑
i

aisi∥φm = max
ai ̸=0
∥si∥φm,

which is equivalent to sup{λ ∈ R |
∑

i aisi ∈ Fλ
φRm} = minai ̸=0 λ

φ
i (s).

It is known by [BE, Proposition 1.14] that there always exists a basis which is
diagonal with respect to both φ,φ′ (codiagonal for φ,φ′). We note, on the other
hand, there are no basis which is diagonal with respect to three metrics φ,φ′, φ′′

in general as we can see in the following example.

Example 3.46. There is no basis diagonal with respect to all of the following norms
on C2:

∥(a, b)∥1 :=


0 a = b = 0

1 a ̸= 0, b = 0

2 b ̸= 0

∥(a, b)∥2 :=


0 a = b = 0

1 a = 0, b ̸= 0

2 a ̸= 0

∥(a, b)∥3 :=


0 a = b = 0

1 a = b ̸= 0

2 a ̸= b

When φ′′ = φ∧φ′ exists, any basis diagonal with respect to both φ,φ′ is diagonal
also with respect to φ′′: for a basis (si) codiagonal for φ,φ

′, we compute

∥
∑
i

aisi∥φ
′′
= max{∥

∑
i

aisi∥φ, ∥
∑
i

aisi∥φ
′
} = max{max

ai ̸=0
∥si∥φ,max

ai ̸=0
∥si∥φ

′
}

= max
ai ̸=0

max{∥si∥φ, ∥si∥φ
′
} = max

ai ̸=0
∥si∥φ

′′

In other cases, we use the following lemma in our estimate.
We prepare some terminologies. Firstly, we call a basis s well ordered with

respect to φ if ∥si+1∥φ ≤ ∥si∥φ, i.e. λφi (s) ≤ λ
φ
i+1(s) for every i = 1, . . . , N − 1.

We define the relative version as follows. Let s be a basis well ordered with
respect to φ′. We define 0 = l0 < l1 < · · · < lp ≤ N by

∥sN∥φ
′
= · · · = ∥sN−l1+1∥φ

′
< ∥sN−l1∥φ

′
= · · · = ∥sN−l2+1∥φ

′

< · · · < ∥sN−lp+1∥φ
′
= · · · = ∥s1∥φ

′
.

We put Wq := ⟨sN , . . . , sN−lq+1⟩. For another φ, consider the quotient norm

∥[s]∥φWq
:= inf{∥s+ t∥φ | t ∈Wq−1}

on Wq/Wq−1. Then we call s well ordered with respect to (φ,φ′) if ∥[si+1]∥φWq
≤

∥[si]∥φWq
for each q and i with N − lq−1 + 1 ≤ i ≤ N − lq.

For any basis s and any φ,φ′, we can find a permutation σ so that sσ =
(sσ(1), . . . , sσ(N)) is a well ordered basis with respect to (φ,φ′).
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Lemma 3.47. Let s be a basis of Rm diagonal and well ordered with respect to φ
and s′ be a well ordered basis with respect to φ. Then we have λφi (s) ≥ λ

φ
i (s

′) for
i = 1, . . . , N .

More generally, we have the following. Let s be a basis of H0(X,L⊗m) which
is codiagonal for φ,φ′ and is well ordered with respect to (φ,φ′). Then for a basis
s′ which is diagonal for φ′ and is well ordered with respect to (φ,φ′), we have

λφi (s)− λ
φ′

i (s) ≥ λφi (s′)− λ
φ′

i (s′) for i = 1, . . . , N .

Proof. Let s be a basis diagonal and well ordered with respect to φ and s′ be a
well ordered basis with respect to φ. We firstly show ∥s1∥ = ∥s′1∥. Write s′i =∑N

j=0 aijsj , sj =
∑N

i=0 bijs
′
i. Since s is diagonal, we have ∥s′i∥ = maxaij ̸=0 ∥sj∥,

which in particular shows ∥s′i∥ ≤ ∥s1∥ as s is well ordered. Similarly, we have
∥sj∥ ≤ maxbij ̸=0 ∥s′i∥, so that we have ∥sj∥ ≤ ∥s′1∥ as s′ is well ordered. It follows
that ∥s1∥ ≤ ∥s′1∥ ≤ ∥s1∥, so we get ∥s1∥ = ∥s′1∥.

Now assume we obtained ∥si∥ ≤ ∥s′i∥ for 1 ≤ i ≤ k − 1. We want to see
∥sk∥ ≤ ∥s′k∥. If ∥sk−1∥ ≤ ∥s′k∥, we have ∥sk∥ ≤ ∥sk−1∥ ≤ ∥s′k∥. If ∥sk−1∥ > ∥s′k∥,
then we have ∥sj∥ > ∥s′i∥ for 1 ≤ j ≤ k − 1 and k ≤ i ≤ N , so that aij = 0 for

1 ≤ j ≤ k − 1 and k ≤ i ≤ N . Thus we can write s′i =
∑N

i=k aijsj for k ≤ i ≤ N .
Now consider the quotient norm

∥[s]∥/ := inf{∥s+ t∥ | t ∈ ⟨s0, . . . , sk−1⟩}

onH0(X,L⊗m)/⟨s1, . . . , sk−1⟩. For k ≤ i ≤ N , we have ∥[si]∥/ = ∥si∥ and ∥[s′i]∥/ =

∥s′i∥ thanks to the expression s′i =
∑N

i=k aijsj , so that {[si]}Ni=k and {[s′i]}Ni=k

give well ordered basis of H0(X,L⊗m)/⟨s1, . . . , sk−1⟩. Since ∥
∑N

i=k ai[si]∥/ =

∥
∑N

i=k aisi∥ = maxai ̸=0 ∥si∥ = maxai ̸=0 ∥[si]∥/, {[si]}Ni=k is diagonal. Then by
the above argument, we know ∥[sk]∥/ = ∥[s′k]∥/, so that we get ∥sk∥ = ∥s′k∥. Thus
we obtain the first claim by induction on k.

Next, we show the second claim. Let s be a basis codiagonal for φ,φ′ and
s′ be a basis diagonal for φ′ which are well ordered with respect to (φ,φ′). In
particular, these are diagonal and well ordered with respect to φ′, so that we have
∥si∥φ

′
= ∥s′i∥φ

′
from just what we proved. Take 0 = l0 < l1 < l2 < · · · < lp < N so

that

∥sN∥φ
′
= · · · = ∥sN−l1+1∥φ

′
< ∥sN−l1∥φ

′
= · · · = ∥sN−l2+1∥φ

′

< · · · < ∥sN−lp+1∥φ
′
= · · · = ∥s1∥φ

′
.

As s is diagonal, we have ∥si∥φ
′
= ∥s′i∥φ

′
= maxaij ̸=0 ∥sj∥φ

′
. Then we must have

aij = 0 for (i, j) with N − lq + 1 ≤ i ≤ N and 1 ≤ j ≤ N − lq by our choice of lq,
so that we can write

s′i =

N∑
j=N−lq+1

aijsj

for each q = 1, . . . , p and i with N − lq + 1 ≤ i ≤ N − lq−1. Thus we have
⟨sN , . . . , sN−lq+1⟩ = ⟨s′N , . . . , s′N−lq+1⟩ =:Wq.

For the quotient norm ∥ · ∥φWq
on Wq/Wq−1, the assumption that s is diag-

onal with respect to φ implies that ∥[si]∥φWq
= ∥si∥φ for N − lq + 1 ≤ i ≤

N − lq−1 and that the basis {[sN−lq−1 ], . . . , [sN−lq+1]} is diagonal with respect
to ∥ · ∥φWq

. Since s and s′ are well ordered with respect to (φ,φ′), the bases
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{[sN−lq−1
], . . . , [sN−lq+1]}, {[s′N−lq−1

], . . . , [s′N−lq+1]} of Wq/Wq−1 are well ordered

with respect to ∥ · ∥φWq
. Applying the absolute case we proved, we get ∥[si]∥φWq

≤
∥[s′i]∥

φ
Wq

for each q and i with N − lq +1 ≤ i ≤ N − lq−1. It follows that for every i

we have ∥si∥φ = ∥si∥φWq
≤ ∥[s′i]∥

φ
Wq
≤ ∥s′i∥φ by choosing suitable q. Thus for every

i we get

∥si∥φ/∥si∥φ
′
≤ ∥s′i∥φ/∥s′i∥φ

′
,

which shows the claim. □

3.3.2. Moment energy.

Lemma 3.48. Let χ be an increasing function on R. Suppose φ′ ≤ φ for φ,φ′ ∈
C0 ∩ PSHNA(X,L), then

∫
R χν∞(Fφ′) ≤

∫
R χν∞(Fφ).

Proof. Note that increasing function is Borel measurable and is bounded on the
support of the finite measure ν∞(Fφ), hence is integrable with respect to ν∞(Fφ).
Recall that ν∞(Fφ) = limm→∞ νm(Fφ) for

νm(Fφ) := m−n
∑
λ∈R

dimFλ
φRm/Fλ+

φ Rm.δλ/m = m−n
Nm∑
i=1

δm−1λφ
i (s),

where s = (si)
Nm
i=1 is a basis of Rm diagonal with respect to ∥ · ∥φ and λφi (s) =

− log ∥si∥φm.
Take a basis s of Rm so that it is codiagonal for φ,φ′. By the assumption φ′ ≤ φ,

we have λφ
′

i (s) ≤ λφi (s). It follows that for increasing χ, we have∫
R
χνm(Fφ′) = m−n

Nm∑
i=1

χ(m−1λφ
′

i (s))

≤ m−n
Nm∑
i=1

χ(m−1λφi (s)) =

∫
R
χνm(Fφ).

Now suppose χ is continuous (not necessarily compactly supported). Since the
supports of νm, ν∞ are uniformly bounded, we get

lim
m→∞

∫
R
χνm(Fφ) =

∫
R
χν∞(Fφ).

Then the above inequality on νm shows the claim for continuous increasing χ.
For χ = 1[τ,∞) or 1(τ,∞), we can easily find a bounded sequence χj of continuous

increasing functions which pointwisely converges to χ. By the bounded convergence
theorem, we have

lim
j→∞

∫
R
χjν∞ =

∫
R
χν∞

for both ν∞ = ν∞(Fφ), ν∞(Fφ′), so that the claim for χ = 1[τ,∞) or 1(τ,∞) follows
by that for continuous functions.

Now let χ be a general increasing function. We pick λ0 ∈ R so that λ0 <
inf supp ν∞(Fφ), inf supp ν∞(Fφ′). We define χj by

χj := χ(λ0) +

j2j∑
i=1

2−j1χ−1([χ(λ0)+i/2j ,∞)).
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Then χj is an increasing sequence of increasing functions which converges to χ
pointwisely on [λ0,∞). We can check this as follows. By the monotonicity, we have

∞∪
j=1

χ−1([χ(λ0), χ(λ0) + j)) ⊃ [λ0,∞),

for each t ∈ [λ0,∞), we can take j sufficiently large so that t ∈ χ−1([χ(λ0), χ(λ0)+
j)). Put ij,t := max{i = 1, . . . , j2j | χ(λ0) + i/2j ≤ χ(t)}. Then we have χ(λ0) +
ij,t/2

j ≤ χ(t) < χ(λ0) + (ij,t + 1)/2j and χj(t) = χ(λ0) + ij,t/2
j . It follows that

|χ(t)− χj(t)| ≤ 2−j , hence χj converges to χ pointwisely on [λ0,∞). We can also
see that the sequence is increasing by the formula χj(t) = χ(λ0) + ij,t/2

j . Since
χj ↗ χ is bounded from below by χ(λ0), we get

lim
j→∞

∫
R
χjν∞(Fφ) =

∫
R
χν∞(Fφ)

by the monotone convergence theorem. Thus it suffices to show the claim for χj .
By the monotonicity of χ, we have χ−1([σ,∞)) = [τ,∞) or (τ,∞). Since χj is a
linear combination of such functions with positive coefficients, the claim follows by
that for χ = 1[τ,∞), 1(τ,∞), which we already know. □

Recall we have DH(X ,L) = ν∞(Fφ(X ,L)
) by Corollary 3.27. For an increasing

right continuous function χ on R and a NA psh metric φ on (X,L), we put

(72) Eχ(φ) := inf
{∫

R
χDH(X ,L)

∣∣∣ φ ≤ φ(X ,L) ∈ HNA(X,L)
}
.

It may take value −∞ when limt→−∞ χ(t) = −∞. In this article, we are especially
interested in E(φ) := Et(φ) and Eexp(φ) := E−e−t(φ). We also use Fφ(τ) :=
E1[τ,∞)

(φ) to define Duistermaat–Heckman measure for general φ ∈ PSHNA(X,L).

Proposition 3.49. For an increasing right continuous function χ on R, the func-
tional Eχ is monotonic and continuous along decreasing nets of NA psh metrics. If
χ is moreover concave, Eχ is concave.

Proof. We firstly show the following general claim: if F is a functional onHNA(X,L)
which is monotonic (F (φ) ≤ F (φ′) for φ ≤ φ′) and limε↘0 F (φ + ε) = F (φ) for
every φ ∈ HNA(X,L), then the functional F̄ on PSHNA(X,L) defined by

F̄ (φ) := inf{F (φ̃) | φ ≤ φ̃ ∈ HNA(X,L)}
gives an extension of F which is monotonic and continuous along decreasing nets.

The monotonicity of F̄ is obvious from the definition. In particular, we have
limi→∞ F̄ (φi) ≥ F̄ (φ) for a convergent decreasing net φi ↘ φ ∈ PSHNA(X,L). To
see the reverse inequality, pick ε > 0 and φ̃ ∈ HNA(X,L) so that φ+ε ≤ φ̃. Then by
Lemma 3.19 we have φi < φ̃ for sufficiently large i, so that limi→∞ F̄ (φi) ≤ F (φ̃).
Taking the infimum of φ̃, we get limi→∞ F̄ (φi) ≤ F (φ+ ε). Then taking the limit
ε↘ 0, we get limi→∞ F̄ (φi) ≤ F (φ).

To apply this to F (φ(X ,L)) =
∫
R χDH(X ,L), it suffices to show limε↘0 F (φ+ε) =

F (φ) for φ ∈ HNA(X,L). We note φ(X ,L) + ε = φ(X ,L+εX0) and DH(X ,L+εX0) =
(t 7→ t+ ε)∗DH(X ,L) by [BHJ1, Proposition 3.12 (i)]. By the monotonicity and the
right continuity, we have χ(t + ε) ↘ χ(t) as ε ↘ 0 and the sequence is bounded
from above on the support of DH(X ,L). Thus we get

lim
ε↘0

∫
R
χDH(X ,L+εX0) = lim

ε↘0

∫
R
χ(t+ ε)DH(X ,L) =

∫
R
χDH(X ,L)
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by the monotone convergence theorem.
To see the concavity, we firstly consider the case φ0 = φ(X0,L0), φ1 = φ(X1,L1).

Fix t ∈ [0, 1]. Take a well ordered diagonal basis s with respect to (1− t)φ0 + tφ1

and a basis s′ which is codiagonal for φ0, φ1 and is well ordered with respect to
(1− t)φ0 + tφ1. Thanks to ∥ · ∥(1−t)φ0+tφ1 ≤ (∥ · ∥φ0)1−t(∥ · ∥φ1)t, we can compute∫
R
χνm((1− t)φ0 + tφ1) = m−n

Nm∑
i=1

χ(m−1λ
(1−t)φ0+tφ1

i (s))

≥ m−n
Nm∑
i=1

χ(m−1λ
(1−t)φ0+tφ1

i (s′))

≥ m−n
Nm∑
i=1

χ((1− t)m−1λφ0

i (s′) + tm−1λφ1

i (s′))

≥ (1− t)m−n
Nm∑
i=1

χ(m−1λφ0

i (s′)) + tm−n
Nm∑
i=1

χ(m−1λφ1

i (s′))

= (1− t)
∫
R
χνm(φ0) + t

∫
R
χνm(φ1),

using Lemma 3.47, the monotonicity and the concavity of χ for the respective
inequalities. Since the concavity of χ implies the continuity, we get the claim for
these φ0, φ1 by taking the limit m → ∞. For general NA psh metrics φ0, φ1, the
claim follows by the continuity of Eχ along decreasing nets. □

Proposition 3.50. Let χ be a right continuous increasing function χ on R. For
φ ∈ C0 ∩ PSHNA(X,L), we have

Eχ(φ) =

∫
R
χν∞(Fφ).

As a consequence, we have

Eχ(φ) = inf
{∫

R
χν∞(Fφ̃)

∣∣∣ φ ≤ φ̃ ∈ C0 ∩ PSHNA(X,L)
}
.

Proof. By Lemma 3.48, we have

Eχ(φ) ≥
∫
R
χν∞(Fφ).

By the continuity of φ, for any ε > 0 we can find φ(X ,L) ∈ HNA(X,L) such that
φ ≤ φ(X ,L) ≤ φ+ ε thanks to Lemma 3.19. Then we get

Eχ(φ) ≤
∫
R
χDH(X ,L) =

∫
R
χν∞(Fφ(X ,L)

) ≤
∫
R
χν∞(Fφ+ε) =

∫
R
χ(t+ ε)ν∞(Fφ)

again by Lemma 3.48. As χ(t + ε) ↘ χ(t) is bounded from above on the support
of ν∞(Fφ), the monotone convergence theorem shows

Eχ(φ) ≤
∫
R
χν∞(Fφ).

□
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Example 3.51. The right continuity of χ is essential. For instance, consider χ =
1(τ,∞) and φi = τ + 1/i↘ φ = τ for i ∈ N+, then we have∫

R
1(τ,∞)DHφi =

∫
R
1(τ,∞)δτ+1/i = 1 ↛ 0 =

∫
R
1(τ,∞)δτ =

∫
R
1(τ,∞)DHφ.

Definition 3.52. For a non-constant increasing concave function χ on R, we put

(73) EχNA(X,L) := {φ ∈ PSHNA(X,L) | Eχ(φ;ρ) > −∞ for ∀ρ > 0}.
Note χ is automatically continuous and χ(−∞) = −∞ by the assumption.

We can easily check the following for φ ∈ EχNA(X,L).

• If φ′ ≥ φ for φ′ ∈ PSHNA(X,L), then φ
′ ∈ EχNA(X,L).

• φ;ρ ∈ EχNA(X,L) for any ρ ∈ R+

• φ ∧ τ ∈ EχNA(X,L) for any τ ∈ R.
• If φ0, φ1 ∈ EχNA(X,L), then (1− t)φ0 + tφ1 ∈ EχNA(X,L) for any t ∈ [0, 1].

• If χ ≤ χ′, we have Eχ ≤ Eχ′ , so that EχNA(X,L) ⊂ E
χ′

NA(X,L).

Since Eχ(c) = χ(c) > −∞ for c ∈ R, we have PSHbdd
NA (X,L) ⊂ EχNA(X,L) by the

first property.
We recall

E1NA(X,L) := {φ ∈ PSHNA(X,L) | E(φ) > −∞},
EexpNA (X,L) := {φ ∈ PSHNA(X,L) | Eexp(φ;ρ) > −∞ for ∀ρ > 0}.

We have EexpNA (X,L) ⊂ E1NA(X,L). Since E(φ + c) = E(φ) + c(eL), Eexp(φ + c) =
e−cEexp(φ) for c ∈ R, we have

• φ+ c ∈ E1NA(X,L) (resp. E
exp
NA (X,L)) if φ ∈ E1NA(X,L) (resp. E

exp
NA (X,L)).

Question 3.53. In general for any φ ∈ EχNA(X,L), we know φ + c ∈ EχNA(X,L) for
c ≥ 0 and (1 − ε)φ + c ∈ EχNA(X,L) for 0 < ε < 1 and c ∈ R. For general χ, does
φ+ c ∈ EχNA(X,L) hold for φ ∈ EχNA(X,L) and c ∈ R?

Example 3.54. As explained in section 5.1, for a lower semi-continuous convex
function q on the interval [0, 1], we can assign a non-archimedean psh metric φq on
(CP 1,O(1)) and have

Eexp(φq;ρ) = −
∫
[0,1]

eρq(t)dt, sup |φq| = |q|.

It follows that the unbounded convex function q = log(− log t(1 − t)) gives an
unbounded example of φ ∈ EexpNA (X,L).

3.3.3. Duistermaat–Heckman measure of non-archimedean psh metric.

Proposition 3.55. For φ ∈ PSHNA(X,L), we put

Fφ(τ) := E1[τ,∞)
(φ) = inf

{∫
[τ,∞)

DH(X ,L)

∣∣∣ φ ≤ φ(X ,L)

}
.

Then we have the following.

(1) The function Fφ is decreasing, left continuous and satisfies Fφ(τ) = 0 for
τ > supφ and limτ→−∞ Fφ(τ) ≤ (eL).

(2) Suppose φ1 ≤ φ2, then we have Fφ1(τ) ≤ Fφ2(τ).
(3) For a convergent decreasing net φi ↘ φ ∈ PSHNA(X,L), we have Fφi(τ)↘

Fφ(τ).
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Proof. The properties (2) and (3) are the consequence of the propositions in the
last subsection.

For any (X ,L) with φ(X ,L) ≥ φ, we have∫
[τ ′,∞)

DH(X ,L) ≥
∫
[τ,∞)

DH(X ,L) ≥ Fφ(τ)

for τ ′ ≤ τ . This shows the monotonicity Fφ(τ
′) ≥ Fφ(τ) for τ

′ ≤ τ .
Next we check the left continuity. Take an increasing sequence τj ↗ τ ∈ R.

Since we know Fφ(τj) ≥ Fφ(τ), it suffices to show limj→∞ Fφ(τj) ≤ Fφ(τ), which is
equivalent to show limi→∞ Fφ(τi) ≤

∫
[τ,∞)

DH(X ,L) for every (X ,L) with φ(X ,L) ≥
φ. Since 1[τj ,∞) is a bounded sequence which converges to 1[τ,∞) pointwisely (not

only a.e. with respect to the Lebesgue measure), we have limj→∞
∫
[τj ,∞)

DH(X ,L) =∫
[τ,∞)

DH(X ,L) by the bounded convergence theorem. Thus we get limi→∞ Fφ(τi) ≤∫
[τ,∞)

DH(X ,L). (Note 1[τj ,∞) converges to 1(τ,∞) if we approximate τ from the right

τj ↘ τ . Since DH may have a singular component in the Lebesgue decomposition,
Fφ is not right continuous. )

Note
∫
[τ,∞)

DH(X ,L) = 0 for τ > supφ(X ,L). It follows that Fφ(τ) = 0 for

τ > supφ(X ,L) for any φ(X ,L) ≥ φ. Since supφi ↘ supφ for φi ↘ φ, we get
Fφ(τ) = 0 for τ > supφ.

The property
∫
R DHφ ≤ (eL) follows immediately from∫

R
DHφ = lim

j→∞

∫
[−j,∞)

DHφ ≤ lim
j→∞

∫
[−j,∞)

DH(X ,L) =

∫
R
DH(X ,L) = (eL)

for any (X ,L) with φ(X ,L) ≥ φ. □
Thanks to this proposition, we obtain the following extension of the Duistermaat–

Heckman measure of test configuration.

Definition 3.56 (Duistermaat–Heckman measure of NA psh metric). TheDuistermaat–
Heckman measure of a non-archimedean psh metric φ ∈ PSHNA(X,L) is a finite
Borel measure DHφ on R which is uniquely characterized by∫

1[τ,∞)DHφ = Fφ(τ)

for every τ ∈ R. We have suppDHφ ⊂ (−∞, supφ] and
∫
R DHφ ≤ (eL).

By Proposition 3.50, we have

(74) DHφ = ν∞(Fφ)

for φ ∈ C0 ∩ PSHNA(X,L).

Lemma 3.57. For a non-negative Borel measurable function χ on R, we have the
following basic rules.

(1)
∫
R χ(t)DHφ;ρ

=
∫
R χ(ρt)DHφ for any ρ ∈ R+.

(2)
∫
R χ(t)DHφ+c =

∫
R χ(t+ c)DHφ for any c ∈ R.

(3)
∫
R χDHφ∧τ =

∫
(−∞,τ)

χDHφ + χ(τ)
∫
[τ,∞)

DHφ for any τ ∈ R.

Proof. Since DHφ is outer regular measure, we can reduce the claim to the case
χ = 1[τ ′,τ), for which we have

∫
R χDHφ = Fφ(τ

′) − Fφ(τ). It suffices to show

Fφ;ρ(τ) = Fφ(ρ
−1τ), Fφ+c(τ) = Fφ(τ − c) and Fφ∧τ ′(τ) = 1[τ,∞)(τ

′)Fφ(τ). Since
both sides are continuous along decreasing nets, the claim is reduced to the case φ ∈
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C0 ∩PSHNA(X,L). Since Fφ;ρ
= (Fφ);ρ, Fφ+c = Fφ[c] and Fφ∧τ ′ = Fφ ∩Fτ ′ , the

claim follows by [BJ2, Proposition 3.4]: ν∞((Fφ);ρ) = (t 7→ ρt)∗ν∞(Fφ), DHFφ[c] =
(t 7→ t+ c)∗ν∞(Fφ) and ν∞(Fφ ∩ Ftriv[τ

′]) = (t 7→ min{t, τ ′})∗ν∞(Fφ). □

We observe sufficient conditions for the continuity of
∫
R χDHφ along decreasing

nets.

Definition 3.58. We call a function χ on R is tame if for any t ∈ R and ε > 0

there exists a function χ̃ of the form χ̃ =
∑k

j=1 aj1[τ ′
j ,τj)

(τj = ∞ is allowed) such

that sup(−∞,t) |χ− χ̃| < ε.

Lemma 3.59. Any tame function is right continuous, locally bounded and con-
verges to zero at −∞, hence is integrable with respect to DHφ.

The following functions are tame.

• Continuous function χ converging to zero at −∞.
• Monotonic right continuous function χ converging to zero at −∞.

Here convergence to zero at −∞ means limt→−∞ |χ(t)| = 0.

Proof. The right continuity is equivalent to the continuity with respect to the lower
limit topology on the domain R. Then the uniform limit theorem shows the right
continuity of tame function. Local boundedness and convergence to zero at −∞ is
obvious.

Suppose χ is a continuous function converging to zero at −∞. For any ε > 0,
we have tε ∈ R such that sup(−∞,tε] |χ| < ε. On the other hand, χ is uniformly

continuous on [tε, t+ε], so that we can find a step function χ̃ supported on [tε, t+ε)
with sup[tε,t] |χ− χ̃| < ε. It follows that sup(−∞,t] |χ− χ̃| < ε.

Suppose χ is a right continuous increasing function converging to zero at −∞.
We take tε similarly as above. We divide the interval [χ(tε), χ(t)) into finitely
many disjoint intervals [a′i, ai) with length < ε. By the right continuity and the
monotonicity, χ−1([a′i, ai)) are of the form [τ ′i , τi), which are disjoint and cover
[tε, t). Since sup[τ ′

i ,τi)
|χ−a′i1[τ ′

i ,τi)
| < ε, we get sup(−∞,t] |χ−

∑
i a

′
i1[τ ′

i ,τi)
| < ε. □

Proposition 3.60. Let χ be a tame function. For a convergent decreasing net
φi ↘ φ ∈ PSHNA(X,L), we have

∫
R χDHφi

→
∫
R χDHφ.

Proof. We remark the claim holds for step functions χ̃ =
∑k

j=1 aj1[τ ′
j ,τj)

as∫
R
χ̃DHφ =

k∑
j=1

aj(Fφ(τ
′
j)− Fφ(τj)).

Since suppDHφi
, suppDHφ ⊂ (−∞, supφ0], we compute

lim
i→∞

|
∫
R
χDHφ −

∫
R
χDHφi | ≤

∫
R
|χ− χ̃|DHφ + lim

i→∞
|
∫
R
χ̃DHφ −

∫
R
χ̃DHφi |

+ lim
i→∞

∫
R
|χ̃− χ|DHφi

≤ 2ε(eL)

for any ε > 0, by taking χ̃ so that sup(−∞,supφ0+1) |χ − χ̃| < ε. Taking the limit
ε→ 0, we obtain the claim. □
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3.3.4. ENA(X,L) and moment energy. For a general φ ∈ PSHNA(X,L), we may
have

∫
R DHφ < (eL) as we see in the following remark. In particular, the conver-

gence
∫
R DHφi →

∫
R DHφ for φi ↘ φ ∈ PSHNA(X,L) fails in general. (Note 1R is

not tame. )

Remark 3.61. Consider φi = max{log |s0|, log |s1| − i} ∈ PSHNA(CP 1,O(1)) for
i ∈ N, then we have φi ↘ φ = log |s0|. Since DHφi

= i−1dt|[−i,0], we have

DHφ = 0, so that
∫
R DHφ = 0 < (eL). On the other hand,

∫
R DHφi

= (eL).

We also observe limi→∞
∫
(−∞,τ)

DHφi
= 1 for every τ ∈ R. This illustrates the

functional

Gφ(τ) := sup
{∫

(−∞,τ)

DH(X ,L)

∣∣∣ φ(X ,L) ≥ φ
}

is not suitable for defining Duistermaat–Heckman measure: limτ→−∞Gφ(τ) ̸= 0.

For the above example, we have
∫
R tDHφi = i−1

∫ 0

−i
tdt = −i/2 ↘ −∞, while∫

R tDHφ = 0. This in particular shows E(φ) ̸=
∫
R tDHφ and the monotonicity as

in Lemma 3.48 fails for general φ ∈ PSHNA(X,L) and χ.
The following class is appropriate to discuss the relation to moment energy.

(75) ENA(X,L) := {φ ∈ PSHNA(X,L) |
∫
R
DHφ = (eL)}.

Proposition 3.62. We have the following for φ ∈ ENA(X,L).

(1) If φ′ ≥ φ for φ′ ∈ PSHNA(X,L), then φ′ ∈ ENA(X,L). In particular, we

have PSHbdd
NA (X,L) ⊂ ENA(X,L).

(2) φ+ c ∈ ENA(X,L) for any c ∈ R.
(3) φ;ρ ∈ ENA(X,L) for any ρ ∈ R+.
(4) φ ∧ τ ∈ ENA(X,L) for any τ ∈ R.

Proof. The first claim follows from

(eL) ≥
∫
R
DHφ′ = lim

j→∞

∫
[−j,∞)

DHφ′ ≥ lim
j→∞

∫
[−j,∞)

DHφ =

∫
R
DHφ = (eL).

The claim (2)–(4) follows from Lemma 3.57. □

For an increasing right continuous function χ, the functional φ 7→
∫
R χDHφ

behaves well on ENA(X,L).

Proposition 3.63. Let χ be an increasing right continuous function on R. If
φ ∈ ENA(X,L), we have

Eχ(φ) =

∫
R
χDHφ.

Proof. We firstly note the integral
∫
R χDHφ makes sense, which may takes −∞,

since χ is bounded from above on suppDHφ: we put
∫
R χDHφ := −

∫
R(c−χ)DHφ+

c
∫
R DHφ by taking a constant c so that c− χ is non-negative on suppDHφ.
Take a regularization {φi}i∈I ⊂ HNA(X,L) so that φi ↘ φ. For each j ∈ N,

max(χ − χ(−j), 0) is an increasing right continuous function with left bounded
support. Then by Proposition 3.49, Proposition 3.60 and the assumption φ ∈
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ENA(X,L), we compute

Eχ(φ) = lim
i→∞

∫
R
χDHφi

≤ lim
i→∞

∫
R
max(χ, χ(−j))DHφi

= lim
i→∞

∫
R
max(χ− χ(−j), 0)DHφi

+ χ(−j)(eL)

=

∫
R
max(χ− χ(−j), 0)DHφ + χ(−j)(eL)

=

∫
R
max(χ, χ(−j))DHφ.

Since max(χ, χ(−j)) ↘ χ is bounded from above on (−∞, supφ], we conclude
Eχ(φ) ≤

∫
R χDHφ by the monotone convergence theorem.

To see Eχ(φ) ≥
∫
R χDHφ, it suffices to show

∫
R χDHφ0 ≥

∫
R χDHφ. Using the

assumption φ ∈ ENA(X,L), Proposition 3.60 and Lemma 3.48, We compute∫
R
χDHφ ≤

∫
R
max(χ, χ(−j))DHφ =

∫
R
max(χ− χ(−j), 0)DHφ + χ(−j)(eL)

= lim
i→∞

∫
R
max(χ− χ(−j), 0)DHφi

+ χ(−j)(eL)

≤
∫
R
max(χ− χ(−j), 0)DHφ0 + χ(−j)(eL)

=

∫
R
max(χ, χ(−j))DHφ0

.

Taking the limit j →∞, we get
∫
R χDHφ ≤

∫
R χDHφ0 . □

Definition 3.64. A function χ on R ismoderate if it is the sum of a right continuous
monotonic function and a tame function.

A moderate function χ is bounded from below or above on (−∞, supφ], so that
the integration

∫
R χDHφ makes sense, which may take value ±∞. If φ′ ≥ φ and∫

R χDHφ is finite, then
∫
R χDHφ′ is also finite.

Corollary 3.65. Let χ be a moderate function on R. For a convergent decreasing
net φi ↘ φ ∈ ENA(X,L), we have limi→∞

∫
R χDHφi

=
∫
R χDHφ.

Proposition 3.66. Let χ be an increasing right continuous function on R with
limt→−∞ χ(t) = −∞. Then Eχ(φ) > −∞ implies

∫
R DHφ = (eL).

Proof. Suppose
∫
R DHφ < (eL). Take ε > 0 so that

∫
R DHφ ≤ (eL) − ε. As

limj→∞
∫
[−j,∞)

DHφ =
∫
R DHφ, there exists jε ∈ N such that∫

[−j,∞)

DHφ ≤ (eL)− ε/2

for every j ≥ jε. Now we take a regularization {φi}i∈I ⊂ HNA(X,L) so that
φi ↘ φ. As limi→∞

∫
[−j,∞)

DHφi
=

∫
[−j,∞)

DHφ, for each j ≥ jε we can take

ij ∈ I so that ∫
[−j,∞)

DHφi
≤

∫
R
DHφi

− ε/4



70 EIJI INOUE

for every i ≥ ij , which we can rearrange as

ε/4 ≤
∫
(−∞,−j)

DHφi .

For any j ≥ jε with χ(−j) < 0, we compute

Eχ(φ) ≤ Eχ(φij ) =

∫
R
χDHφij

=

∫
(−∞,−j)

χDHφij
+

∫
[−j,∞)

χDHφij

≤ χ(−j) · ε/4 + supφ0 · (eL).
Since χ(−j)→ −∞ as j →∞, we get Eχ(φ) = −∞, which proves the contraposi-
tion. □
Corollary 3.67. For any non-constant increasing concave function χ on R, we
have

EχNA(X,L) ⊂ ENA(X,L).

3.3.5. Brunn–Minkowski inequality. The following will be used to bound the max-
imum of a dexp-bounded increasing non-archimedean psh metrics.

Proposition 3.68. For φ ∈ PSHNA(X,L), Fφ(τ)
1/n = (

∫
[τ,∞)

DHφ)
1/n is concave

on (−∞, supφ] and is zero on (supφ,∞). As a consequence, we have sup suppDHφ =
supφ if

∫
R DHφ ̸= 0.

Proof. We note the claim holds for φ ∈ HNA(X,L) as Fφ(τ) is the left contin-

uous modification of vol(R(τ)) described in [BHJ1], which is noted in the proof
of [BC, Theorem 1.9]. By Brunn–Minkowski inequality, vol(R(τ))1/n is concave
on (−∞, supφ) and is zero on (supφ,∞) (cf. [BHJ1, Theorem 5.3]), hence in
particular it is continuous on these intervals. Thus we have Fφ(τ) = vol(R(τ))

for τ ̸= supφ, which shows that F
1/n
φ is concave on (−∞, supφ) and is zero on

(supφ,∞). By the left continuity, F
1/n
φ is also concave on (∞, supφ].

For general φ ∈ PSHNA(X,L), take a regularization {φi}i∈I ⊂ HNA(X,L) so
that φi ↘ φ. Then we have supφi ↘ supφ and Fφi

(τ) ↘ Fφ(τ). The concav-

ity is preserved under pointwise limit, so that F
1/n
φ is concave on (−∞, supφ] ⊂

(−∞, supφi] and zero on (supφ,∞).
Suppose

∫
[τ0,∞)

DHφ = 0 for some τ0 < supφ. Then
∫
[τ,∞)

DHφ = 0 for τ ≥ τ0
by the monotonicity. On the other hand, for τ < τ0 we have

F 1/n
φ (τ) ≤ supφ− τ

supφ− τ0
F 1/n
φ (τ0)−

τ0 − τ
supφ− τ0

F 1/n
φ (supφ) = 0

by the concavity. Thus
∫
R DHφ = 0 when sup suppDHφ < supφ. □

3.4. Moment measure on Berkovich space. In the rest of this article, we only
consider φ ∈ E1NA(X,L).

3.4.1. Tomography of non-archimedean Monge–Ampère measure. Here we compute
MA(φ ∧ τ) using results in the section 3.1. This is the key observation in the
construction of the moment measure. We begin with the following lemma.

Lemma 3.69. Let (X ,L) be a normal test configuration. Let I be a finite set of
valuations (with no duplication) and σ′ : I → R be a map satisfying

Fλ
(X ,L) = F̂

λ
(X ,L) =

∩
v∈I

Fλ
v [σ

′(v)]
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for all λ ∈ Z. Then I contains {vE | E ⊂ X0} and σ′(vE) = σE = φ(X ,L)(vE).

Proof. By the definition of σv, we have σ′(v) ≥ σv. Put I ′ := {v ∈ I | σ′(v) = σv}.
As we already noted, we have⊕

m≥0

⊕
λ∈Z

ϖ−λ(Fλ
(X ,L) ∩ F

λ+
v [σ′(v)])Rm =

{
Iv σ′(v) = σv

R(X ,L) σ′(v) > σv,

so that we have IX red
0

=
∩

v∈I′ Iv by the assumption. Since IX red
0

=
∩

E⊂X0
IvE

is the unique primary decomposition, {Iv | v ∈ I ′} must contain {IvE | E ⊂ X0}.
Then by Lemma 3.6, we must have vE ∈ I ′. □

As we observed in section 3.1, we can recover the primary decomposition of the

Duistermaat–Heckman measure from Fφ = F̂(X ,L). In particular, we can recover
the Monge–Ampère measure from Fφ. Since Fφ∧τ = Fφ ∩ Fτ , we can also recover
MA(φ∧ τ) from Fφ and τ , which relates MA(φ∧ τ) to the primary decomposition
of the Duistermaat–Heckman measure.

Proposition 3.70. For any φ = φ(X ,L) ∈ HNA(X,L) and τ ∈ R, we have

MA(φ ∧ τ) =
∑

E⊂X0

ordEX0

∫
(−∞,τ)

DH(E,L|E).δvE +

∫
[τ,∞)

DH(X ,L).δvtriv

=
∑

E⊂X0,vE ̸=vtriv

ordEX0

∫
(−∞,τ)

DH(E,L|E).δvE

+
( ∑

E⊂X0,vE=vtriv

ordEX0 · (E.L·n) +

∫
[τ,∞)

DH◦
(X ,L)

)
.δvtriv ,

where

DH◦
(X ,L) :=

∑
E⊂X0,vE ̸=vtriv

ordEX0 ·DH(E,L|E)

is the absolutely continuous part of DH(X ,L). Here we recall E ⊂ X0 gives the
trivial valuation vE = vtriv iff the Gm-action on E is trivial, which is equivalent to
DH(E,L|E) = ordEX0 · (E,L·n).δφ(vtriv).

Proof. The claim is obvious for τ ≥ supφ = φ(vtriv). We may assume τ < supφ =
φ(vtriv). By Proposition 4.4 and the absolute continuity of DH(E,L|E) for vE ̸= vtriv,
both sides of the equality are continuous on τ ∈ R (with respect to the weak
convergence of measures), so we may assume τ ∈ Q. Then φ ∧ τ ∈ HNA(X,L)

by Proposition 3.40. Let (X̂ τ , L̂τ ) be a normal test configuration representing
φ ∧ τ ∈ HNA(X,L). By Proposition 3.43, we have

Fλ
φ∧τ = Fλ

φ ∩ Fλ
τ =

∩
E⊂X0

Fλ
vE [φ(vE)] ∩ F

λ
vtriv [τ ]

=
∩

E⊂X0,vE ̸=vtriv

Fλ
vE [φ(vE)] ∩ F

λ
vtriv [τ ].

Here the last equality holds by τ < φ(vtriv). It follows by Lemma 3.69 that we have

suppMA(φ ∧ τ) = {vÊ | Ê ⊂ X̂
τ
0 } ⊂ {vE | E ⊂ X0} ∪ {vtriv}

and φ ∧ τ(vÊ) = φ(vE) if vÊ = vE for E ⊂ X0 and φ ∧ τ(vÊ) = τ if vÊ = vtriv.
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We note

Fλ
φ∧τRm =

{
Fλ

φRm τ ≥ λ/m
0 τ < λ/m

.

If vÊ ̸= vtriv, then we have vÊ = vE for some E ⊂ X0. Using Proposition 3.11 and
Proposition 3.12, we compute

1

n!
ordÊX̂

τ
0 · (Ê.(L̂τ )·n) = lim

m→∞

1

mn

∑
λ∈Q

dim
Fλ

φ∧τRm

Fλ
φ∧τ ∩ Fλ+

vÊ [φ ∧ τ(vÊ)]Rm

= lim
m→∞

1

mn

∑
λ∈Q

dim
Fλ

φ∧τRm

Fλ
φ∧τ ∩ Fλ+

vE [φ(vE)]Rm

= lim
m→∞

1

mn

∑
λ∈Q,λ/m≤τ

dim
Fλ

φRm

Fλ
φ ∩ Fλ+

vE [φ(vE)]Rm

=

∫
R

lim
m→∞

1

mn

∑
λ∈Q,λ/m≤τ

dim
F̂λ

(X ,L)Rm

F̂λ
(X ,L) ∩ F

λ+
vE [φ(vE)]Rm

.δλ/m

= ordEX0

∫
(−∞,τ ]

DH(E,L|E)

= ordEX0

∫
(−∞,τ)

DH(E,L|E),

where in the last two equalities we used the fact that DH(E,L|E) is absolutely con-
tinuous with respect to the Lebesgue measure as vE ̸= vtriv.

Now we recall∫
XNA

MA(φ(X ,L) ∧ τ) = (eL) =

∫
R
DH(X ,L) =

∑
E⊂X0

ordEX0

∫
R
DH(E,L|E).

It follows that for Ê ⊂ X̂ τ
0 with vÊ = vtriv, we must have

1

n!
ordEX̂ τ

0 · (Ê.(L̂τ )·n) =
∑

E⊂X0

ordEX0

∫
R
DH(E,L|E) −

∑
E⊂X0,vE ̸=vtriv

ordEX0

∫
(−∞,τ)

DH(E,L|E)

=
∑

E⊂X0,vE=vtriv

ordEX0

∫
(−∞,τ)

DH(E,L|E) +

∫
[τ,∞)

DH(X ,L)

=
∑

E⊂X0,vE=vtriv

ordEX0 · (E.L·n) +

∫
[τ,∞)

DH◦
(X ,L).

Since τ < supφ, this is also equal to
∫
[τ,∞)

DH(X ,L).

Alternatively, for Ê ⊂ X̂ τ
0 with vÊ = vtriv, we have φ ∧ τ(vtriv) = τ by τ <

φ(vtriv), so that we compute

1

n!
ordEX̂ τ

0 · (Ê.(L̂τ )·n) = lim
m→∞

1

mn

∑
λ∈Q

dim
Fλ

φ∧τRm

Fλ
φ∧τ ∩ Fλ+

vtriv [τ ]Rm

= lim
m→∞

1

mn
dim F̂mτ

(X ,L)Rm

= vol(R(τ)).
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Recall
∫
[τ,∞)

DH(X ,L) is the left continuous modification of vol(R(τ)). For τ < supφ,

vol(R(τ)) is continuous, so we have

vol(R(τ)) =

∫
[τ,∞)

DH(X ,L).

□

3.4.2. Moment measure. Now we construct the moment measure
∫
χDφ. The key

in the construction is the following formula we obtained in the previous section

MA(φ ∧ τ) =
∫

1(−∞,τ)Dφ +

∫
[τ,∞)

DHφ.δvtriv .

Theorem 3.71 (Moment measure). For φ ∈ E1NA(X,L) and a Borel measurable
function χ on R with

∫
R |χ|DHφ <∞, we can assign a signed Radon measure

∫
χDφ

on XNA which enjoys the following properties:

(1) For φ = φ(X ,L) ∈ HNA(X,L), we have∫
χDφ(X ,L)

=
∑

E⊂X0

ordEX0

∫
R
χDH(E,L|E).δvE .

(2)
∫
χDφ is linear on χ. If χ ≥ 0,

∫
χDφ is non-negative.

(3) For any pointwise convergent increasing sequence 0 ≤ χi ↗ χ, we have the
weak convergence of measures∫

χiDφ ↗
∫
χDφ.

(4) We have
∫∫

XNA χDφ :=
∫
XNA

∫
χDφ =

∫
R χDHφ.

(5) We have
∫
1RDφ = MA(φ) as measures.

(6) Suppose χ is moderate in the sense of Definition 3.64. Then for a convergent
decreasing net φi ↘ φ ∈ E1NA(X,L), we have the weak convergence of
measures ∫

χDφi
→

∫
χDφ.

These properties characterize the measure
∫
χDφ.

Proof. For φ ∈ E1NA(X,L), we put

(76)

∫
1[τ ′,τ)Dφ := MA(φ ∧ τ)−MA(φ ∧ τ ′) +

∫
[τ ′,τ)

DHφ.δvtriv .

This gives a non-neagitve Borel measure on XNA as we see below. By Proposition
3.70, we have ∫

1[τ ′,τ)Dφ(X ,L)
=

∑
E⊂X0

ordEX0

∫
[τ ′,τ)

DH(E,L|E).δvE

for φ = φ(X ,L), so it defines a non-negative measure in this case. Since MA(φ ∧ τ)
and

∫
[τ ′,τ)

DHφ are continuous along decreasing nets in E1NA(X,L) (note 1[τ ′,τ) is

moderate), we have

lim
i→∞

∫
1[τ ′,τ)Dφi

=

∫
1[τ ′,τ)Dφ
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for any convergent decreasing net φi ↘ φ in E1NA(X,L). In particular, we can write∫
1[τ ′,τ)Dφ as the limit of non-negative measures

∫
1[τ ′,τ)Dφ(Xi,Li)

for a regular-

ization φ(Xi,Li) ↘ φ, so that it gives a non-negative measure on XNA for general

φ ∈ E1NA(X,L). We also get∫
XNA

∫
1[τ ′,τ)Dφ = lim

i→∞

∫
XNA

∫
1[τ ′,τ)Dφ(Xi,Li)

= lim
i→∞

∫
[τ ′,τ)

DHφ(Xi,Li)
=

∫
[τ ′,τ)

DHφ.

Let R be the set consisting of subsets of R which can be written as a finite sum

of half open intervals of finite length: A ∈ R iff A =
∪k

i=1[τ
′
i , τi), where we may

assume [τ ′i , τi) are disjoint each other. For A ∈ R, we write it by a disjoint sum

A =
∪k

i=1[τ
′
i , τi) and we put

(77)

∫
1ADφ :=

k∑
i=1

∫
1[τ ′

i ,τi)
Dφ.

For φ = φ(X ,L), we have∫
1ADφ(X ,L)

=
∑

E⊂X0

ordEX0

∫
A

DH(E,L|E).δvE .

We also have

lim
i→∞

∫
1ADφi =

∫
1ADφ

for any convergent decreasing net φi ↘ φ in E1NA(X,L).
For a non-negative continuous function g on XNA, we put

(78) Iφ,A(g) :=

∫
XNA

g

∫
1ADφ ≥ 0.

By Lemma 3.72 below, the assignment A 7→ Iφ,A(g) satisfies the sigma additivity.
Thus by Carathéodory’s extension theorem, the following outer measure defines a
finite Borel measure on R:

(79) νφ,g(B) := Iφ,B(g) := inf
{ ∞∑

i=1

∫
XNA

g

∫
1AiDφ

∣∣∣ B ⊂ ∞∪
i=1

Ai, Ai ∈ R
}
.

We have Iφ,B(1) =
∫
B
νφ,1 =

∫
B
DHφ, as it holds for B ∈ R and νφ,1,DHφ are

outer regular by the finiteness. (Recall any open set in R can be expressed as a
countable sum of Ai ∈ R. )

For a non-negative Borel measurable function χ on R, we put

(80) Iφ,χ(g) :=

∫
R
χνφ,g.

Since νφ,g ≤ sup |g| ·DHφ by Iφ,A(g) ≤ sup|g| · Iφ,A(1), we have

0 ≤ Iφ,χ(g) ≤ sup |g|
∫
χDHφ.

We obviously have Iφ,χ′(g) ≤ Iφ,χ(g) for χ
′ ≤ χ. By the monotone convergence the-

orem, we have Iφ,χi(g)↗ Iφ,χ(g) for any increasing pointwise convergent sequence
χi ↗ χ of non-negative Borel measurable functions.
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Now suppose
∫
R χDHφ < ∞, then by Lemma 3.74 below, Iφ,χ extends to a

positive bounded linear function on C0(XNA) in a canonical way. Therefore, by
Riesz–Markov–Kakutani representation theorem, we get a Radon measure on XNA

which we denote by
∫
χDφ such that

Iφ,χ(g) =

∫
XNA

g

∫
χDφ.

The property (2)–(4) on the measure
∫
χDφ follows immediately from the con-

struction. The first property (1) follows by∫
XNA

g

∫
1BDφ(X ,L)

= inf
{ ∞∑

i=1

∫
XNA

g

∫
1Ai
Dφ(X ,L)

∣∣∣ B ⊂ ∞∪
i=1

Ai, Ai ∈ R
}

= inf
{ ∑

E⊂X0

g(vE)ordEX0

∞∑
i=1

∫
Ai

DH(E,L|E)

∣∣∣ B ⊂ ∞∪
i=1

Ai

}
=

∑
E⊂X0

g(vE)ordEX0

∫
B

DH(E,L|E)

and by the continuity with respect to increasing limit χi ↗ χ. Here we note Lemma
3.73 for the last equality.

To see the property (5), we note
∫
1RDφ = MA(φ) holds for φ ∈ HNA(X,L) by

the first property. Then the general case is reduced to the last property (6).
Let φi ↘ φ ∈ E1NA(X,L) be a convergent decreasing net. For a moderate χ, we

must show ∫
χDφi

→
∫
χDφ

in the weak sense. The claim is reduced to the following cases: (i) χ is tame, (ii) χ
is right continuous decreasing. We note the following. Here step function means a

function of the form
∑k

j=1 aj1Aj
for Aj ∈ R.

(i) If χ is tame, we have a sequence of step functions χj converging to χ uniformly
on (−∞, supφ0].

(ii) If χ is a right continuous decreasing function, in a similar way as in the proof
of Lemma 3.48, we can find an increasing sequence of step functions χj pointwisely
converging to χ on (−∞, supφ0].

Now we put

S :=
{
χ : Borel measurable function on (−∞, supφ0]

∣∣∣ ∫
χDφi

→
∫
χDφ

}
.

As we already know step functions are in S, the claim is reduced to the following
generalities.

(a) If χ is a uniform limit of some sequence χj ∈ S, then χ is in S. We can easily
show this similarly as the proof of Proposition 3.60.

(b) If χ is a pointwise limit of an increasing sequence {χj}j∈N ⊂ S and satisfies∫
R χDHφi

→
∫
R χDHφ, then χ is in S.

Firstly, for any non-negative g ∈ C0(XNA), we have

lim
i→∞

∫
XNA

g

∫
χDφi

≥ lim
i→∞

∫
XNA

g

∫
χjDφi

=

∫
XNA

g

∫
χjDφ.
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Thus by the property (3) of the measure (note χj are bounded from below on
(−∞, supφ0]), we get

lim
i→∞

∫
XNA

g

∫
χDφi ≥

∫
XNA

g

∫
χDφ.

It suffices to see the reverse inequality. Since
∫
R χjDHφ ↗

∫
R χDHφ by the

monotone convergence theorem, for any ε > 0 we can take j ∈ N large so that∫
R χDHφ ≤

∫
χjDHφ+ε. Fix such j and put χ̃ := χj . By the assumption, we have∫

R χDHφi →
∫
R χDHφ and

∫
χ̃DHφi →

∫
χ̃DHφ, so that we can take iε ∈ I so that∫

χDHφi ≤
∫
χDHφ + ε and

∫
χ̃DHφi ≤

∫
χ̃DHφ + ε for every i ≥ iε. Thus we get∫

χDHφi ≤
∫
χ̃DHφi + 3ε for i ≥ iε.

It follows that
∫
(χ − χ̃)Dφi

gives a non-negative measure on XNA whose total
mass

∫
XNA

∫
(χ− χ̃)Dφi

=
∫
(χ− χ̃)DHφi

is no greater than 3ε. Now since∫
XNA

g

∫
χDφi =

∫
XNA

g

∫
χ̃Dφi+

∫
XNA

g

∫
(χ−χ̃)Dφi ≤

∫
XNA

g

∫
χ̃Dφi+3ε·sup |g|,

we have

lim
i→∞

∫
XNA

g

∫
χDφi

≤
∫
XNA

g

∫
χ̃Dφ + 3ε · sup |g| ≤

∫
XNA

g

∫
χDφ + 3ε · sup |g|.

Now we can take ε arbitrary small and get

lim
i→∞

∫
XNA

g

∫
χDφi

≤
∫
XNA

g

∫
χDφ.

Therefore, we conclude

lim
i→∞

∫
XNA

g

∫
χDφi =

∫
XNA

g

∫
χDφ.

□

Lemma 3.72. For any φ ∈ E1NA(X,L) and g ∈ C0(XNA), the assignment

R→ R : A 7→ IA := Iφ,A(g)

given by (78) satisfies the sigma additivity. Namely, if {Ai}∞i=1 ⊂ R is a countable
disjoint collection with A :=

∪∞
i=1Ai ∈ R, then IA =

∑∞
i=1 IAi

Proof. We firstly note that for any A ∈ R and ϵ > 0, there exists A′ ∈ R such that
Ā′ ⊂ A and IA\A′ < ϵ. To see this, we may assume A = [τ ′, τ). Since

I[τ ′,τ) =

∫
XNA

g

∫
1[τ ′,τ)Dφ ≤ sup |g|(Fφ(τ

′)− Fφ(τ))

and Fφ is left continuous, we have
∫
XNA g

∫
1[τi,τ)Dφ → 0 for τi ↗ τ , so that

A′ := [τi, τ) satisfies the demand for large i. We also note if A ⊂
∪k

i=1Ai for

A,Ai ∈ R, then we have IA ≤
∑k

i=1 IAi
.

The rest of argument is just a reproduction of basic arguments in measure theory.
We prepare the following: if {Ai}∞i=1 ∈ R is a decreasing sequence with

∩∞
i=1Ai = ∅,

then we have IAi
→ 0. Indeed, suppose there exists δ > 0 such that IAi

≥ δ for all i.
We pick A′

i so that Ā′
i ⊂ Ai and IAi\A′

i
< δ/2i. Since Ā′

1 ∩
∩∞

i=2 Ā
′
i ⊂

∩∞
i=1Ei = ∅
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and Ā′
1 is compact, there exists N ∈ N+ such that

∩N
i=1A

′
i ⊂

∩N
i=1 Ā

′
i = ∅ by the

finite intersection property. Then since

AN = AN \
N∩
i=1

A′
i =

N∪
i=1

(AN \A′
i) ⊂

N∪
i=1

(Ai \A′
i),

we get

IAN
≤

N∑
i=1

IAi\A′
i
≤

N∑
i=1

δ/2i < δ,

which contradicts to the assumption IAi
≥ δ.

Now if {Ai}∞i=1 ⊂ R is a countable disjoint collection with A :=
∪∞

i=1Ai ∈ R,
then we compute

IA = I∪k
i=1 Ai

+ IA\
∪k

i=1 Ai
=

k∑
i=1

IAi
+ IA\

∪k
i=1 Ai

.

By taking the limit k →∞, we get IA =
∑∞

i=1 IAi
. □

Lemma 3.73. Let ν1, . . . , νk be finite Borel measures on R. For any Borel subset
B ⊂ R and ε > 0, there exists a countable disjoint collection {Ai}∞i=1 ⊂ R such
that B ⊂

∪∞
i=1Ai and

νj(B) ≥
∞∑
i=1

νj(Ai)− ε

for each j = 1, . . . , k.

Proof. As ν1, . . . , νk are outer regular, we can take {A1
i }∞i=1, . . . , {Ak

i }∞i=1 so that

νj(B) ≥
∞∑
i=1

νj(A
j
i )− ε

for each j = 1, . . . , k. By replacing Aj
i with Aj

i \
∪i−1

l=1 A
j
l , we may assume Aj

i

are disjoint with each other, for each j. Now consider the countable collection
{A1

i1
∩ · · · ∩Ak

ik
}∞i1,...,ik=1 and renumber it as {A′

i}∞i=1. We have

∞∪
i=1

A′
i =

∞∪
i1,...,ik=1

A1
i1 ∩ · · · ∩A

k
ik

=
∞∪

i1=1

A1
i1 ∩ · · · ∩

∞∪
ik=1

Ak
ik
⊃ B.

Put Ai := A′
i \

∪i−1
l=1 A

′
l, then Ai are disjoint, B ⊂

∪∞
i=1Ai and

∪∞
i=1Ai ⊂

∪∞
i=1A

j
i

for each j. Since νj are measures, we have

∞∑
i=1

νj(A
j
i ) = νj(

∞∪
i=1

Aj
i ) ≥ νj(

∞∪
i=1

Ai) =

∞∑
i=1

νj(Ai).

Thus we get

νj(B) ≥
∞∑
i=1

νj(Ai)− ε.

□

Lemma 3.74. For any φ ∈ E1(X,L) and any Borel measurable function χ on R,
Iφ,χ defined in (80) satisfies the following.

(1) Iφ,χ(ag) = aIφ,χ(g) for any non-negative a ∈ R and g ∈ C0(XNA).
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(2) Iφ,χ(g1 + g2) = Iφ,χ(g1) + Iφ,χ(g2) for non-negative g1, g2 ∈ C0(XNA).

Proof. Since Iφ,χ(g) =
∫
χνφ,g, it suffices to show νφ,ag = aνφ,g and νφ,g1+g2 =

νφ,g1 + νφ,g2 , which is equivalent to say that the claim holds for Iφ,B for every
Borel set B ⊂ R. We firstly note the claim holds for A ∈ R as Iφ,A(g) is defined
by the integration of g with respect to the measure

∫
1ADφ in (77).

Now we check Iφ,B(g1)+ Iφ,B(g2) ≥ Iφ,B(g1+g2). For ε > 0, we pick {Ai}∞i=1 ⊂
R as in Lemma 3.73 with respect to the measures νφ,g1 , νφ,g2 : B ⊂

∪∞
i=1Ai and

νφ,gj (B) ≥
∞∑
i=1

νφ,gj (Ai)− ε

for both j = 1, 2. Then we have

νφ,g1(B) + νφ,g2(B) ≥
∞∑
i=1

(νφ,g1(Ai) + νφ,g2(Ai))− 2ε.

Since the claim holds for Ai ∈ R, we obtain

νφ,g1(B) + νφ,g2(B) ≥
∞∑
i=1

νφ,g1+g2(Ai)− 2ε ≥ νφ,g1+g2(B)− 2ε.

As we took ε > 0 arbitrary, we obtain

νφ,g1(B) + νφ,g2(B) ≥ νφ,g1+g2(B).

The rest of the claim follows immediately from the definition of Iφ,B(g).
□

3.4.3. Tomographic expression of moment measure. For smooth χ, we have the
following formula. Here we use the dominant convergence theorem, so we employ
the countable regularization [BJ3, Theorem 9.11] for φ ∈ E1NA(X,L).

Proposition 3.75. Let χ be a non-negative compactly supported smooth func-
tion on R and φ ∈ E1NA(X,L). If either ψ ∈ C0(XNA) or ψ ∈ E1NA(X,L), then∫
XNA ψMA(φ ∧ τ) is a continuous function on τ and we have∫

XNA

ψ

∫
χDφ =

∫
R
dτ χ(τ)

d

dτ

∫
XNA

ψMA(φ ∧ τ) + ψ(vtriv)

∫
R
χDHφ,

where we identify d
dτ

∫
XNA ψMA(φ ∧ τ) with the distributional derivative.

The claim includes that ψ ∈ E1NA(X,L) is integrable with respect to
∫
χDφ.

Proof. We firstly note that the integrations make sense. The left hand side makes
sense for any usc function ψ. Indeed, usc function is Borel measurable and is
bounded from above by the compactness of XNA, so that we can define the inte-
gration by the integration of non-negative Borel measurable function∫

XNA

ψ

∫
χDφ := −

∫
XNA

(supψ − ψ)
∫
χDφ + supψ

∫
R
χDHφ,

though it may take value −∞ (ψ may be non-integrable).
As for the right hand side, we note

∫
XNA ψMA(φ∧τ) is continuous on τ thanks to

Proposition 4.4. In particular, −χ′(τ)
∫
XNA ψMA(φ ∧ τ) is integrable with respect

to dτ , hence the distributional derivative makes sense.
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We check the right hand side is continuous along decreasing sequences, applying
the bounded convergence theorem. Recall for any convergent decreasing net φi ↘
φ ∈ E1NA(X,L), we have∫

XNA

ψMA(φi ∧ τ)→
∫
XNA

ψMA(φ ∧ τ)

for each τ ∈ R. Since the support of −χ′ is compact, it suffices to get a uniform
bound

|
∫
XNA

ψMA(φi ∧ τ)| ≤ C

independent of τ and i.
When ψ ∈ C0(XNA), we have

|
∫
XNA

ψMA(φ ∧ τ)| ≤ (eL) · sup |ψ|.

Suppose ψ ∈ E1NA(X,L). Then by [BJ3, Lemma 5.28] (cf. [BJ1, Lemma 3.23]), we
have∣∣∣ ∫

XNA

ψMA(φ ∧ τ)− ψ(vtriv)(eL)
∣∣∣ = ∣∣∣ ∫

XNA

ψ(MA(φ ∧ τ)−MA(0))
∣∣∣

≤ CnI(φ ∧ τ)1/2 max{I(ψ), I(φ ∧ τ)}1/2.

Here we recall

I(φ) :=

∫
XNA

(φ(vtriv)− φ)MA(φ).

We have a uniform bound I(φ ∧ τ) ≤ Cφ independent of τ : for τ > supφ, we have
I(φ ∧ τ) = I(φ) for τ > supφ, and for τ ≤ supφ, using [BJ3, Corollary 5.27] and
the monotonicity of E, we get

I(φ ∧ τ) ≤ Cn(E(
φ ∧ τ
2

)− E(φ ∧ τ)
2

)

≤ Cn(E(
τ

2
)− E(φ− supφ+ τ)

2
) = −Cn

2
E(φ− supφ) =: Cφ.

Along φi ↘ φ, we have a uniform bound Cφ ≤ C. Therefore, we get

(81)
∣∣∣ ∫

XNA

ψMA(φ ∧ τ)
∣∣∣ ≤ |ψ(vtriv)|(eL) + Cn max{I(ψ), C}1/2C1/2

as desired.
(i) We firstly assume ψ ∈ C0(XNA). In this case, we already know the left

hand side is continuous along decreasing nets φi ↘ φ, so the problem is reduced
to the case φ = φ(X ,L) ∈ HNA(X,L), thanks to the countable regularization [BJ3,
Theorem 9.11].

We assume φ = φ(X ,L) ∈ HNA(X,L). Since∫
XNA

ψ

∫
χDφ =

∑
E⊂X0

ordEX0

∫
R
χDH(E,L|E)ψ(vE)

=
∑

E⊂X0

ordEX0(ψ(vE)− ψ(vtriv))
∫
R
χDH(E,L|E) + ψ(vtriv)

∫
R
χDHφ,
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it suffices to compare∑
E⊂X0

ordEX0(ψ(vE)− ψ(vtriv))
∫
R
χDH(E,L|E)

with ∫
R
dτ χ(τ)

d

dτ

∫
XNA

ψMA(φ ∧ τ).

By Proposition 3.70, we have

MA(φ ∧ τ) =
∑

E⊂X0

ordEX0

∫
(−∞,τ)

DH(E,L|E).δvE +

∫
[τ,∞)

DH(X ,L).δvtriv .

Then we compute∫
XNA

ψMA(φ ∧ τ) =
∑

E⊂X0

ordEX0

∫
(−∞,τ)

DH(E,L|E)ψ(vE) +

∫
[τ,∞)

DH(X ,L)ψ(vtriv)

=
∑

E⊂X0

ordEX0(ψ(vE)− ψ(vtriv))
∫
(−∞,τ)

DH(E,L|E)

+

∫
R
DH(X ,L)ψ(vtriv).

Now the claim follows by the following general identity∫
R
χ(τ)

d

dτ

(∫
(−∞,τ)

dµ
)
dτ =

∫
R
χdµ

for any finite Borel measure µ on R which can be written as a sum of an absolutely
continuous measure and finitely many Dirac masses.

(ii) Now we show the case ψ ∈ E1NA(X,L). Take a regularization {ψi}i∈I ⊂
HNA(X,L) so that ψi ↘ ψ. Thanks to the monotone convergence theorem (see
Proposition 3.18), we have∫

XNA

ψi

∫
χDφ ↘

∫
XNA

ψ

∫
χDφ,

so that the left hand side is continuous along decreasing nets ψi ↘ ψ. (At this point,
the limit may be −∞. ) Since we already show the claim for ψi ∈ HNA(X,L), it
suffices show the right hand side is continuous along decreasing sequences ψi ↘ ψ,
thanks to the countable regularization [BJ3, Theorem 9.11].

Similarly, we have∫
XNA

ψiMA(φ ∧ τ)↘
∫
XNA

ψMA(φ ∧ τ)

for each τ ∈ R. By the uniform bound (81) and the convergences ψi(vtriv) →
ψ(vtriv), I(ψi)→ I(ψ), we get∣∣∣ ∫

XNA

ψiMA(φ ∧ τ)
∣∣∣ ≤ C

independent of τ ∈ R and i. By the bounded convergence theorem, we get∫
R
dτ χ(τ)

d

dτ

∫
XNA

ψiMA(φ ∧ τ)→
∫
R
dτ χ(τ)

d

dτ

∫
XNA

ψMA(φ ∧ τ),

which proves the continuity of the right hand side along sequences ψi ↘ ψ. □
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4. Non-archimedean µ-entropy on EexpNA (X,L)

4.1. The metric space EexpNA (X,L).

4.1.1. Strong topology, d1-topology and dp-topology. As in [BJ2, Theorem 3.2], for
φ,φ′ ∈ C0 ∩ PSHNA(X,L), we consider the relative spectral measure

(82) DHφ,φ′ := lim
m→∞

1

mn

Nm∑
i=1

δ
λφ
i (s)/m−λφ′

i (s)/m
,

using a codiagonal basis s for φ,φ′. Since Fλ
φRm/Fλ+

φ Rm = ⟨si | λφi (s) = λ⟩, we
have

DHφ,φtriv
= DHφ

for φ ∈ C0 ∩ PSHNA(X,L).
We firstly review the Lp-distance on HNA(X,L) introduced in [BJ2]: for 1 ≤

p <∞, we put

(83) dp(φ,φ
′) :=

(∫
R
|t|pDHφ,φ′

)1/p

.

As observed in [BJ2], this defines a distance on HNA(X,L) (compare Proposition
4.8).

Lemma 4.1. For every φ,φ′ ∈ HNA(X,L), we have

(eL)−1d1(φ,φ
′) ≤ (eL)−1/pdp(φ,φ

′),

dr(φ,φ
′)r(q−p) ≤ dp(φ,φ′)p(q−r)dq(φ,φ

′)q(r−p)

for 1 ≤ p ≤ r ≤ q <∞.

Proof. These are consequences of Hölder’s inequality: as for the second inqeuality,
we put α := q−r

q−p , then pα+ q(1− α) = r, so∫
R
|t|rDHφ,φ′ ≤

(∫
R
|t|pDHφ,φ′

)1/p·pα(∫
R
|t|qDHφ,φ′

)1/q·q(1−α)

.

□

For general φ,φ′ ∈ E1NA(X,L), take a regularization φi ↘ φ,φ′
i ↘ φ so that

φi, φ
′ ∈ HNA(X,L) and put

d1(φ,φ
′) := lim

i→∞
d1(φi, φ

′
i).

The limit is independent of the choice of the regularization as shown in the proof of
[BJ4, Theorem 5.4]. We will observe the same construction for another functional
dexp in Proposition 4.10. In [BJ4], the distance d1 is defined in a slightly different
way:

d1(φ,φ
′) = inf{(E(φ)− E(φ̃)) + (E(φ′)− E(φ̃)) | φ,φ′ ≥ φ̃ ∈ HNA(X,L)},

which is modeled on the formula

d1(φ,φ
′) = (E(φ)− E(φ ∧ φ′)) + (E(φ′)− E(φ ∧ φ′))

under the assumption on the existence of φ∧φ′ or the continuity of envelopes. The
limit d1 obviously defines a peudo-distance on E1NA(X,L): d1 satisfies all the axiom
of distance except for d1(φ,φ

′)⇒ φ = φ′.
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To check that d1 is a distance, we compare d1 with the following quasi-distance
Ī from [BJ3]: for φ,φ′ ∈ E1NA(X,L), we put

I(φ,φ′) :=

∫
XNA

(φ− φ′)(MA(φ)−MA(φ′)),(84)

Ī(φ,φ′) := I(φ,φ′) + (eL)| supφ− supφ′|.(85)

We note our d1 and Ī are (eL) times of those in [BJ3, BJ4] due to our normalization
of MA and DH. We have φ = φ′ iff Ī(φ,φ′) = 0 by [BJ3, Corollary 7.4]. It is
proved in [BJ3, Theorem 9.4] that the strong convergence φi → φ in E1NA(X,L) is
equivalent to Ī(φi, φ)→ 0.

Proposition 4.2 (Lemma 5.5 in [BJ4]). We have a positive constant Cn depending
only on the dimension n of X such that

C−1
n Ī(φ,φ′) ≤ d1(φ,φ′) ≤ CnĪ(φ,φ

′)

for every φ,φ′ ∈ E1NA(X,L).

It follows that d1 is a distance on E1NA(X,L), and the d1-topology is equivalent
to the strong topology.

4.1.2. Rooftops in finite energy class.

Proposition 4.3. Suppose the rooftop φ∧ψ exists in C0∩PSHNA(X,L) for every
φ,φ′ ∈ HNA(X,L). Then for φ,φ′ ∈ E1NA(X,L), the rooftop φ ∧ φ′ exists in
E1NA(X,L).

To show the claim, we use the metric d1 on E1NA(X,L). Now for φ,φ′, φ′′ ∈
HNA(X,L), suppose φ ∧ φ′ and φ ∧ φ′′ exists in C0 ∩ PSHNA(X,L), then using
Fφ∧φ′ = Fφ ∩ Fφ′ (see Proposition 3.43), we easily obtain

(86) d1(φ ∧ φ′, φ ∧ φ′′) ≤ d1(φ′, φ′′)

in the same way as in Lemma 4.24. Then passing to the limit along decreasing nets,
we get this inequality for general φ,φ′, φ′′ ∈ E1NA(X,L), under the assumption of
the proposition.

Proof. Take decreasing nets {φi}i∈I , {φ′
j}j∈J ∈ HNA(X,L) pointwisely converging

to φ,φ′ ∈ E1NA(X,L), respectively. Then for i, k ∈ I and j, l ∈ J , we have

d1(φi ∧ φ′
j , φk ∧ φ′

l) ≤ d1(φi ∧ φ′
j , φi ∧ φ′

l) + d1(φi ∧ φ′
l, φk ∧ φ′

l)

≤ d1(φ′
j , φ

′
l) + d1(φi, φk),

so that φi∧φ′
j is a Cauchy net in E1NA(X,L). It follows that φi∧φ′

j is a decreasing

d1-Cauchy net, so that it converges pointwisely to some φ′′ ∈ E1NA(X,L). (We note
the completeness for general Cauchy net is equivalent to the continuity of envelopes
as proved in [BJ4], however, the completeness for decreasing Cauchy net does not
need the continuity of envelopes. Compare Proposition 4.21. ) Then by Proposition
3.41, φ′′ is the rooftop φ ∧ φ′. □

Proposition 4.4. If φi → φ,φ′
j → φ′ strongly in E1NA(X,L) and φi ∧ φ′

j , φ ∧ φ′

exists in E1NA(X,L), then φi ∧ φ′
j → φ ∧ φ′ strongly in E1NA(X,L).
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Proof. By (86), we have

d1(φi∧φ′
j , φ∧φ′) ≤ d1(φi∧φ′

j , φi∧φ′)+d1(φi∧φ′, φ∧φ′) ≤ d1(φ′
j , φ

′)+d1(φi, φ).

The claim follows by the equivalence of d1-convergence and strong convergence
proved in [BJ4]. □

In particular, for any strongly convergent net φi → φ ∈ E1NA(X,L) and τi → τ ∈
R, we have strong convergence φi ∧ τi → φ ∧ τ ∈ E1NA(X,L).

4.1.3. A metric structure on the space EexpNA (X,L). Now we introduce the distance
dexp modeled on Luxemburg norm in Orlicz analysis. For φ,φ′ ∈ HNA(X,L), we
put

(87) dexp(φ,φ
′) := inf

{
β ∈ (0,∞)

∣∣∣ ∫
R
(e|t/β| − 1)DHφ,φ′ ≤ 1

}
.

We note β(e|t/β| − 1) ≤ β′(e|t/β
′| − 1) for β ≥ β′ by convexity. In particular, we

have

(88) dexp(φ,φ
′) ≤ ρ−1 max{1,

∫
R
(e|ρt| − 1)DHφ,φ′}

for any ρ > 0.

Proposition 4.5. For 1 ≤ p <∞ and φ,φ′ ∈ HNA(X,L), we have

dp(φ,φ
′) ≤ ⌈p⌉ · dexp(φ,φ′).

Proof. Since |t/β|p/⌈p⌉! ≤ |t/β|⌊p⌋/⌊p⌋! + |t/β|⌈p⌉/⌈p⌉! ≤ e|t/β| − 1, we have∫
R
|t/β|pDHφ,φ′ ≤ ⌈p⌉!

for β > dexp(φ,φ
′). Thus we get dp(φ,φ

′) ≤ (⌈p⌉!)1/pβ ≤ (⌈p⌉!)1/⌊p⌋β ≤ ⌈p⌉ · β by

⌈p⌉! · ⌈p⌉ ≤ ⌈p⌉⌈p⌉. Taking the limit β ↘ dexp(φ,φ
′), we obtain the claim. □

To see the triangle inequality on dexp, we introduce the following norm on RNm :

χm(x1, . . . , xN ) := inf
{
β ∈ (0,∞)

∣∣∣ 1

mn

Nm∑
i=1

(e|xi/mβ| − 1) ≤ 1
}
.

Using the convexity of Φm(t) = e|t/m| − 1, we can easily check that χm defines
an SN -invariant norm on RNm . This is known as Luxemburg norm on the finite
set {1, . . . , Nm} with respect to the Young weight Φm, which is a basic material in
Orlicz analysis.

Remark 4.6. The condition limt→0 Φm(t)/t = 0 usually assumed for the duality
on Orlicz space is not used in this article. We remark that one may replace the
Young weight e|t| − 1 with Φ(t) = e|t| − |t| − 1, of which we have the non-negative
convex conjugate Ψ(t) = (|t|+ 1) log(|t|+ 1) + |t| = O(|t| log |t|). This would have
an advantage for applying duality of Orlicz spaces. We put

d̃exp(φ,φ
′) := inf

{
β ∈ (0,∞)

∣∣∣ ∫
R
(e|t/β| − |t/β| − 1)DHφ,φ′ ≤ 1

}
.
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By e|t/β| − |t/β| − 1 ≤ e|t/β| − 1, we have d̃exp ≤ dexp. Conversely, since |t/β|2/2 ≤
e|t/β| − |t/β| − 1, we have∫

R
|t/β|DHφ,φ′ ≤

√
(eL)

∫
R
|t/β|2DHφ,φ′ ≤

√
2(eL)

∫
R
(e|t/β| − |t/β| − 1)DHφ,φ′ .

The convexity implies e|t/rβ| − |t/rβ| − 1 ≤ r−1(e|t/β| − |t/β| − 1) for r ≥ 1, hence
we have∫

R
(e|t/rβ| − |t/rβ| − 1)DHφ,φ′ ≤ r−1

∫
R
(e|t/β| − |t/β| − 1)DHφ,φ′ ≤ r−1

for any β > d̃exp(φ,φ
′). In particular, we have∫

R
|t/rβ|DHφ,φ′ ≤

√
2(eL)r−1,

so that we get ∫
R
(e|t/rβ| − 1)DHφ,φ′ ≤

√
2(eL)r−1 + r−1.

Put r := max{2, 8(eL)}, then we obtain∫
R
(e|t/rβ| − 1)DHφ,φ′ ≤ 1.

This implies dexp ≤ rβ. Taking the limit β ↘ d̃exp, we get dexp ≤ rd̃exp for the

fixed constant r. Therefore, dexp and d̃exp will define the same uniform structure.

For each m, take a codiagonal basis sm of Rm for φ,φ′ and put

dmexp(∥ · ∥φm, ∥ · ∥φ
′

m ) := χm(λ(∥ · ∥φm, ∥ · ∥φ
′

m ))

= inf
{
β ∈ (0,∞)

∣∣∣ 1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/mβ| − 1) ≤ 1
}
.

Then thanks to [BE, Theorem 3.1], we have the following triangle inequality.

(89) dmexp(∥ · ∥φm, ∥ · ∥φ
′′

m ) ≤ dmexp(∥ · ∥φm, ∥ · ∥φ
′

m ) + dmexp(∥ · ∥φ
′

m , ∥ · ∥φ
′′

m ).

Lemma 4.7. For φ,φ′ ∈ HNA(X,L), we have

lim
m→∞

dmexp(∥ · ∥φm, ∥ · ∥φ
′

m ) = dexp(φ,φ
′).

Proof. Suppose β′ > dexp(φ,φ
′), then we have∫
R
(e|t/β

′| − 1)DHφ,φ′ ≤ 1.

It follows that for any ε > 0, there exists mε such that for every m ≥ mε we have

1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/mβ′| − 1) ≤ 1 + ε.

Then for m ≥ mε, we get

1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/m(1+ε)β′|−1) ≤ 1

mn

Nm∑
i=1

1

1 + ε
(e|(λ

φ
i (sm)−λφ′

i (sm))/mβ′|−1) ≤ 1
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by convexity. It follows that

lim
i→∞

dmexp(∥ · ∥φm, ∥ · ∥φ
′

m ) ≤ (1 + ε)β′.

Taking the limits ε↘ 0, β′ ↘ dexp(φ,φ
′), we get

lim
m→∞

dmexp(∥ · ∥φm, ∥ · ∥φ
′

m ) ≤ dexp(φ,φ′).

Next we suppose β < dexp(φ,φ
′), then we have∫

R
(e|t/β| − 1)DHφ,φ′ ≥ 1 + δ

for some δ > 0. Taking sufficiently large m, we can assume

m−n
Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/mβ| − 1) ≥ 1 + δ/2.

Thus we have β < dmexp(φ,φ
′). Taking the limit β ↗ dexp(∥ · ∥φm, ∥ · ∥φ

′

m ), we get

dexp(φ,φ
′) ≤ lim

m→∞
dmexp(∥ · ∥φm, ∥ · ∥φ

′

m ).

□

Proposition 4.8. dexp is a distance on HNA(X,L).

Proof. Since DHφ,φ′ = δ0 iff φ = φ′, we have dexp(φ,φ
′) = 0 iff φ = φ′. Since

DHφ,φ′ = (t 7→ −t)∗DHφ′,φ, we have dexp(φ,φ
′) = dexp(φ

′, φ). Thanks to the
triangle inequality on dmexp and the above lemma, we get dexp(φ,φ

′′) ≤ dexp(φ,φ′)+
dexp(φ

′, φ′′). □

We will extend the distance dexp to the space EexpNA (X,L) of our interest and
show its completeness. We follow the steps in [Dar], where the archimedean case
is treated. To be precise, the Young weight Φ(t) = e|t| − 1 does not satisfy the
W+

p -condition he assumed in his argument, so Eexp(X,L) is not treated even in
the archimedean case, however, we can extend many of his results to such general
Young weights as he remarked.

We make efficient use of the assumption that Eexp(φ;ρ) > −∞ for every ρ > 0
in the following lemma. This is reminiscent of the fact that a function in the
Orlicz space LΦ, which consists of functions satisfying

∫
Φ(|f |/β)dµ <∞ for some

β > 0, can be approximated by simple functions with respect to the LΦ-norm iff∫
Φ(|f |/β)dµ < ∞ for every β > 0. This lemma is the key tool for the extension

of the distance.

Lemma 4.9. Let {φi}i∈I ⊂ HNA(X,L) be a decreasing net pointwisely converging
to φ ∈ EexpNA (X,L). Then for every ε > 0, there exists k ∈ I such that dexp(φi, φj) ≤
ε for every i, j ≥ k.

Proof. For φ,φ′ ∈ HNA(X,L) with φ ≤ φ′, we have the following estimate

(90)

∫
R
(e|t/β| − 1)DHφ,φ′ ≤

(E(φ′)− E(φ)

4β/3

)1/4

(−esupφ;2/βEexp(φ;2/β))
3/4.
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The claim is a consequence of this estimate. Indeed, since 0 < −Eexp(φi;2/β) ≤
−Eexp(φ;2/β) <∞ and supφi ≤ supφ0 =: c (note c;2/β = 2c/β), we get∫

R
(e|t/β| − 1)DHφi,φj

≤
( (−e2c/βEexp(φ;2/β))

3

4β/3
|E(φj)− E(φi)|

)1/4

.

Since we have limi→∞E(φi) = E(φ), for every ε > 0 we can take large kε so that

|E(φj)− E(φi)| ≤
4ε

3
(−e−2c/εEexp(φ;2/ε))

−3

for every i, j ≥ kε. Then by the above inequality, we get∫
R
(e|t/ε| − 1)DHφi,φj

≤ 1,

so that dexp(φi, φj) ≤ ε for every i, j ≥ kβ .
Now we show the estimate (90). Since φ ≤ φ′, we have λφi (s) ≤ λφ

′

i (s). Both
sides of the inequality is invariant under the replacement φ 7→ φ − c, φ′ 7→ φ′ − c,
so that we may assume φ′ ≤ 0. It follows that 0 ≤ λφ

′

i (s) − λφi (s) ≤ −λ
φ
i (s) and

1 ≤ e− supφ. Using ex − 1 ≤ xex for x ≥ 0 and Cauchy–Schwarz inequality, we
compute∫
R
(e|t/β| − 1)DHφ,φ′ = lim

m→∞

1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/βm| − 1)

≤ lim
m→∞

1

mn

Nm∑
i=1

|(λφi (sm)− λφ
′

i (sm))/βm| · e|(λ
φ
i (sm)−λφ′

i (sm))/βm|

≤ lim
m→∞

( 1

mn

Nm∑
i=1

|(λφi (sm)− λφ
′

i (sm))/βm|2
)1/2

· lim
m→∞

( 1

mn

Nm∑
i=1

e2|(λ
φ
i (sm)−λφ′

i (sm))/βm|
)1/2

≤ lim
m→∞

β−1
( 1

mn

Nm∑
i=1

λφ
′

i (sm)/m− 1

mn

Nm∑
i=1

λφi (sm)/m
)1/4

· lim
m→∞

( 1

mn

Nm∑
i=1

(−λφi (sm)/m)3
)1/4

· lim
m→∞

( 1

mn

Nm∑
i=1

e−2λφ
i (sm)/βm

)1/2

= (23β/3!)−1/4(E(φ′)− E(φ))1/4(

∫
R
−(2t/β)3/3!DHφ)

1/4(−Eexp(φ;2/β))
1/2

≤ (4β/3)−1/4(E(φ′)− E(φ))1/4(−Eexp(φ;2/β))
3/4.

□

The following proof traces the argument in [Dar], where the archimedean ana-
logue is studied. We exhibit it here for the readers convenience.
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Proposition 4.10. Let {φi}i∈I , {ψj}j∈J ⊂ H(X,L) be decreasing nets pointwisely
converging to φ,ψ ∈ EexpNA (X,L), respectively. Then the limit

lim
(i,j)→∞

dexp(φi, ψj)

exists as a finite value depending only on φ,ψ.
Namely, there exists ∆ ∈ R depending only on φ,ψ such that for every ε > 0

there exists (iε, jε) ∈ I × J such that

|dexp(φi, ψj)−∆| < ε

for every i ≥ i0 and j ≥ j0.

Proof. Thanks to the triangle inequality and the above lemma, for any ε > 0 there
exists (iε, jε) ∈ I × J such that

|dexp(φi, ψj)− dexp(φk, ψl)| ≤ dexp(φi, φk) + dexp(ψj , ψl) ≤ 2ε

for every (i, j), (k, l) ≥ (iε, jε). Thus the net {dexp(φi, ψj)}(i,j)∈I×J is Cauchy, so
it converges.

To see the independence, we take other decreasing nets {φ′
i′}i′∈I′ , {ψ′

j′}j′∈J′

converging to φ,φ′, respectively. Put ∆ := lim(i,j)→∞ dexp(φi, ψj) and ∆′ :=
lim(i′,j′)→∞ dexp(φ

′
i′ , ψ

′
j′). For β > 0, take (iβ , jβ) ∈ I × J and (i′β , j

′
β) ∈ I ′ × J ′ so

that |∆ − dexp(φi, ψj)| ≤ β and |∆′ − dexp(φ′
i′ , ψ

′
j′)| ≤ β for every (i, j) ≥ (iβ , jβ)

and (i′, j′) ≥ (i′β , j
′
β), respectively. By the triangle inequality, we have

|∆−∆′| ≤ |dexp(φi, ψj)− dexp(φ′
i′ , ψ

′
j′)|+ 2β

≤ dexp(φi, φ
′
i′) + dexp(ψj , ψ

′
j′) + 2β

for every (i, i′) ≥ (iβ , i
′
β) ∈ I × I ′ and (j, j′) ≥ (jβ , j

′
β) ∈ J × J ′. It suffices to show

that there exists (k, k′) ≥ (iβ , i
′
β) and (l, l′) ≥ (jβ , j

′
β) such that dexp(φk, φ

′
k′) ≤ 2β

and dexp(ψl, ψ
′
l′) ≤ 2β.

By Lemma 3.19, for any ε > 0 and i ≥ iβ , there exists i′i,ε ≥ i′β such that

φ′
i′ ≤ φi + ε for every i′ ≥ i′i,ε. Then by (90), we get∫
R
(e|t/β| − 1)DHφi+ε,φ′

i′
≤

(E(φi + ε)− E(φ′
i′)

4β/3

)1/4

(−esupφi;2/βEexp(φi;2/β))
3/4

≤
(E(φi)− E(φ′

i′) + ε(eL)

4β/3

)1/4

(−esupφ0;2/βEexp(φ;2/β))
3/4.

Now for β > 0, put

εβ := min{β, β

3(eL)
(−esupφ0;2/βEexp(φ;2/β))

−3}

and take large kβ ≥ iβ so that

|E(φkβ
)− E(φ)| ≤ β

3
(−esupφ0;2/βEexp(φ;2/β))

−3.

Then take large k′β ≥ i′kβ ,εβ
≥ i′β so that

|E(φ)− E(φ′
k′
β
)| ≤ β

3
(−esupφ0;2/βEexp(φ;2/β))

−3.

Then we get ∫
R
(e|t/β| − 1)DHφi+ε,φ′

i′
≤ 1,
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which implies dexp(φkβ
+ εβ , φ

′
k′
β
) ≤ β. Therefore we get

dexp(φkβ
, φ′

k′
β
) ≤ dexp(φkβ

, φkβ
+ εβ) + dexp(φkβ

+ εβ , φ
′
k′
β
) ≤ εβ + β ≤ 2β

as desired. □
Now for φ,ψ ∈ EexpNA (X,L), we put

(91) dexp(φ,ψ) := lim
(i,j)→∞

dexp(φi, ψj)

by taking pointwisely convergent decreasing nets φi ↘ φ, ψj ↘ ψ. To show that
dexp is a distance on EexpNA (X,L), it suffices to show that dexp(φ,φ

′) = 0 iff φ = φ′:
the triangle inequality and the reflexivity follows readily from the definition. To
check this, we note the following.

Remark 4.11. By a similar argument, we can also extend dp to the space

EpNA(X,L) := {φ ∈ PSHNA(X,L) |
∫
R
|t|pDHφ <∞}.

We have EexpNA (X,L) ⊂ EpNA(X,L) for every 1 ≤ p < ∞. The following inequalities
are inherited:

• (eL)−1 · d1(φ,φ′) ≤ (eL)−1/p · dp(φ,φ′) for φ,φ′ ∈ EpNA(X,L),

• dr(φ,φ′)r(q−p) ≤ dp(φ,φ
′)p(q−r)dq(φ,φ

′)q(r−p) for φ,φ′ ∈ EqNA(X,L) and
p ≤ r ≤ q.
• dp(φ,φ′) ≤ ⌈p⌉ · dexp(φ,φ′) for φ,φ′ ∈ EexpNA (X,L).

It follows that d•(φ,φ
′) = 0 for φ,φ′ ∈ E•NA(X,L) and • = p, exp implies

d1(φ,φ
′) = 0, hence φ = φ′ thanks to Proposition 4.2. Therefore, we conclude

the following.

Proposition 4.12. For • = p, exp, the pseudo-distance d• defined by (91) gives a
distance on E•NA(X,L).

By the above remark, dexp-convergence implies dp-convergence. Conversely, we
have the following.

Proposition 4.13. For {φi}i∈I , φ ∈ EexpNA (X,L), uniform convergence φi → φ
implies dexp-convergence.

Proof. For any ε > 0, there exists sufficiently large i satisfying φ− ε ≤ φi ≤ φ+ ε.
Then we get

dexp(φi, φ) ≤ dexp(φi, φ− ε) + dexp(φ− ε, φ) ≤ dexp(φ+ ε, φ− ε) + ε(eL) = 3ε(eL).

Here we used dexp(φ,φ
′′) ≤ dexp(φ,φ′) for φ ≥ φ′ ≥ φ′′ ∈ EexpNA (X,L), which is just

an exercise. □
4.1.4. The distance dexp with anchor in HNA(X,L). Following the steps in section
3.3.2, we can introduce the relative moment energy Eχ(φ,φ

′) for φ ∈ PSHNA(X,L)
and φ′ ∈ HNA(X,L) with respect to an increasing right continuous function χ:

Eχ(φ,φ
′) := inf

{∫
R
χDHφ̃,φ′

∣∣∣ φ ≤ φ̃ ∈ HNA(X,L)
}
.

It is monotonic and continuous along decreasing nets on the first variable. If χ is
concave, we have

Eχ(φ,φ
′) ≥ Eχ(φ;2) +

1

2
χ(−2 supφ)(eL),
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so that Eχ(·, φ′) is finite on EχNA(X,L).
Similarly, as in section 3.3.4, we can define the relative Duistermaat–Heckman

measure DHφ,φ′ for φ ∈ PSHNA(X,L) and φ
′ ∈ HNA(X,L). For φ ∈ ENA(X,L), we

have
∫
R DHφ,φ′ = (eL) and Eχ(φ,φ

′) =
∫
R χDHφ,φ′ for increasing right continuous

function χ. In particular,
∫
R χDHφ,φ′ is finite on EχNA(X,L) and we have

lim
i→∞

∫
R
χDHφi,φ′ =

∫
R
χDHφ,φ′

for any convergent decreasing net φi ↘ φ ∈ ENA(X,L). Slight generally, we can
show the same convergence for moderate χ in the sense of Definition 3.64. In
particular,

lim
i→∞

∫
R
(e|t/β| − 1)DHφi,φ′ =

∫
R
(e|t/β| − 1)DHφ,φ′

for any convergent decreasing net φi ↘ φ ∈ ENA(X,L).
Now we show the following formula on dexp(φ,φ

′) with an anchor φ′ ∈ HNA(X,L).
This helps us to simplify some arguments in the rest of this article.

Proposition 4.14. For φ ∈ EexpNA (X,L) and φ′ ∈ HNA(X,L), we have

dexp(φ,φ
′) = inf

{
β > 0

∣∣∣ ∫
R
(e|t/β| − 1)DHφ,φ′ ≤ 1

}
Proof. Take a decreasing net {φi}i∈I ⊂ HNA(X,L) converging to φ ∈ EexpNA (X,L).
We have limi→∞ dexp(φi, φ

′) = dexp(φ,φ
′) by the definition of the metric. It follows

that for β > dexp(φ,φ
′) we can take iβ so that dexp(φi, φ

′) < β for every i ≥ iβ .

Then since
∫
R(e

|t/β| − 1)DHφi,φ′ ≤ 1 for i ≥ iβ , we get∫
R
(e|t/β| − 1)DHφ,φ′ = lim

i→∞

∫
R
(e|t/β| − 1)DHφi,φ′ ≤ 1.

Thus we obtain

dexp(φ,φ
′) ≥ inf

{
β > 0

∣∣∣ ∫
R
(e|t/β| − 1)DHφ,φ′ ≤ 1

}
.

Conversely, take β′ < dexp(φ,φ
′). Take small ε > 0 so that (1 + ε)β′ <

dexp(φ,φ
′). Then we can find iβ′,ε so that (1+ε)β′ < dexp(φi, φ

′) for every i ≥ iβ′,ε.
Recall by convexity we have∫

R
(e|t/β

′| − 1)DHφi,φ′ ≥ (1 + ε)

∫
R
(e|t/(1+ε)β′| − 1)DHφi,φ′ > 1 + ε.

It follows that∫
R
(e|t/β

′| − 1)DHφ,φ′ = lim
i→∞

∫
R
(e|t/β

′| − 1)DHφi,φ′ ≥ 1 + ε > 1.

Thus for any β′ < dexp(φ,φ
′), we obtain

β′ ≤ inf
{
β > 0

∣∣∣ ∫
R
(e|t/β| − 1)DHφ,φ′ ≤ 1

}
.

Taking the limit β′ ↗ dexp(φ,φ
′), we obtain the reverse inequality. □

A similar argument shows the following.
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Lemma 4.15. For a net {φi}i∈I , φ ∈ EexpNA (X,L) and φ′ ∈ HNA(X,L), we have
dexp(φi, φ

′)→ dexp(φ,φ
′) if∫
R
e|t/β|DHφi,φ′ →

∫
R
e|t/β|DHφ,φ′

for every β > 0.

Proof. Firstly we show dexp(φ,φ
′) ≤ limi→∞ dexp(φi, φ). Take β < dexp(φ,φ

′).
Then we can take δ > 0 so that∫

R
(e|t/β| − 1)DHφ,φ′ ≥ 1 + δ.

By the assumption
∫
R e

|t/β|DHφi,φ′ →
∫
R e

|t/β|DHφ,φ′ , there exists i0 such that∫
R
e|t/β|DHφi,φ′ ≥ 1 +

δ

2

for every i ≥ i0, hence we get β < dexp(φi, φ
′) for every i ≥ i0. It follows that

β ≤ limi→∞ dexp(φi, φ
′). Taking the limit β ↗ dexp(φ,φ

′), we obtain the desired
estimate.

To see the reverse inequality, take β′ > dexp(φ,φ
′). Since∫

R
(e|t/β

′| − 1)DHφ,φ′ ≤ 1,

for any ε > 0 we can take iε so that∫
R
e|t/β

′|DHφi,φ′ ≤ 1 + ε

for every i ≥ iε. Now we again recall∫
R
(e|t/(1+ε)β′| − 1)DHφi,φ′ ≤ 1

1 + ε

∫
R
(e|t/β

′| − 1)DHφi,φ′ ≤ 1

by convexity. It follows that dexp(φi, φ
′) ≤ (1 + ε)β′ for every i ≥ iε, hence

limi→∞ dexp(φi, φ
′) ≤ (1+ ε)β′ for any ε > 0 and β′ > dexp(φ,φ

′). Thus we obtain

limi→∞ dexp(φi, φ) ≤ dexp(φ,φ′). □

4.1.5. Intermediates. We show the density of HNA(X,L) ⊂ EexpNA (X,L).

Proposition 4.16. For a decreasing net {φi}i∈I ⊂ EexpNA (X,L) pointwisely con-
verging to φ ∈ EexpNA (X,L), we have

dexp(φi, φ)→ 0.

In particular, HNA(X,L) is dense in EexpNA (X,L) with respect to dexp-topology.

Proof. Suppose firstly φi ∈ HNA(X,L). By Lemma 4.9, for any ε > 0 there ex-
ists kε such that dexp(φi, φj) < ε for all i, j ≥ kε. It follows that dexp(φi, φ) =
limj→∞ dexp(φi, φj) ≤ ε for i ≥ kε. Thus we get the claim in this case. In particu-
lar, HNA(X,L) is dense in EexpNA (X,L).

Now we study the general case φi ∈ EexpNA (X,L). As we already noted in the
beginning of section 4.1.4, we have∫

R
e|t/β|DHφi,φ′ →

∫
R
e|t/β|DHφ,φ′
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for any β > 0, φ′ ∈ HNA(X,L) and convergent decreasing sequence φi ↘ φ ∈
EexpNA (X,L). By Lemma 4.15, we get dexp(φi, φ

′) → dexp(φ,φ
′). By the above

argument, we can take φ′ ∈ HNA(X,L) so that dexp(φ,φ
′) ≤ ε for any ε > 0.

It follows that

lim dexp(φi, φ) ≤ lim dexp(φi, φ
′) + dexp(φ

′, φ) = 2dexp(φ,φ
′) ≤ 2ε

for any ε > 0. □

The following is a refinement of Proposition 4.10.

Corollary 4.17. Let {φi}i∈I , {ψj}j∈J ⊂ EexpNA (X,L) decreasing nets pointwisely
converging to φ,ψ ∈ EexpNA (X,L), respectively. Then we have

lim
(i,j)→∞

dexp(φi, ψj) = dexp(φ,ψ).

Proof. By the triangle inequality, we have

|dexp(φi, ψj)− dexp(φ,ψ)| ≤ dexp(φi, φ) + dexp(ψj , ψ),

so that the claim follows from the above proposition. □

The following will be used in the proposition below and in the proof of the
continuity of the exponential moment energy Eexp.

Proposition 4.18. For any ρ > 0, the exponential moment energy Eexp(φ;ρ) is
bounded on any dexp-Cauchy net.

Proof. We firstly note for φ ∈ EexpNA (X,L) and φ′ ∈ HNA(X,L)∫
R
(e|t/β| − 1)DHφ ≤

1

2

∫
R
(e2|t/β| − 1)DHφ,φ′ +

1

2

∫
R
(e2|t/β| − 1)DHφ′

by convexity and the continuity along decreasing nets φi ↘ φ.
Secondly, for φ,φ′ ∈ EexpNA (X,L) with dexp(φ,φ

′) < β/2, we note∫
R
(e|t/β| − 1)DHφ ≤

1

2
+

1

2

∫
R
(e2|t/β| − 1)DHφ′ .

Both sides are continuous along decreasing nets and the assumption dexp(φ,φ
′) <

β/2 is stable for dexp-small perturbation, so we may assume φ′ ∈ HNA(X,L), thanks
to the above proposition. Since dexp(φ,φ

′) < β/2, we have∫
R
(e2|t/β| − 1)DHφ,φ′ ≤ 1

by Proposition 4.14. This shows∫
R
(e|t/β| − 1)DHφ ≤

1

2

∫
R
(e2|t/β| − 1)DHφ,φ′ +

1

2

∫
R
(e2|t/β| − 1)DHφ′

≤ 1

2
+

1

2

∫
R
(e2|t/β| − 1)DHφ′

as desired.
Now let {φi}i∈I ⊂ EexpNA (X,L) be a Cauchy net. Take β = ρ−1 > 0. Since

0 ≤ −Eexp(φi;ρ) =
∫
R e

−t/βDHφi
≤

∫
R(e

|t/β| − 1)DHφi
+ (eL), it suffices to bound
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R(e

|t/β| − 1)DHφi
. Take kβ so that dexp(φi, φj) < β/2 for i, j ≥ kβ . Then by the

above argument, we get∫
R
(e|t/β| − 1)DHφi

≤ 1

2
+

1

2

∫
R
(e2|t/β| − 1)DHφkβ

for i ≥ kβ , which shows the boundedness. □

Question 4.19. Does there exist a dexp-bounded set with unbounded Eexp(φ;ρ)?

Remark 4.20. We have the following reverse implication: for any ρ > 0, the subset

{φ ∈ EexpNA (X,L) | supφ ≤ C, Eexp(φ;ρ) ≥ −C ′}

is dexp-bounded. Indeed, since∫
R
(e|ρt| − 1)DHφ ≤ −Eexp(φ;ρ) + (eL)(eρ supφ − 1) ≤ C ′ + (eL)(eρC − 1),

we get a bound on dexp(φ, 0) by the inequality (88).

We will use the following in the proof of the completeness of EexpNA (X,L).

Proposition 4.21. A decreasing net {φi}i∈I ⊂ EexpNA (X,L) has a limit φ ∈ EexpNA (X,L)
in dexp-topology if and only if Eexp(φi;ρ) is bounded for every ρ > 0. This is the
case in particular when φi is dexp-Cauchy.

Proof. Suppose {φi}i∈I is a decreasing net with bounded Eexp(φi;ρ). By the above
remark, it is dexp-bounded. Put c := supφ0. Since c ≥ φi, we have dexp(c, φi) ≥
dexp(c, supφi) = |c− supφi|/ log(1+ (eL)−1), so that φi(vtriv) = supφi is bounded
from below. It follows that φi is pointwisely convergent to a limit φ ∈ PSH(X,L).

Now since φi decreasingly converges to φ, we have Eexp(φi;ρ) → Eexp(φ;ρ).
Since Eexp(φi;ρ) is bounded for every ρ > 0, the limit Eexp(φ;ρ) is finite for every
ρ > 0, which shows φ ∈ EexpNA (X,L). Now dexp-convergence follows from Proposition
4.16. □

4.1.6. Completeness. Now we assume the continuity of envelopes holds for (X,L)
(see section 3.2.7) and show the completeness of (EexpNA (X,L), dexp). As we observed
in section 3.2.8, the rooftop φ ∧ φ′ exist under the continuity of envelopes.

Proposition 4.22. For φ,φ′ ∈ EexpNA (X,L), we have

Eexp(φ) + Eexp(φ
′) ≤ Eexp(φ ∧ φ′) ≤ min{Eexp(φ), Eexp(φ

′)}.

In particular, for φ,φ′ ∈ EexpNA (X,L), we have φ ∧ φ′ ∈ EexpNA (X,L).

Proof. As Eexp is continuous along decreasing nets, we may assume φ,φ′ ∈ HNA(X,L).

Take a codiagonal basis s of Rm for φ,φ′. Since λφ∧φ′

i (s) = min{λφi (s), λ
φ′

i (s)},
we have

max{
Nm∑
i=1

e−λφ
i (s),

Nm∑
i=1

e−λφ′
i (s)} ≤

Nm∑
i=1

e−λφ∧φ′
i (s) ≤

Nm∑
i=1

e−λφ
i (s) +

Nm∑
i=1

e−λφ′
i (s).

Taking the limit m→∞, we obtain the claim. □

Lemma 4.23. For φ,φ′ ∈ EexpNA (X,L), we have

max{dexp(φ,φ ∧ φ′), dexp(φ
′, φ ∧ φ′)} ≤ dexp(φ,φ′).
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Proof. As dexp is continuous along decreasing nets, we may assume φ,φ′ ∈ HNA(X,L)
(see also section 3.2.8). For each m, take a basis sm of Rm codiagonal for φ,φ′.

Since it is diagonal also for φ ∧ φ′ and λφ∧φ′

i (s) = min{λφi (s), λ
φ′

i (s)}, we have∫
R
(e|t/β| − 1)DHφ,φ∧φ′ = lim

m→∞

1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ∧φ′

i (sm))/βm| − 1)

= lim
m→∞

1

mn

Nm∑
i=1

(e|max{0,λφ
i (sm)−λφ′

i (sm)}/βm| − 1)

≤ lim
m→∞

1

mn

Nm∑
i=1

(e|(λ
φ
i (sm)−λφ′

i (sm))/βm| − 1)

=

∫
R
(e|t/β| − 1)DHφ,φ′ .

Thus we get

dexp(φ,φ
′) = inf

{
β
∣∣∣ ∫

R
(e|t/β| − 1)DHφ,φ′ ≤ 1

}
≥ inf

{
β
∣∣∣ ∫

R
(e|t/β| − 1)DHφ,φ∧φ′ ≤ 1

}
= dexp(φ,φ ∧ φ′)

for φ,φ′ ∈ HNA(X,L). The general case follows from the continuity along decreas-
ing nets. □

Lemma 4.24. For φ,φ′, φ′′ ∈ EexpNA (X,L), we have

dexp(φ ∧ φ′, φ ∧ φ′′) ≤ 2dexp(φ
′, φ′′).

When φ′′ ≤ φ′, we have

(92) dexp(φ ∧ φ′, φ ∧ φ′′) ≤ dexp(φ′, φ′′).

Proof. We firstly show the latter claim. We may assume φ,φ′, φ′′ ∈ HNA(X,L).
Let s′ be a basis which is codiagonal for φ∧φ′, φ′′ and is well ordered with respect
to (φ′, φ′′) and s be a basis which is codiagonal for φ′, φ′′ and is well ordered
with respect to (φ′, φ′′). Since φ ∧ φ′′ = (φ ∧ φ′) ∧ φ′′ by φ′′ ≤ φ′, s′ is also

diagonal with respect to φ ∧ φ′′. Since φ′′ ≤ φ′, we have λφ
′′

i (s′) ≤ λφ
′

i (s′) and

λφ∧φ′′

i (s′) ≤ λφ∧φ′

i (s′), so that we get

0 ≤ λφ∧φ′

i (s′)− λφ∧φ′′

i (s′)

= min{λφi (s
′), λφ

′

i (s′)} −min{λφi (s
′), λφ

′′

i (s′)}

≤ λφ
′

i (s′)− λφ
′′

i (s′).

(When λφi (s
′) ≤ λφ

′′

i (s′), we have λφi (s
′) ≤ λφ

′

i (s′), so that λφ∧φ′

i (s′)−λφ∧φ′′

i (s′) =

0 ≤ λφ
′

i (s′)− λφ
′′

i (s′) in this case. ) By Lemma 3.47, we have

λφ
′

i (s′)− λφ
′′

i (s′) ≤ λφ
′

i (s)− λφ
′′

i (s).
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Thus we can compute∫
R
(e|t/β| − 1)DHφ∧φ′,φ∧φ′′ = lim

m→∞

1

mn

Nm∑
i=1

(e|(λ
φ∧φ′
i (s′

m)−λφ∧φ′′
i (s′

m))/βm| − 1)

≤ lim
m→∞

1

mn

Nm∑
i=1

(e|(λ
φ′
i (sm)−λφ′′

i (sm))/βm| − 1)

=

∫
R
(e|t/β| − 1)DHφ′,φ′′ .

Thus we get

dexp(φ ∧ φ′, φ ∧ φ′′) = inf
{
β
∣∣∣ ∫

R
(e|t/β| − 1)DHφ∧φ′,φ∧φ′′ ≤ 1

}
≤ inf

{
β
∣∣∣ ∫

R
(e|t/β| − 1)DHφ′,φ′′ ≤ 1

}
= dexp(φ

′, φ′′).

Now we deal with the general case. Since φ′, φ′′ ≥ φ′ ∧ φ′′, we compute

dexp(φ ∧ φ′, φ ∧ φ′′) ≤ dexp(φ ∧ φ′, φ ∧ φ′ ∧ φ′′) + dexp(φ ∧ φ′ ∧ φ′′, φ ∧ φ′′)

≤ dexp(φ′, φ′ ∧ φ′′) + dexp(φ
′′, φ′ ∧ φ′′)

≤ 2dexp(φ
′, φ′′),

using (92) and the above lemma. □

In the proof of the completeness, we consider the limit of an increasing sequence
φi ∈ EexpNA (X,L). To ensure the existence of limit, we must assume the continuity
of envelopes.

Proposition 4.25. Assume the continuity of envelopes holds for (X,L). If {φi}i∈I

is a dexp-bounded increasing net in EexpNA (X,L), then we have a limit φ ∈ EexpNA (X,L)
in dexp-topology.

Proof. By Proposition 4.2 and the boundedness of d1 ≤ dexp, supφi is bounded.
By [BJ3, Proposition 4.48, Theorem 9.5] that φi converges to some φ ∈ E1NA(X,L)
in the strong topology. Since φ ≥ φi ∈ EexpNA (X,L), we have φ ∈ EexpNA (X,L). It
suffices to show dexp(φi, φ)→ 0. For β > 0, take ε > 0 so that( ε

4β/3

)1/4

(−esupφ;2/βEexp(φ0;2/β))
3/4 ≤ 1.

Take φ′ ∈ HNA(X,L) so that φ ≤ φ′ and dexp(φ,φ
′) ≤ ε/2. Then we have

E(φ′) − E(φ) = d1(φ
′, φ) ≤ dexp(φ,φ

′) ≤ ε/2. It follows that we can take iε so
that E(φ′) − E(φi) = (E(φ′) − E(φ)) + (E(φ) − E(φi)) ≤ ε for i ≥ iε. Since
φi ≤ φ′, we have∫

R
(e|t/β| − 1)DHφi,φ′ ≤

(E(φ′)− E(φi)

4β/3

)1/4

(−esupφiEexp(φi;2/β))
3/4

≤
( ε

4β/3

)1/4

(−esupφ;2/βEexp(φ0;2/β))
3/4 ≤ 1

by (90). It follows that dexp(φi, φ) ≤ dexp(φi, φ
′)+ dexp(φ

′, φ) ≤ β+ ε/2 for i ≥ iε.
Taking the limits i→∞ and ε→ 0, we get lim dexp(φi, φ) ≤ β for every β > 0, so

that lim dexp(φi, φ) = 0. □
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Now we show the completeness of the metric space (EexpNA (X,L), dexp). The proof
of the completeness of the archimedean Ep(X,L) in [Dar] adapts to our framework.

Theorem 4.26. Assume the continuity of envelopes holds for (X,L). Then the
metric space (EexpNA (X,L), dexp) is complete.

Proof. Take a Cauchy sequence {φi}i∈N in EexpNA (X,L). It suffices to show there
exists a limit φ ∈ EexpNA (X,L) in the metric topology. If there exists a subse-
quence {φj}j converging to some φ ∈ EexpNA (X, l) in the metric topology, then since
dexp(φi, φ) ≤ dexp(φi, φj) + dexp(φj , φ), the original sequence φi converges to φ.
Thus we may assume dexp(φi, φi+1) < 1/2i+1 by replacing the original sequence
with a subsequence. We construct the limit φ ∈ EexpNA (X,L) by two steps.

We put φ̂p
i := φi ∧ · · · ∧ φi+p ∈ EexpNA (X,L). Since φ̂p+1

i = φ̂p
i ∧ φi+p+1 ≤ φ̂p

i ,
{φ̂p

i }∞p=0 is a decreasing sequence for each i. We compute

dexp(φ̂
p
i , φ̂

p+1
i ) = dexp(φ̂

p
i ∧ φi+p, φ̂

p
i ∧ φi+p+1) ≤ 2dexp(φi+p, φi+p+1) ≤ 1/2i+p.

Then since

dexp(φi, φ̂
p
i ) ≤

p−1∑
q=0

dexp(φ
q
i , φ

q+1
i ) ≤ 1/2i,

the sequence {φ̂p
i }∞p=0 is a dexp-Cauchy decreasing sequence, hence it has a limit

φ̂i ∈ EexpNA (X,L) in the metric topology by Proposition 4.21.

Since φ̂p+1
i = φi ∧ φ̂p

i+1 ≤ φ̂
p
i+1, we have φ̂i ≤ φ̂i+1. We compute

dexp(φ̂i, φ̂i+1) = lim
p→∞

dexp(φ̂
p+1
i , φ̂p

i+1) = lim
p→∞

dexp(φi ∧ φ̂p
i+1, φi+1 ∧ φ̂p

i+1)

≤ 2dexp(φi, φi+1) ≤ 1/2i.

This shows dexp(φ̂0, φ̂i) ≤ 1, so that φ̂i is a dexp-bounded increasing sequence,
hence it admits a limit φ ∈ EexpNA (X,L) in the metric topology by Proposition 4.25,
under the assumption that the continuity of envelopes holds.

Finally, we compute

dexp(φ,φi) ≤ dexp(φ, φ̂i) + dexp(φ̂i, φi)

≤ dexp(φ, φ̂i) + lim
p→∞

dexp(φ̂
p
i , φi) ≤ 1/2i−1 + 1/2i,

so that we get dexp(φ,φi)→ 0. □

4.2. The non-archimedean µ-entropy. Now we are ready to extend the non-
archimedean µ-entropy µ̌λ

NA = µ̌NA + λσ̌ : HNA(X,L) → R to EexpNA (X,L). As we
observed in section 1.1.4, we can write µ̌NA as

µ̌NA(φ) = −2π
∫
XNA AX

∫
e−tDφ + EKX

exp (φ)∫∫
XNA e−tDφ

for φ ∈ HNA(X,L). To extend the functional, we must study the continuity of the
following with respect to the dexp-topology:

•
∫
R χDHφ for χ = e−t, te−t,

•
∫
e−tDφ.

As for EM
exp, we construct a continuous extension using a tomographic expression.

The key tools are tomographic expressions of these functionals.
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4.2.1. The continuity of Duistermaat–Heckman measure with respect to d1-topology.
We firstly observe the weak continuity of Duistermaat–Heckman measure with re-
spect to the strong topology.

Lemma 4.27. Let χ be a continuous function on R which has left bounded support,
i.e. χ(t) = 0 for every t ≪ 0. Then we have

∫
R χDHφi →

∫
R χDHφ if φi → φ ∈

E1NA(X,L) in d1.

Proof. Assume firstly χ is locally Lipschitz. Then for each T ∈ R, we have a
constant CT satisfying |χ(t) − χ(s)| ≤ CT |t − s| for every t, s ≤ T as χ. For
φ,φ′ ∈ HNA(X,L), we compute

|
∫
R
χDHφ −

∫
R
χDHφ′ | ≤ lim

m→∞

1

mn

Nm∑
i=1

|χ(λφi (s)/m)− χ(λφ
′

i (s)/m)|

≤ Cmax{φ(vtriv),φ′(vtriv)} lim
m→∞

1

mn

Nm∑
i=1

|λφi (s)/m− λ
φ′

i (s)/m|

= Cmax{φ(vtriv),φ′(vtriv)}d1(φ,φ
′).

For φ,φ′ ∈ E1NA(X,L), taking convergent decreasing nets φi ↘ φ,φ′
i ↘ φ′ so that

φi, φ
′
i ∈ HNA(X,L) and passing to the limit, we get

|
∫
R
χDHφ −

∫
R
χDHφ′ | ≤ Cmax{φ(vtriv),φ′(vtriv)}d1(φ,φ

′).

For a weak convergent φi → φ, we have φi(vtriv) → φ(vtriv), so the constants
Cmax{φi(vtriv),φ(vtriv)} are bounded. Then by the above inequality, d1-convergence

of φi → φ implies
∫
R χDHφi

→
∫
R χDHφ.

Now assume χ is just continuous. For ε > 0, take a locally Lipschitz function
χ̃ with left bounded support so that |χ− χ̃| < ε on (−∞,max{φ(vtriv), φ′(vtriv)}].
We note such χ̃ exists by Weierstrass approximation. Then there exists iε such that

|
∫
R
χDHφi −

∫
R
χDHφ| ≤ 2ε(eL) + |

∫
R
χ̃DHφi −

∫
R
χ̃DHφ| ≤ 3ε.

Taking the limit ε↘ 0, we obtain the claim. □
Proposition 4.28. Let χ be a non-negative continuous function on R. If φi →
φ ∈ E1NA(X,L) in d1, then we have∫

R
χDHφ ≤ lim

i→∞

∫
R
χDHφi

.

Proof. Take continuous cut off functions βj : R→ [0, 1] so that βj = 0 on (−∞,−j]
and β = 1 on [−j + 1,∞). By the monotone convergence theorem, we have

lim
i→∞

∫
R
βjχDHφ =

∫
R
χDHφ.

On the other hand, by the above lemma, we have∫
R
βjχDHφ = lim

i→∞

∫
R
βjχDHφi ≤ lim

i→∞

∫
R
χDHφi .

Thus we get ∫
R
χDHφ ≤ lim

i→∞

∫
R
χDHφi .

□
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4.2.2. Key estimates. We firstly recall fundamental estimates established in [BJ3].

Proposition 4.29 (Lemma 5.28 in [BJ3] (cf. Lemma 3.23 in [BJ1])). There exists
a positive constant Cn depending only on the dimension n of X such that∣∣∣ ∫

XNA

(ψ − ψ(vtriv))MA(φ)
∣∣∣ ≤ Cnd1(φ, 0)

1
2 max{d1(φ, 0), d1(ψ, 0)}

1
2

for every φ,ψ ∈ E1NA(X,L).

Proof. We put φ′, ψ′ = 0 in [BJ3, Lemma 5.28] and then apply Proposition 4.2.
We note ψ(vtriv)

∫
XNA MA(φ) =

∫
XNA ψMA(0). □

The left hand side is invariant when replacing φ 7→ φ + c, ψ 7→ ψ + c′, so we
actually have∣∣∣ ∫

XNA

(ψ − ψ(vtriv))MA(φ)
∣∣∣ ≤ Cnd1(φ, 0)

1
2 max{d1(φ, 0), d1(ψ, 0)}

1
2

for

d(φ,ψ) := inf
c∈R

d1(φ+ c, ψ).

The following is also a consequence of [BJ3, Lemma 5.28]

Proposition 4.30. Let {φi}i∈I , {ψi}i∈I ⊂ E1NA(X,L) be nets converging strongly
to φ,ψ ∈ E1NA(X,L), respectively. Then we have

lim
i→∞

∫
XNA

ψiMA(φi) =

∫
XNA

ψMA(φ).

We also have

lim
i→∞

∫
XNA

giMA(φi) =

∫
XNA

gMA(φ)

for a uniform convergent net of continuous functions {gi}i∈I ∈ C0(XNA).

Proof. By the assumption, we have I(φi) → I(φ) and I(ψi) → I(ψ), so we may
assume I(φi), I(ψi) ≤ C for a uniform constant C > 0 by replacing I with {i ≥ i0}
if necessary. Then by [BJ3, Lemma 5.28], we obtain∣∣∣ ∫

XNA

ψMA(φ)−
∫
XNA

ψiMA(φi)
∣∣∣

≤
∣∣∣ ∫

XNA

ψ(MA(φ)−MA(φi))
∣∣∣+ (eL)| supψ − supψi|

+
∣∣∣ ∫

XNA

(ψ − ψi)(MA(φi)−MA(φtriv))
∣∣∣

≤ CnI(ψ)
1
2n max{I(φ), I(φi), I(ψ)}

1
2−

1
2n I(φ,φi)

1
2

+ (eL)| supψ − supψi|

+ CnI(φi)
1
2 max{I(φi), I(ψ), I(ψi)}

1
2−

1
2n I(ψ,ψi)

1
2n

≤ C ′I(φ,φi)
1
2 + (eL)| supψ − supψi|+ C ′′I(ψ,ψi)

1
2n

for uniform constants C ′, C ′′ > 0. This estimate proves the first claim. The latter
claim follows from the first claim and the fact [BJ3, Theorem 2.2, Corollary 2.11]
that for any ε there exists ψ,ψ′ ∈ HNA(X,L) such that |g− (ψ−ψ′)| ≤ ε (cf. [BJ1,
Corollary 2.8]). □
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Let L0, . . . , Ln be ampleQ-line bundles. The energy paring (L0, φ0) · · · (Ln, φn) ∈
R for φi ∈ E1NA(X,Li) is constructed in [BJ3]. In this article, we are interested in
the following three cases:

1

(n+ 1)!
(L,φ)·n+1 = E(φ) =

∫
R
tDHφ,

1

n!
(M, 0) · (L,φ)·n =

d

dt

∣∣∣
t=0

1

(n+ 1)!
(L+ tM,φ)·n+1,

1

n!
(0, ψ) · (L,φ)·n =

∫
XNA

ψMA(φ).

When M is not ample, we put

1

n!
(M, 0) · (L,φ)·n :=

1

n!
(M1, 0) · (L,φ)·n −

1

n!
(M2, 0) · (L,φ)·n,

using ample Q-line bundles M1,M2 with M =M1 −M2.

Theorem 4.31 (Theorem 5.32 in [BJ3]). LetM be a Q-line bundle and L be ample
Q-line bundles on X. Take ample M1,M2 and θ ≥ 1 so that θ−1L ≤M1,M2 ≤ θL.
Then there exists a positive constant Cn depending only on the dimension n of X
such that

|(M, 0)·(L,φ)·n−(M, 0)·(L,φ′)·n| ≤ Cnθ
n2

d1(φ,φ
′)

1

23n−2 (d1(φ, 0)+d1(φ
′, 0))1−

1

23n−2

for every φ,φ′ ∈ EexpNA (X,L). Here d1 denotes the d1-distance on E1NA(X,L). In
particular, we have

lim
i→∞

(M, 0) · (L,φi)
·n = (M, 0) · (L,φ)·n

when a net {φi}i∈I ⊂ E1NA(X,L) converges strongly to φ ∈ E1NA(X,L).

Proof. We firstly compute

(M, 0) · (L,φ)·n = (M, 0) · (L,φ− supφ)·n + n(M,L·n−1) · supφ.
Then by [BJ3, Theorem 5.32, Proposition 5.26], we have

|(M, 0) · (L,φ)·n − (M, 0) · (L,φ′)·n|
≤ |(M1, 0) · (L,φ− supφ)·n − (M1, 0) · (L,φ′ − supφ′)·n|
+ |(M2, 0) · (L,φ− supφ)·n − (M2, 0) · (L,φ′ − supφ′)·n|
+ n((M1, L

·n−1) + (M2, L
·n−1)) · | supφ− supφ′|

≤ Cnθ
n2

I(φ,φ′)
1

23n−2 max{I(φ), I(φ′)}1−
1

23n−2

+ 2nθ(eL) · | supφ− supφ′|
1

23n−2 (| supφ|+ | supφ′|)1−
1

23n−2

≤ max{Cn, 2n}θn
2

Ī(φ,φ′)
1

23n−2 (Ī(φ, 0) + Ī(φ′, 0))1−
1

23n−2

for some constant Cn > 0 depending only on n. Here the last inequality follows
by a1/pb1/q + c1/pd1/q ≤ (a + c)1/p(b + d)1/q for a, b, c, d ≥ 0 and p, q ≥ 1 with
1/p+ 1/q = 1. By Proposition 4.2, we conclude the proof. □

The following estimate is crucial in our argument. We note

d1(φ ∧ τ − τ, 0) = −E(φ ∧ τ − τ) = − (L,φ)·n+1

(n+ 1)!

as DHφ∧τ−τ is supported on (−∞, 0] by φ ∧ τ − τ ≤ 0.
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Lemma 4.32. For φ ∈ E1NA(X,L) and α > 0, we have

d1(φ ∧ τ − τ, 0) ≤ min
{ 1

eα

∫
R
e−αtDHφ · eατ , (eL)|τ |+ d1(φ, 0)

}
for every τ ∈ R.

As a consequence, for φ ∈ EexpNA (X,L) and for any ρ > ε > 0, we have a positive
constant C > 0 depending boundedly on log(ρ− ε), log(ρ+ ε), log(eL), d1(φ, 0) and∫
R e

−(ρ+ε)tDHφ = −Eexp(φ;ρ+ε) such that

e−ρτd1(φ ∧ τ − τ, 0) ≤ Ce−ε|τ |

for every τ ∈ R.

Proof. Using (τ − t)eαt ≤ (eα)−1eατ for t ≤ τ , we compute

d1(φ ∧ τ − τ, 0) =
∫
R
|t|DHφ∧τ−τ =

∫
(−∞,τ)

(τ − t)eαte−αtDHφ

≤ (eα)−1eατ
∫
R
e−αtDHφ.

On the other hand, we compute

d1(φ ∧ τ − τ, 0) =
∫
(−∞,τ)

|t− τ |DHφ ≤ |τ |
∫
R
DHφ +

∫
R
|t|DHφ.

Thus we get the first claim.
We can check the second claim as follows. Since ρ − ε > 0, we have a constant

C ′ depending boundedly on log(ρ− ε), log(eL) and d1(φ, 0) such that

e−(ρ−ε)τ
(
(eL)|τ |+ d1(φ, 0)

)
≤ C ′

on τ ≥ 0. Explicitly, we may take C ′ = (eL)
ρ−ε e

−1+d1(φ,0)·(ρ−ε)/(eL). Then by the first

claim, we get

e−ρτd1(φ ∧ τ − τ, 0) ≤ min
{∫

R e
−(ρ+ε)tDHφ

e(ρ+ ε)
eετ , C ′e−ετ

}
≤ max

{∫
R e

−(ρ+ε)tDHφ

e(ρ+ ε)
, C ′

}
· e−ε|τ |,

which shows the second claim. □

Remark 4.33. We show dexp(φ∧ τ − τ, 0)→ 0 as an independent interest. We note∫
R
(e|t/β| − 1)DHφ∧τ−τ =

∫
(−∞,τ)

(e−(t−τ)/β − 1)DHφ

for φ ∈ EexpNA (X,L). Indeed, since both sides are continuous along decreasing
nets φi ↘ φ, it suffices to check the case φ ∈ HNA(X,L), which is confirmed
in [BJ2, Proposition 3.4]: DHφ∧τ−τ = (t′ 7→ t′ − τ)∗DHφ∧τ = (t′ 7→ t′ − τ)∗(t 7→
min{t, τ})∗DHφ = (t 7→ min{t, τ} − τ)∗DHφ. Then since∫

(−∞,τ)

(e−(t−τ)/β − 1)DHφ ≤ eτ/β
∫
R
e−t/βDHφ −

∫
(−∞,τ)

DHφ → 0

as τ → −∞, we get
∫
R(e

|t/β| − 1)DHφ∧τ−τ → 0 for any β > 0. Then by Lemma
4.15, we get dexp(φ ∧ τ − τ, 0)→ 0 as τ → −∞.
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4.2.3. Continuity of exponential moment energy. We make use of the following to-
mographic expression to show the continuity.

Proposition 4.34. If φ ∈ E1NA(X,L) has finite Eexp(φ;1+ε) for some ε > 0, we
have

Eexp(φ) =

∫
R

(L,φ ∧ τ − τ)·n+1

(n+ 1)!
e−τdτ.

Proof. We note (L,φ∧τ−τ)·n+1

(n+1)! is continuous on τ , so it is measurable. Suppose

(L,φ∧τ−τ)·n+1

(n+1)! w(τ) is integrable with respect to dτ , then using Fubini–Tonelli theo-
rem, we compute∫

R

(L,φ ∧ τ − τ)·n+1

(n+ 1)!
w(τ)dτ =

∫
R
dτ w(τ)

∫
R
1(−∞,τ)(t)(t− τ)DHφ(t)

=

∫
R
DHφ(t)

∫
R
1(t,∞)(τ)w(τ)(t− τ)dτ

=

∫
R
DHφ(t)

∫
(t,∞)

w(τ)(t− τ)dτ,

using

(L,φ ∧ τ − τ)·n+1

(n+ 1)!
=

∫
R
tDHφ∧τ−τ =

∫
(−∞,τ)

(t− τ)DHφ(t).

For w(τ) = e−τ , we have
∫
(t,∞)

e−τ (t− τ)dτ = −e−t, so we get∫
R

(L,φ ∧ τ − τ)·n+1

(n+ 1)!
e−τdτ = −

∫
R
e−tDHφ(t)

if (L,φ∧τ−τ)·n+1

(n+1)! e−τ is integrable. It suffices to check (L,φ∧τ−τ)·n+1

(n+1)! e−τ is integrable.

This follows by the second claim of Lemma 4.32: for φ ∈ EexpNA (X,L), we have

| (L,φ ∧ τ − τ)
·n+1

(n+ 1)!
e−τ | = e−τd1(φ ∧ τ − τ, 0) ≤ Cεe

−ε|τ |.

□

Corollary 4.35. Suppose a sequence φi ∈ E1NA(X,L) converges to φ ∈ E1NA(X,L)
in d1 and has bounded Eexp(φi;1+ε) for some ε > 0, then Eexp(φi)→ Eexp(φ).

Proof. By the assumption, we have a uniform estimate

| (L,φi ∧ τ − τ)·n+1

(n+ 1)!
e−τ | ≤ Cεe

−ε|τ |

thanks to Lemma 4.32. Since φi → φ in d1, we have φi ∧ τ − τ → φ ∧ τ − τ in d1

for each τ , so that we get (L,φi∧τ−τ)·n+1

(n+1)! e−τ → (L,φ∧τ−τ)·n+1

(n+1)! e−τ for every τ ∈ R by

(L,φ)·n+1/(n+ 1)! = E(φ). Then the claim follows by the dominated convergence
theorem. □

Theorem 4.36. For every ρ > 0, Eexp(φ;ρ) is continuous on EexpNA (X,L) with
respect to dexp-topology.

Proof. This is a consequence of the above corollary and Proposition 4.18. □
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4.2.4. Eexp-topology.

Definition 4.37. The Eexp-topology on EexpNA (X,L) is the coarsest refinement of
the strong topology (i.e. d1-topology) which makes Eexp(φ;ρ) continuous for every
ρ > 0.

Thanks to Theorem 4.36, a functional on EexpNA (X,L) is continuous (resp. usc,
lsc) with respect to dexp-topology if it is continuous (resp. usc, lsc) with respect
to Eexp-topology. Thanks to the following, to check the continuity of a functional
with respect to Eexp-topology, it suffices to check the sequential continuity.

Proposition 4.38. The Eexp-topology on EexpNA (X,L) is first countable.

Proof. Let us introduce the EN
exp-topology on EexpNA (X,L) as the coarsest refinement

of the strong topology which makes Eexp(φ;n) continuous for every n ∈ N+. By
Corollary 4.35, Eexp(φ;ρ) for ρ ∈ R+ is sequentially continuous with respect to the
EN

exp-topology. Thus it suffices to show the first countability of the EN
exp-topology,

in which case we get the equivalence of the EN
exp-topology and Eexp-topology.

Now observe that the EN
exp-topology is equivalent to the induced topology via

EexpNA (X,L) ↪→ E1NA(X,L)× RN+ : φ 7→ (φ,Eexp(φ;1), Eexp(φ;2), . . .).

Note E1NA(X,L)×RN+ is first countable as it is a countable product of first countable
spaces. Thus the subspace EexpNA (X,L) is also first countable, which shows the first
countability of the EN

exp-topology as desired. □

There is a Fréchet type distance compatible with the Eexp-topology:

(93) dEexp
(φ,φ′) = d1(φ,φ

′) +

∫ ∞

0

|Eexp(φ;ρ)− Eexp(φ
′
;ρ)|

1 + |Eexp(φ;ρ)− Eexp(φ′
;ρ)|

e−ρdρ.

Indeed, if a sequence φi converges to φ in Eexp-topology, then d1(φi, φ) → 0 and
Eexp(φi;ρ) → Eexp(φ;ρ) for every ρ > 0, so that dEexp

(φi, φ) → 0 by the dom-
inated convergence theorem. Thus dEexp

-closed set is Eexp-closed thanks to the
first countability of Eexp-topology. Conversely, if a sequence φi converges to φ in
dEexp-topology, then φi converges to φ in d1 and fi(ρ) = Eexp(φi;ρ) converges in
measure to f(ρ) = Eexp(φ;ρ) with respect to the measure dm = e−ρdρ. Namely,
m({ρ ∈ (0,∞) | |fi(ρ)− f(ρ)| > ε}) → 0 for every ε > 0. It follows that there ex-
ists a subsequence fij which converges to f almost everywhere. By Corollary 4.35,
Eexp(φij ;ρ) converges to Eexp(φ;ρ) for every ρ > 0. Therefore, dEexp

-convergent se-
quence has Eexp-convergent subsequence. Now let F ⊂ EexpNA (X,L) be a Eexp-closed
set. Take a sequence {φi} ⊂ F which converges to φ ∈ EexpNA (X,L) with respect to
the dEexp

-topology. Since we have an Eexp-convergent subsequence {φij} ⊂ {φi}
converging to φ, φ is in F by the Eexp-closedness, which shows F is dEexp

-closed.

Question 4.39. As we saw in Corollary 4.35, Eexp-convergence of φi → φ is equiv-
alent to d1-convergence with bounded Eexp(φi;ρ′) for every ρ′ > 0. This looks like
rather weak condition. Is Eexp-topology strictly weaker than dexp-topology?

Proposition 4.40. Let χ be a C2-function on R satisfying |χ′′(τ)| ≤ Ce−ατ on
(−∞, τ0] for some τ0 ∈ R and C,α > 0. If φi → φ ∈ EexpNA (X,L) in Eexp-topology,
then

∫
R χDHφi

→
∫
R χDHφ.
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Proof. Take a smooth cut-off function β : R → [0, 1] so that β = 0 on [τ0,∞) and
β = 1 on (−∞, τ0 − 1]. Then for w = (βχ)′′ we have |w(τ)| ≤ Ce−ατ on R by

taking larger C if necessary. Thanks to this and Lemma 4.32, (L,φ∧τ−τ)·n+1

(n+1)! w(τ) is

integrable. Thus we compute∫
R

(L,φ ∧ τ − τ)·n+1

(n+ 1)!
w(τ)dτ =

∫
R
βχDHφ

by
∫
(t,∞)

w(τ)(t − τ)dτ = (βχ)(τ), as in the proof of Proposition 4.34. Again by

Lemma 4.32, convergence in Eexp-topology implies a uniform estimate

| (L,φi ∧ τ − τ)·n+1

(n+ 1)!
w(τ)| ≤ Cεe

−ε|τ |

and pointwise convergence (L,φi ∧ τ − τ)·n+1 → (L,φ ∧ τ − τ)·n+1. Then by
the dominated convergence theorem, we get the continuity of

∫
R βχDHφ. As for∫

R(1− β)χDHφ, we can Lemma 4.27. □

Since dp ≤ ⌈p⌉ · dexp, dexp-convergence implies dp-convergence. We still have
dp-convergence in Eexp-convergence.

Proposition 4.41. Eexp-convergence implies dp-convergence for every 1 ≤ p <∞.

Proof. By Remark 4.11, we have

dp(φi, φ)
p(q−1) ≤ d1(φi, φ)

q−pdq(φi, φ)
q(p−1) ≤ d1(φi, φ)

q−p(dq(φi, 0)+dq(φ, 0))
q(p−1).

Thus it suffices to bound dq(φi, 0)
q =

∫
|t|qDHφi uniformly along Eexp-convergent

sequence. By the above proposition, we have
∫
|t|qDHφi →

∫
|t|qDHφ, so it is

uniformly bounded. □

Thus Eexp-topology is equivalent to the coarsest refinement of dp-topology which
makes Eexp(φ;ρ) continuous for every ρ > 0.

Question 4.42. Is Eexp-topology equivalent to the coarsest refinement of the weak
topology inherited from PSHNA(X,L) which makes Eexp(φ;ρ) continuous for every
ρ > 0?

We also obtain the following, which will be related to EL
exp(φ)+

∫
XNA φ

∫
e−tDφ.

Proposition 4.43. The functional σ̌ : EexpNA (X,L)→ R defined by

σ̌(φ) :=

∫∫
XNA(n− t)e−tDφ∫∫

XNA e−tDφ
− log

∫∫
XNA

e−tDφ(94)

=

∫
R(n− t)e

−tDHφ∫
R e

−tDHφ
− log

∫
R
e−tDHφ

is continuous with respect to Eexp/dexp-topology.

Remark 4.44. Putting dµφ = 1∫
R e−tDHφ

e−tDHφ and dνφ = 1∫
R DHφ

DHφ, we get a

lower bound

σ̌(φ) = n+

∫
R

dµφ

dνφ
log

dµφ

dνφ
dνφ − log

∫
R
DHφ ≥ n− log(eL) = σ̌(0)

by Jensen’s inequality.
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4.2.5. Continuous extension of the functional EM
exp. We recall

EM
exp(φ(X ,L;ρ)) = −

(
(M.eL)− ρ(M̃P1,Gm

.eL̃Gm ; ρ)
)

for φ(X ,L;ρ) ∈ HNA(X,L). We note

EM
exp(φ(X ,L;ρ)) =

d

ds

∣∣∣
s=0

Eexp(L+ sM,φ(X ,L;ρ)).

To extend EM
exp continuously to EexpNA (X,L), we make use of the following tomo-

graphic expression.

Theorem 4.45. For φ ∈ HNA(X,L), we have

EM
exp(φ) =

∫
R

(M, 0) · (L,φ ∧ τ − τ)·n

n!
e−τdτ.

For general φ ∈ EexpNA (X,L), we regard this formula as the definition of EM
exp(φ).

Then EM
exp(φ) is finite and the functional EM

exp : EexpNA (X,L)→ R is continuous with
respect to Eexp/dexp-topology.

Proof. For φ ∈ HNA(X,L) and each τ ∈ R, we have

(M, 0) · (L,φ ∧ τ − τ)·n

n!
=

d

ds

∣∣∣
s=0

(L+ sM,φ ∧ τ − τ)·n+1

(n+ 1)!
.

To obtain the claim, we would compute as∫
R

d

ds

∣∣∣
s=0

(L+ sM,φ ∧ τ − τ)·n+1

(n+ 1)!
e−τdτ =

d

ds

∣∣∣
s=0

∫
R

(L+ sM,φ ∧ τ − τ)·n+1

(n+ 1)!
e−τdτ.

This is valid if we have a uniform estimate

|(M, 0) · (L+ sM,φ ∧ τ − τ)·ne−τ | ≤ Cεe
−ε|τ |

for every small s. We put Ls := L+ sM .
Now take ampleM ′,M ′′ and θ ≥ 1 so thatM =M ′−M ′′ and θ−1L < M ′,M ′′ <

θL. Then θ−1Ls ≤M ′,M ′′ ≤ θLs for small s. It follows by Theorem 4.31 that

|(M, 0) · (Ls, φ ∧ τ − τ)·n| ≤ Cnθ
n2

d1(φ ∧ τ − τ, 0).

Then by Lemma 4.32, we get

|(M, 0) · (Ls, φ ∧ τ − τ)·ne−τ | ≤ Cεe
−ε|τ |

for φ ∈ EexpNA (X,L) and small s as desired. In particular, the right hand side is finite
for φ ∈ EexpNA (X,L).

It suffices to see the continuity∫
R
(M, 0) · (L,φi ∧ τ − τ)·ne−τdτ →

∫
R
(M, 0) · (L,φ ∧ τ − τ)·ne−τdτ

for φi → φ ∈ EexpNA (X,L) in Eexp/dexp-topology. By the proof of Lemma 4.32, the
constant Cε in the above estimate can be taken uniformly for φi. On the other
hand, again by Theomre 4.31, we have

(M, 0) · (L,φi ∧ τ − τ)·n → (M, 0) · (L,φ ∧ τ − τ)·n

for every τ ∈ R. Thus we can apply the dominated convergence theorem to the
above limit and get the desired continuity. □
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4.2.6. Tomographic expression of exponential moment measure. As for the expo-
nential moment measure

∫
e−tDφ, we have the following tomographic expression.

Proposition 4.46. For φ ∈ EexpNA (X,L) and ψ ∈ E1NA(X,L), the measurable func-
tion e−τ

∫
XNA(ψ−ψ(vtriv))MA(φ∧ τ) is integrable with respect to dτ and we have∫

XNA

ψ

∫
e−tDφ =

∫
R
dτ e−τ

∫
XNA

(ψ−ψ(vtriv))MA(φ∧τ)+ψ(vtriv)
∫
R
e−τDHφ(τ).

Moreover, for fixed n, (eL) and ε < 1, we have a positive constant Cε depending
boundedly on d1(φ, 0),

∫
R e

−(2+2ε)tDHφ and d1(ψ, 0) satisfying∣∣∣e−τ

∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)
∣∣∣ ≤ Cεe

−ε|τ |.

The claim includes that ψ ∈ E1NA(X,L) is integrable with respect to
∫
e−tDφ.

Proof. We firstly show the uniform estimate

(95)
∣∣∣e−τ

∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)
∣∣∣ ≤ Cεe

−ε|τ |,

which in particular shows that the function is integrable with respect to dτ . By
Proposition 4.29, we have∣∣∣ ∫

XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)
∣∣∣ = ∣∣∣ ∫

XNA

(ψ − ψ(vtriv))MA(φ ∧ τ − τ)
∣∣∣

≤ Cn max{d1(ψ, 0)1/2d1(φ ∧ τ − τ, 0)1/2, d1(φ ∧ τ − τ, 0)}.
By Lemma 4.32, we have

e−τd1(φ ∧ τ − τ, 0) ≤ C ′
εe

−ε|τ |,

e−2τd1(φ ∧ τ − τ, 0) ≤ C ′′
ε e

−2ε|τ |

by some C ′
ε, C

′′
ε > 0 depending boundedly on d1(φ, 0),

∫
R e

−(2+2ε)τDHφ. Here we

note
∫
R e

−(1+ε)τDHφ is bounded when d1(φ, 0),
∫
R e

−(2+2ε)τDHφ is bounded. Thus
we get∣∣∣e−τ

∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)
∣∣∣ ≤ Cn max{(C ′′

ε )
1/2d1(ψ, 0)

1/2, C ′
ε} · e−ε|τ |

as desired.
Now we show the claim. Since the claim obviously holds for constant ψ, we

may assume ψ(vtriv) = supψ = 0 by the linearity. Moreover, we may assume ψ ∈
HNA(X,L) as both sides of the equality are continuous along convergent decreasing
sequence ψi ↘ ψ (countable regularization). Indeed, the left hand side is continuous
by the monotone convergence theorem (see Proposition 3.18). As for the right hand
side, the dominated convergence theorem applies to the first term since we have∫

XNA

(ψi − ψi(vtriv))MA(φ ∧ τ)→
∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)

for each τ ∈ R and a uniform bound∣∣∣e−τ

∫
XNA

(ψi − ψi(vtriv))MA(φ ∧ τ)
∣∣∣ ≤ Cεe

−ε|τ |

due to the uniform boundedness of d1(ψi, 0) → d1(ψ, 0). The second term is con-
tinuous as we already proved.
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Let χi be a compactly supported smooth function which takes 1 on the interval
[−i, i], 0 on the complement of (−i − 1, i + 1) and monotonic on the intervals
(−i−1,−i), (i, i+1) with |χ′

i| ≤ 1+ δ. Since χi ↗ 1R and ψ is continuous, we have∫
XNA

ψ

∫
e−tDφ = lim

i→∞

∫
XNA

ψ

∫
χie

−tDφ.

By Proposition 3.75, we have∫
XNA

ψ

∫
χie

−tDφ =

∫
R
dτ χi(τ)e

−τ d

dτ

∫
XNA

ψMA(φ ∧ τ)

= −
∫
R
dτ χ′

i(τ)e
−τ

∫
XNA

ψMA(φ ∧ τ)

+

∫
R
dτ χi(τ)e

−τ

∫
XNA

ψMA(φ ∧ τ).

The first term will vanish as we have

|
∫
R
dτ χ′

i(τ)e
−τ

∫
XNA

ψMA(φ∧τ)| ≤ (1+δ) sup
τ∈[−i−1,−i]∪[i,i+1]

e−τ

∫
XNA

ψMA(φ∧τ)→ 0

for i→∞ thanks to the above estimate.
As for the second term, since

|χi(τ)e
−τ

∫
XNA

ψMA(φ ∧ τ)| ↗ |e−τ

∫
XNA

ψMA(φ ∧ τ)| ≤ Cεe
−ε|τ |

as i→∞, we get∫
R
dτ χi(τ)e

−τ

∫
XNA

ψMA(φ ∧ τ)→
∫
R
dτ e−τ

∫
XNA

ψMA(φ ∧ τ)

by the dominated convergence theorem, which shows the proposition. □

Question 4.47. Does the claim hold also for ψ ∈ C0(XNA)?

Corollary 4.48. The measure
∫
e−tDφ has finite energy E∨ and hence does not

charge pluripolar sets.

Proof. We in particular have E1NA ⊂ L1(
∫
e−tDφ) by the above proposition, so the

claim follows by [BJ3, Theorem 6.23]. □

4.2.7. Continuity of exponential moment measure.

Theorem 4.49. Suppose a sequence {φi}i∈N ⊂ EexpNA (X,L) converges to φ ∈
EexpNA (X,L) in Eexp/dexp-topology.

(1) If a sequence {gi}i∈N ⊂ C0(XNA) uniformly converges to g ∈ C0(XNA),
then ∫

XNA

gi

∫
e−tDφi →

∫
XNA

g

∫
e−tDφ.

(2) If a sequence {ψi}i∈N ⊂ E1NA(X,L) strongly converges to ψ ∈ E1NA(X,L),
then ∫

XNA

ψi

∫
e−tDφi

→
∫
XNA

ψ

∫
e−tDφ.
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Proof. (1) We assume gi → g ∈ C0(XNA) uniformly. For any ε > 0, we can take iε
and two psh functions ψ1, ψ2 ∈ HNA(X) so that

sup |g − (ψ1 − ψ2)|, sup |gi − (ψ1 − ψ2)| ≤ ε
for i ≥ iε. Then since∣∣∣ ∫

XNA

g

∫
e−tDφ −

∫
XNA

gi

∫
e−tDφi

∣∣∣
≤ ε

∫
R
e−tDHφ + ε

∫
R
e−tDHφi

+
∣∣∣ ∫

XNA

ψ1

∫
e−tDφ −

∫
XNA

ψ1

∫
e−tDφi

∣∣∣
+
∣∣∣ ∫

XNA

ψ2

∫
e−tDφ −

∫
XNA

ψ2

∫
e−tDφi

∣∣∣
and ∫

R
e−tDHφi

→
∫
R
e−tDHφ

by φi → φ in dexp, the claim follows from the case gi = g = ψ ∈ HNA(X).
Therefore, it suffices to show the second claim.

(2) We assume ψi → ψ ∈ E1NA(X,L) in d1. Since ψi → ψ in the weak topology
of PSHNA(X,L), i.e. ψi(v) → ψ(v) for every quasi-monomial valuation v, we
in particular have ψi(vtriv) → ψ(vtriv). Meanwhile, we have

∫
R e

−τDHφi(τ) →∫
R e

−τDHφ(τ). Thus, thanks to Proposition 4.46, it suffices to show∫
R
dτ e−τ

∫
XNA

(ψi−ψi(vtriv))MA(φi∧τ)→
∫
R
dτ e−τ

∫
XNA

(ψ−ψ(vtriv))MA(φ∧τ).

Since φi ∧ τ → φ ∧ τ and ψi → ψ in d1, we have∫
XNA

(ψi − ψi(vtriv))MA(φi ∧ τ)→
∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ τ)

for each τ ∈ R. Thus the integrands are pointwiesely convergent.
On the other hand, since φi → φ in Eexp/dexp and ψi → ψ in d1, we have

a uniform bound on d1(φi, 0),
∫
R e

−(2+2ε)tDHφi , d1(ψi, 0). Then by (the proof of)
Proposition 4.46, we have a uniform constant Cε such that∣∣∣e−τ

∫
XNA

(ψi − ψi(vtriv))MA(φi ∧ τ)
∣∣∣ ≤ Cεe

−ε|τ |

for every i and τ ∈ R. Now the desired convergence follows from the dominated
convergence theorem. □
4.2.8. Non-archimedean µ-entropy. We firstly note the following formula.

Proposition 4.50. For φ ∈ EexpNA (X,L), we have

−
∫
R
(n− t)e−tDHφ = EL

exp(φ) +

∫
XNA

φ

∫
e−tDφ.

Proof. We can easily check the claim for φ(X ,L) ∈ HNA(X,L) as we have∫
R
(n− ρt)e−ρtDHφ = (L.eL)− ρ(L̄.eL̄; ρ)

=
(
(L.eL)− ρ(L̃A1 .eL̄; ρ)

)
− ρ((L̄ − L̃A1).eL̄; ρ)

and φ(ρ.vE) = ρ
ordE(L̃−L̃A1 )

ordEX̃0
. The general case follows by the continuity of the

functionals with respect to Eexp/dexp-topology. □
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Corollary 4.51. For φ ∈ EexpNA (X,L), we have

σ̌(φ) = −
EL

exp(φ) +
∫
XNA φ

∫
e−tDφ∫∫

XNA e−tDφ
− log

∫∫
XNA

e−tDφ.

Now we introduce the non-archimedean µ-entropy for general φ ∈ EexpNA (X,L).
To ensure the lsc extension of the log discrepancy AX , we assume X is klt in what
follows.

Definition 4.52 (The non-archimedean µ-entropy). Let X be a klt variety. For
φ ∈ EexpNA (X,L), we put

µ̌NA(φ) := −2π
∫
XNA AX

∫
e−tDφ + EKX

exp (φ)∫∫
XNA e−tDφ

,

µ̌λ
NA(φ) := µ̌NA(φ) + λσ̌(φ)

= −
∫
XNA(2πAX + λφ)

∫
e−tDφ + E2πKX+λL

exp (φ)∫∫
XNA e−tDφ

− λ log
∫∫

XNA

e−tDφ.

From the observation in the beginning of this section, this µ̌λ
NA extends the

non-archimedean µ-entropy for test configurations defined in section 1.1.3.
For any lsc function f , we have f = sup{g | f ≥ g ∈ C0}, so that we have

limi→∞
∫
fdµi ≥

∫
fdµ for any weakly convergent net µi → µ of Radon measures.

It follows from what we proved that µ̌λ
NA gives an upper semi-continuous function

on EexpNA (X,L) with respect to Eexp/dexp-topology. Therefore we have proved all
the results in Theorem 1.9.

4.2.9. Maximizing non-archimedean µ-entropy. To reorganize Theorem 1.1 and The-
orem 1.2 on the characteristic µ-entropy µ̌λ

ch in the non-archimedean setup, we
would compare µ̌λ

NA(φ) and µ̌λ
ch(Fφ) for φ ∈ HR

NA(X,L).
For φ = φ(X ,L) ∈ HNA(X,L), we have Fφ = F(Xd,Ld;d−1) for sufficiently di-

visible d. Then since the central fibre of Xd is reduced, we obtain µ̌λ
NA(φ) =

µ̌λ
NA(Xd,Ld; d

−1) = µ̌λ
ch(Xd,Ld; d

−1) = µ̌λ
ch(Fφ).

For φ ∈ HR
NA(X,L), the associated filtration Fφ is finitely generated by The-

orem 3.29. Then there exists a polyhedral configuration (X/Bσ,L; ζ) such that
F(X ,L;ζ) = Fφ for ζ ∈ σ◦. We recall the central fibre of (X/Bσ,L; ζ) is reduced
by Proposition 3.30. For general ξ ∈ σ, we have the associated non-archimedean
metric φξ := φ(X ,L;ξ) ∈ HR

NA(X,L). We have Fφξ
= F(X ,L;ξ) by Proposition

3.31. We recall µ̌λ
ch(F(X ,L;ξ)) = µ̌λ

ch(X ,L; ξ) is continuous on ξ ∈ σ. On the other

hand, we already know µ̌λ
NA(φη) = µ̌λ

ch(F(X ,L;η)) for rational η ∈ σ ∩ NQ. Thus

to see µ̌λ
NA(φ) = µ̌λ

ch(Fφ) for general φ ∈ HR
NA(X,L), it suffices to check µ̌λ

NA(φξ)
is continuous on ξ ∈ σ. We already know the upper semi-continuity, so at least
µ̌λ

NA(φ) ≥ µ̌λ
ch(Fφ) for φ ∈ HR

NA(X,L).
The continuity of σ → R : ξ 7→ µ̌λ

NA(φξ) can be reduced to Question 4.53 below
as follows. For η ∈ σ◦ ∩ N , the pullback (Xη,Lη) along A1 → Bσ gives a normal
test configuration thanks to the reducedness of the central fibre. It follows that for
each irreducible component E ⊂ Xo and η ∈ σ◦∩N , we can assign a valuation vE,η

on X so that

MA(φη) =
∑

E⊂Xo

(E.L·n).δvE,η
.
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For η ∈ NQ, we put vE,η := ρ−1.vE,ρ.η by taking sufficiently divisible ρ ∈ N+. Since
φξ ∈ HR

NA(X,L) is continuous on ξ ∈ σ◦ with respect to the uniform topology, we
have MA(φξi) → MA(φξ) for ξi → ξ ∈ σ◦. This gives a continuous extension
σ → X lin : ξ 7→ vE,ξ for each E ⊂ Xo.

Now by the continuity we can easily see the moment measure of φξ is given by∫
e−tDφξ

=
∑

E⊂Xo

ordEX0

∫
R
e−tDH(E,L|E ;ξ).δvE,ξ

.

Thus we obtain the following expression∫
XNA

AX

∫
e−tDφξ

=
∑

E⊂Xo

ordEX0

∫
R
e−tDH(E,L|E ;ξ)AX(vE,ξ).

This is the only part in µ̌λ
NA(φξ) which may cause discontinuity. Since DH(E,L|E ;ξ) is

continuous on ξ (consider (X ′, L′) := (E,L|E), then we have DHφ′
ξ
= DH(E,L|E ;ξ)

for the associated metric φ′
ξ on (X ′, L′) is continuous on ξ), we can reduce the

problem to the following question.

Question 4.53. For a polyhedral configuration (X/Bσ,L) with reduced central fibre
and an irreducible component E ⊂ Xo, the log discrepancy AX(vE,ξ) is continuous
on ξ ∈ σ◦?

We can check this for proper vectors.

Proposition 4.54. Let (X,L) be a polarized normal variety with a torus T action.
Then there is a fan Σ on t and a collection of snc divisors {(Yσ, Dσ)→ X}σ∈Σ over
X satisfying the following: for each σ ∈ Σ, the family {vX,ξ}ξ∈σ associated to the
polyhedral configuration (Xσ, Lσ) in Example 2.15 factors through QM(Yσ, Dσ) ⊂
X lin continuously.

Proof. Firstly consider a torus T action on (CPn,O(1)). We may assume the action
is given by (z0 : . . . : zn).t = (χµ0(t)z0 : . . . : χµn(t)zn). Then since

(z0 : . . . : zn). exp tξ = (et⟨µ0,ξ⟩z0 : . . . : et⟨µn,ξ⟩zn),

the zero set Z(ξ) of the vector field ξ is the union of linear subspaces

Zλ(ξ) := {(z0 : . . . : zn) ∈ CPn | zi = 0 if ⟨µi, ξ⟩ ̸= λ}.
We put

Wλ(ξ) := {z ∈ CPn | lim
t→−∞

z. exp tξ ∈ Zλ(ξ)}

= {(z0 : . . . : zn) ∈ CPn | zi = 0 if ⟨µi, ξ⟩ < λ, zj ̸= 0 for some j with ⟨µj , ξ⟩ = λ}.

Then a T -invariant closed subset F intersects with Zλ(ξ) if and only if it intersects
with Wλ(ξ).

The function φ(ξ) = minj{⟨µj , ξ⟩} is a concave piecewise linear function. Take a
fan Σ on t so that φ|σ is linear for every σ ∈ Σ. Then Zσ := Zφ(ξ)(ξ) is independent
of the choice of ξ ∈ σ◦ and the complement CPn\Wσ ofWσ :=Wφ(ξ)(ξ) is a proper
linear subspace.

For a T -equivariant birational proper morphism X ′ → X and ξ ∈ N , we have
vX′,ξ = vX,ξ, so we may assume X is smooth. For each ξ ∈ t, the zero set ZX(ξ) of

the vector field is the fixed point set of the torus Tξ := expRξC, so that it is a union
of connected smooth subvarieties. Embed X into CPN−1 = P(H0(X,L⊗m)∨) by
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the linear system |mL|. Then we have ZX(ξ) = X ∩ Z(ξ). By the reducedness, X
is not contained in any proper linear subspace PW ⊊ CPN−1, so that X ∩Zφ(ξ)(ξ)
is a non-empty connected component of ZX(ξ). By the above argument, we have
a fan Σ on t such that ZX,σ := X ∩Zφ(ξ)(ξ) is independent of the choice of ξ ∈ σ◦.
For each σ, we denote by Tσ the torus associated to Rσ ⊂ t. By the construction,
ZX,σ is a connected component of the fixed point set of Tσ.

In the following, we fix σ ∈ Σ. Consider the weight decomposition of the normal
bundle NZX,σ =

⊕
µ∈Mξ

NµZX,σ with respect to the Tσ action. By the construc-

tion, we have ⟨µ, ξ⟩ > 0 for every ξ ∈ σ◦ and µ ∈ Mσ with NµZX,σ ̸= 0. Take a
Tσ-equivariant étale morphism U → TxX from a Tσ-invariant Zariski open neigh-
bourhood U of a point x ∈ ZX,σ (cf. [Sum, Dré]). Then using a basis of TxX
compatible with the weight decomposition TxZ ⊕

⊕
µ∈Mσ

Nµ,xZ, we get a param-

eter system z1, . . . , zn ∈ OX,x satisfying zi.t = χµi(t)zi.
We expand f ∈ OX,x as

∑
ν aνz

ν . Then for ξ ∈ σ◦ ∩ N , the Gm-invariant
extension f̄ to X × A1 ⟲ξ Gm can be written as

f̄ =
∑
ν

aνz
νϖ

∑n
i=1⟨µi,ξ⟩νi .

It follows that

vX,ξ(f) = min{
n∑

i=1

⟨µi, ξ⟩νi | aν ̸= 0}.

This formula gives a continuous extension {vX,ξ ∈ QMx(X, {z1 · · · zn = 0})}ξ∈σ,
which shows the claim. □

Corollary 4.55. For any torus action (X,L) ⟲ T , the functional t → R : ξ 7→
AX(vξ) is continuous.

Proof. This is a consequence of the above proposition and the definition of log
discrepancy (cf. [JM]). □

Now by the above remark, we obtain the following.

Proposition 4.56. For any proper vector ξ, we have µ̌λ
NA(φξ) = µ̌λ

ch(X,L; ξ). In
particular, µ̌λ

NA(φξ) is continuous on ξ ∈ t.

Thus we get the following reformulation.

Corollary 4.57. If µ̌λ
NA is maximized by φξ, then (X,L) is µ̌λ

ξK-semistable.

Proof. We have

µ̌λ
ch(Fφ) ≤ µ̌λ

NA(φ) ≤ µ̌λ
NA(φξ) = µ̌λ

ch(X,L; ξ)

for φ ∈ HNA(X,L), so we can apply Theorem 1.1. □

The following is a refinement of [Ino2, Proposition 3.14].

Proposition 4.58. Suppose X is klt. For φ = φ(X ,L;ξ) ∈ HR
NA(X,L), we have

lim
ρ→∞

ρ−1σ̌(φ;ρ) = 0, lim
ρ→∞

ρ−1µ̌NA(φ;ρ) < 0.

When the central fibre Xo = Xo(φ) is irreducible, we explicitly have

lim
ρ→∞

ρ−1µ̌NA(φ;ρ) = −2πAX(vXo,ξ).
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Proof. Let (X ,L; ξ) be a polyhedral configuration with reduced fibre correspond-
ing to the filtration Fφ. We may normalize φ so that inf φ = inf suppDHφ =
inf DH(X ,L;ξ) = 0. We recall∫

e−ρtDφ∫∫
XNA e−ρtDφ

=
∑

E⊂Xo

ordEX0

∫
R e

−ρtDH(E,L|E ;ξ)∫
R e

−ρtDH(X ,L;ξ)

.δρ.vE,ξ
.

Similarly as [BHJ1, Theorem 5.10] (cf. [GGK, Theorem 5.7]), DH(E,L|E ;ξ) is
either Dirac mass or absolutely continuous with respect to the Lebesgue measure
which has piecewise polynomial density of degree at most dimX−1. In particular,
for small ε > 0, we can write DH(X ,L;ξ)|[0,ε) = f(t)tkdt for some positive continuous
function f : [0, ε)→ (0,∞) and k ≥ 0. Since DH(X ,L;ξ)|[0,ε) is the sum of ordEXo ·
DH(E,L|E ;ξ), we have either DH(E,L|E ;ξ)|[0,ε) = 0 or DH(E,L|E ;ξ)|[0,ε) = fE(t)t

kEdt
for some kE ≥ k and some positive continuous function fE . By Proposition 3.13,
the latter case happens only when φ(vE,ξ) = 0. Again since DH(X ,L;ξ)|[0,ε) is the
sum of ordEXo ·DH(E,L|E ;ξ), there actually exists one such E with kE = k.

By easy calculus, we get

ρk+1

∫
R
e−ρtDH(X ,L;ξ) → k! · f(0)

ρkE+1

∫
R
e−ρtDH(E,L|E ;ξ) →

{
0

kE ! · fE(0)

as ρ→∞. We put

cE,ξ := lim
ρ→∞

ordEXo ·
∫
R e

−ρtDH(E,L|E ;ξ)∫
R e

−ρtDH(X ,L;ξ)

=

{
ordEXo · fE(0)/f(0) kE = k

0 otherwise
.

We note cE,ξ > 0 and
∑

E⊂Xo
cE,ξ = 1.

Now we compute

ρ−1

∫
XNA AX

∫
e−tDφ;ρ∫∫

XNA e−tDφ;ρ

=

∫
XNA AX

∫
e−ρtDφ∫∫

XNA e−ρtDφ
→

∑
E⊂Xo

cE,ξAX(vE,ξ) > 0.

Similarly,

ρ−1

∫
XNA φ;ρ

∫
e−tDφ;ρ∫∫

XNA e−tDφ;ρ

=

∫
XNA φ

∫
e−ρtDφ∫∫

XNA e−ρtDφ
→

∑
E⊂Xo

cE,ξφ(vE,ξ) = 0

as cE,ξ = 0 unless φ(vE,ξ) = 0.
As for EM

exp, we firstly compute

EM
exp(φ;ρ) =

∫
R

(M, 0) · (L,φ;ρ ∧ τ − τ)·n

n!
e−τdτ

=

∫
R

(M, 0) · (L, (φ ∧ ρ−1τ − ρ−1τ);ρ)
·n

n!
e−τdτ

= ρ

∫
R

(M, 0) · (L,φ ∧ ρ−1τ − ρ−1τ)·n

n!
e−τdτ

= ρ2
∫
R

(M, 0) · (L,φ ∧ σ − σ)·n

n!
e−ρσdσ.
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Similarly, ∫∫
XNA

e−tDφ;ρ
= −

∫
R

(L,φ;ρ ∧ τ − τ)·n+1

(n+ 1)!
e−τdτ

= −ρ2
∫
R

(L,φ ∧ σ − σ)·n+1

(n+ 1)!
e−ρσdσ.

As in the proof of Theorem 4.45, we have

|(M, 0) · (L,φ ∧ τ − τ)·n| ≤ C(n+ 1)!d1(φ ∧ τ − τ, 0)

= C(n+ 1)!

∫
R
(−t)DHφ∧τ−τ = −C(L,φ ∧ τ − τ)·n+1

for a constant C independent of φ, τ . It follows that∣∣∣ EM
exp(φ;ρ)∫∫

XNA e−tDφ;ρ

∣∣∣ = (n+ 1)

∫
R |(M, 0) · (L,φ ∧ σ − σ)·n|e−ρσdσ

−
∫
R(L,φ ∧ σ − σ)·n+1e−ρσdσ

≤ (n+ 1)C,

so that we have

ρ−1
EM

exp(φ;ρ)∫∫
XNA e−tDφ;ρ

→ 0.

Finally, we have

ρ−1 log

∫∫
XNA

e−tDφ;ρ = O(ρ−1 log ρ)→ 0

□

Now we can show the following, which completes the proof of Theorem 2.27.

Corollary 4.59. When X is klt, the functional µ̌λ
ch(X,L; •) : t→ R is proper for

any torus action (X,L) ⟲ T . In particular, it admits a maximizer.

Proof. By the computation in the above proposition, we have

µ̌λ
NA(φξ) = −2πAX(vξ)−

E2πKX+λL
exp (φξ)∫∫
XNA e−tDφξ

− λ log(eL)− λ log
∫
R e

−tDHφξ∫
R DHφξ

.

For a norm ∥∥ on t, consider the continuous function fρ(ξ) := ρ−1µ̌λ
NA(φρ.ξ) on the

unit sphere S. By Hölder’s inequality,

gρ(ξ) := ρ−1 log

∫
R e

−tDHφρ.ξ∫
R DHφρ.ξ

= ρ−1 log

∫
R e

−ρtDHφξ∫
R DHφξ

is monotonically increasing, so that gρ uniformly converges to 0 on S by Dini’s

lemma. On the other hand,
E

2πKX+λL
exp (φξ)∫∫
XNA e−tDφξ

+ λ log(eL) is bounded on t, so that

hρ(ξ) := ρ−1(
E2πKX+λL

exp (φξ)∫∫
XNA e−tDφξ

+ λ log(eL))

uniformly converges to 0 on S.
Since X is klt, infξ∈S AX(ξ) is positive. Thus for any 0 < δ < 2π infξ∈S AX(ξ),

we can take large ρδ so that

fρ ≤ −2π inf
ξ∈S

AX(ξ)− hρ − λgρ ≤ −δ
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for every ρ ≤ ρδ. It follows that µ̌λ
NA(φξ) ≤ −δ∥ξ∥ for ρ ≥ ρδ. Thus any unbounded

sequence {ξi} ⊂ t has unbounded µ̌λ
NA, which shows the properness. □

Question 4.53 would be proved for general polyhedral configuration in coming
[BJ5]. At the moment, let us assume µ̌λ

NA(φ) = µ̌λ
ch(Fφ) in the following reformu-

lation to clarify our status.

Proposition 4.60. If µ̌λ
NA is maximized by φ ∈ HR

NA(X,L) and µ̌λ
NA(φ) =

µ̌λ
ch(Fφ), then the central fibre (Xo(φ),Lo(φ)) = ProjRo(Fφ) is µλK-semistable

with respect to the proper vector ξφo on (Xo(φ),Lo(φ)) induced by the filtration
Fφ.

4.2.10. Odaka’s theorem in µ-entropy formalism. Here we observe the non-archimedean
µ-entropy maximization for Calabi–Yau variety and canonically polarized variety.
The results can be regarded as a reformulation of Odaka’s theorem [Oda1], which
is a K-stability/non-archimedean counterpart of Aubin–Calabi–Yau theorem. Note
we assume X is klt to ensure the lsc extension of the log discrepancy AX . The
proofs work also for log canonical varieties as soon as AX on XNA makes sense.

Proposition 4.61. If the trivial metric φtriv = 0 maximizes µ̌λ
NA on EexpNA (X,L),

then µ̌λ′

NA is maximized by φtriv for λ′ ≤ λ.

Proof. Recall σ̌(φ) ≥ σ̌(φtriv). The claim follows by

µ̌λ′

NA(φ) = µ̌λ
NA(φ)− (λ− λ′)σ̌(φ) ≤ µ̌λ

NA(φtriv)− (λ− λ′)σ̌(φtriv).

□
Corollary 4.62. Suppose KX ≡Q 0 and λ ≤ 0, then the trivial metric φtriv = 0
maximizes µ̌λ

NA on EexpNA (X,L).

Proof. Since X is log canonical, we compute

µ̌NA(φ) = −2π
∫
XNA AX

∫
e−tDφ∫∫

XNA e−tDφ
≤ 0 = µ̌NA(φtriv),

so φtriv maximizes µ̌NA. By the above proposition, φtriv maximizes µ̌λ
NA for λ ≤

0. □
Lemma 4.63. For φ ∈ E1NA(X,L), we have∫

R
tDHφ −

∫
XNA

φMA(φ) ≥ 0.

Proof. Since
∫
R tDHφ = E(φ), this is nothing but [BJ3, Proposition 5.26]. □

Proposition 4.64. Suppose KX is ample and KX = L and λ ≤ 0, then the trivial
metric φtriv = 0 maximizes µ̌λ

NA on EexpNA (X,L).

Proof. We have EKX
exp = EL

exp and µ̌NA(φtriv) = 2πn. Since X is log canonical, we

have µ̌NA(φ) ≤ −2π
EL

exp(φ)∫
R e−tDHφ

. Thus to see µ̌NA(φ) ≤ µ̌NA(φtriv), it suffices to

show

EL
exp(φ) + n

∫
R
e−tDHφ ≥ 0.

By Proposition 4.50, we have

EL
exp(φ) + n

∫
R
e−tDHφ =

∫
R
te−tDHφ −

∫
XNA

φ

∫
e−tDφ.
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To reduce the problem to the above lemma, we consider another expression. Firstly
we note

(n+ 1)Eexp(φ) =

∫
R

(L,φ ∧ τ − τ)·n+1

n!
e−τdτ

=

∫
R

(L, 0) · (L,φ ∧ τ − τ)·n

n!
e−τdτ +

∫
R

(0, φ ∧ τ − τ) · (L,φ ∧ τ − τ)·n

n!
e−τdτ

= EL
exp(φ) +

∫
R
dτe−τ

∫
XNA

(φ ∧ τ − τ)MA(φ ∧ τ − τ).

Then since Eexp(φ) = −
∫
R e

−tDHφ, we have

EL
exp(φ) + n

∫
R
e−tDHφ = EL

exp(φ)− nEexp(φ)

= Eexp(φ)−
∫
R
dτe−τ

∫
XNA

(φ ∧ τ − τ)MA(φ ∧ τ − τ)

=

∫
R
dτe−τ

(∫
R
tDHφ∧τ−τ −

∫
XNA

(φ ∧ τ − τ)MA(φ ∧ τ − τ)
)
.

Thanks to the above lemma, the integrand∫
R
tDHφ∧τ−τ −

∫
XNA

(φ ∧ τ − τ)MA(φ ∧ τ − τ)

is non-negative, hence we get the desired inequality. □

The reverse direction is also shown in [Oda2]: K-semistable “almostQ-Gorenstein”
scheme X admits only semi log canonical singularities. In our non-archimedean for-
malism, we must assume X is log canonical to ensure the lsc extension of the log
discrepancy AX , so the reverse direction for non-archimedean µ-entropy does not
make sense. As for the characteristic µ-entropy, we do not need to assume X is log
canonical nor irreducible. If the trivial configuration maximizes the characteristic
µ-entropy, X is K-semistable, hence X has only semi log canonical singularities by
Odaka’s result.

4.3. Relation to other works.

4.3.1. Relation to H-entropy. Let (X,L) = (X,−KX) be a Q-Fano variety. We
recall

ȞNA(φ) := − inf
x∈Xqm

(AX(x) + φ(x))− log

∫∫
XNA

e−tDφ

for φ ∈ EexpNA (X,L). For each x ∈ Xqm, φ 7→ AX(x)+φ(x) is upper semi-continuous
with respect to the weak topology on PSHNA(X,L), so infx∈Xqm(AX(x) +φ(x)) is
upper semi-continuous. It follows that ȞNA is lower semi-continuous with respect
to Eexp/dexp-topology. We can also easily see the continuity along decreasing nets.
Actually, it would be shown in coming [BJ5] that this functional is continuous with
respect to d1-topology, and hence ȞNA is continuous with respect to Eexp/dexp-
topology, but we do not use this fact.

Proposition 4.65. For φ ∈ EexpNA (X,L), we have

µ̌2π
NA(φ) ≤ 2πȞNA(φ).
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Proof. Since L = −KX , we have

µ̌2π
NA(φ) = −2π

∫
XNA(AX + φ)

∫
e−tDφ∫∫

XNA e−tDφ
− 2π log

∫∫
XNA

e−tDφ.

Thus it suffices to show∫
XNA(AX + φ)

∫
e−tDφ∫∫

XNA e−tDφ
≥ inf

x∈Xqm
(AX(x) + φ(x)).

This is shown in [BJ2] for general Radon measure: since AX ◦ pX ↗ AX and
φ◦pX ↘ φ pointwisely on XNA (cf. [BJ1, Theorem 5.29], [BJ2, Theorem 2.1]) and
the image of pX is in Xqm, we have∫

XNA

(AX + φ)dµ = lim
X∈SNC(X)

∫
XNA

(AX + φ) ◦ pXdµ

≥ inf
x∈Xqm

(AX(x) + φ(x)) ·
∫
X

dµ

by the monotone convergence theorem for net (see Propsition 3.18). □

Proposition 4.66. Let (X ,L) be a weakly special degeneration, i.e. a normal
Q-Gorenstein test configuration such that L = −KX/C is relatively ample, the pair
(X ,X0) is log canonical and the central fibre X0 is reduced and irreducible. Then
we have µ̌2π

NA(φ(X ,L;ρ)) = 2πȞNA(φ(X ,L;ρ)).

We recall a special degeneration is a normal Q-Gorenstein test configuration
such that L = −KX/C is relatively ample and X0 is klt. As noted in [Berm, Lemma
2.2], Q-Gorenstein assumption automatically follows by the assumption that X0 is
normal. Any special degeneration is weakly special by the inversion of adjunction.

Proof. By [BHJ1, Proposition 7.29], we have

inf
x∈Xqm

(AX(x) + φ(x)) = AX(vX0) + φ(vX0) =

∫
XNA(AX + φ)

∫
e−tDφ∫∫

e−tDφ
,

which shows the claim. □

Question 4.67. Since µ̌2π
NA − 2πȞNA ≤ 0 is usc, the subset

{φ ∈ EexpNA (X,L) | µ̌2π
NA(φ) = 2πȞNA(φ)}

is closed with respect to Eexp-topology. Then what is the closure of the subset
{φ(X ,L;ρ) | (X ,L) : weakly special degeneration }? At least, MA(φ) is supported

on a point of X lin for φ in the closure, so the closure is not the entire EexpNA (X,L).

Now using the crucial existence result [BLXZ], we show the following.

Theorem 4.68. Let (X,L) = (X,−KX) be a Q-Fano variety. Then we have

sup
φ∈Eexp

NA (X,L)

µ̌2π
NA(φ) = sup

φ∈Eexp
NA (X,L)

2πȞNA(φ).

The maximum is attained by some φF ∈ HR
NA(X,L) associated to a finitely gener-

ated filtration F with µ2πK-semistable Q-Fano central fibre.
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Proof. Since ȞNA is lower semi-continuous and HNA is dense in EexpNA (X,L), we
have

sup
φ∈Eexp

NA (X,L)

ȞNA(φ) = sup
φ∈HNA(X,L)

ȞNA(φ).

In [HL2], the continuity of envelopes is implicitly assumed in the definition of
ȞNA(F) for general filtration F : the non-archimedean psh metric φF for general
filtration F is defined under the continuity of envelopes (see section 3.2.6). In order
to clarify that the existence of maximizer of ȞNA does not rely on the assumption
on the continuity of envelopes, we recall some arguments in [HL2]. For a valuation
of linear growth v ∈ X lin, we put

β̌(v) := −AX(v)− log

∫
R
e−tν∞(Fv).

This is well-defined without assuming the continuity of envelopes. Under the conti-
nuity of envelopes, this is related to ȞNA in the following way: thanks to Theorem
3.36, for any valuation of linear growth v ∈ X lin, the filtration Fv defines a non-
archimedean psh metric φv = φFv

∈ C0 ∩ PSHNA(X,L), for which we have

β̌(v) ≤ HNA(φv).

It is shown in [HL2, Theorem 4.9] there exists a quasi-monomial valuation v ∈
Xqm ⊂ X lin satisfying

β̌(v) = sup
w∈Xlin

β̌(w) ≥ sup
(X ,L)

ȞNA(φ(X ,L)),

where the last inequality is a consequence of [HL2, Theorem 3.4, Lemma 4.2]. By
the above remark, we have

β̌(v) ≥ sup
φ∈Eexp

NA (X,L)

ȞNA(φ).

Now thanks to [BLXZ], for the quasi-monomial valuation v maximizing β̌, the
filtration Fv is finitely generated and its central fibre is a Q-Fano variety. This
result does not rely on the continuity of envelopes. Therefore, we obtain the non-
archimedean psh metric φv = φFv

∈ HR
NA(X,L) associated to the finitely generated

filtration Fv and conclude

ȞNA(φv) = sup
φ∈Eexp

NA (X,L)

ȞNA(φ),

thanks to the inequality sup ȞNA ≥ HNA(φv) ≥ β̌(v).
Moreover, any w in a small neighbourhood U of v in a suitable cone QMη(Y,D) ⊂

Val(X) gives a finitely generated filtration Fw with the same central fibre (cf. [LX,
Lemma 2.10]) and φw corresponds to a weakly special degeneration if w is divisorial
by [LXZ, Theorem 2.24]. Since divisorial valuations are dense in QMη(Y,D), φv

is in the closure of {φ(X ,L;ρ) | (X ,L) : weakly special degeneration }, so that we

have µ̌2π
NA(φv) = 2πȞNA(φv). Here we note U → C0 ∩ PSHNA(X,L) : w 7→ φw

is continuous for the sup norm. Therefore, we get µ̌2π
NA ≤ 2πȞNA ≤ µ̌2π

NA(φv) and
conclude φv maximizes µ̌2π

NA on EexpNA (X,L).
To check µ2πK-semistability, it suffices to check µ̌2π

NA(φv) = µ̌2π
NA(Xo,L|Xo

; ξvo ).

As we remark in the above, we have µ̌2π
NA(φw) = 2πȞNA(φw) for w in U . Then

µ̌2π
NA(φw) is continuous on w ∈ U by the upper semi-continuity of µ̌2π

NA and the

lower semi-continuity of ȞNA. On the other hand, the filtration Fw induces a
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proper vector ξwo on the central fibre (Xo,L|Xo
). As wi → w, we have ξwi

o → ξwo .
Then µ̌2π

NA(Xo,L|Xo ; ξ
w
o ) is also continuous on w. Since the central fibre is reduced,

we already know µ̌2π
NA(φ(X ,L;ξwo )) = µ̌2π

NA(Xo,L|Xo ; ξ
w
o ) for divisorial w ∈ U . Then

the desired equality follows by the continuity. □

4.3.2. Relation to normalized Donaldson–Futaki invariant. In the study [Ino2] of
µλ-cscK metrics, we encounter extremal metrics in the limit λ → −∞. Here
we observe its non-archimedean counterpart: in the limit λ → −∞ the non-
archimedean µ-entropy is related to normalized Donaldson–Futaki invariant which
appears in Donaldson–Xia’s minimax principle [Don1, Xia1]. See also [Don2, Sze1],
[Der1, Der2, Ino4] and section 4.3.3.

Recall the non-archimedean Mabuchi functional is defined on E1NA(X,L) by

(96) MNA(φ) =

∫
XNA

AXMA(φ) +
(KX , 0) · (L,φ)·n

n!
− (KX .e

L)

(eL)

(L,φ)·n+1

(n+ 1)!
.

Putting bφ :=
∫
R tDHφ/

∫
R DHφ = E(φ)/(eL) and ∥φ̄∥ := (

∫
R(t− bφ)

2DHφ)
1/2, we

introduce the following functional defined on E2NA(X,L):

(97) CNA(φ) := −
1

(eL)

(
2πMNA(φ) +

1

2
∥φ̄∥2

)
.

This functional is upper semi-continuous on E2NA(X,L) with respect to the topology
induced from the metric d2 (see section 4.1).

This functional is related to normalized Donaldson–Futaki invariant in the fol-
lowing way. We note CNA(φ;ρ) is a quadratic function on ρ ≥ 0:

CNA(φ;ρ) = −
1

(eL)

(
2πMNA(φ) · ρ+

1

2
∥φ̄∥2 · ρ2

)
= − ∥φ̄∥

2

2(eL)

(
ρ+

2πMNA(φ)

∥φ̄∥2
)2

+
2π2

(eL)

MNA(φ)
2

∥φ̄∥2
.

Thus we have

sup
ρ≥0

CNA(φ;ρ) =

{
0 MNA(φ) > 0
2π2

(eL)
MNA(φ)2

∥φ̄∥2 =
∥φ̄;ρmax∥

2

2(eL)
MNA(φ) ≤ 0

,

where the maximum are attained at ρmax = 0 and ρmax = −2πMNA(φ)/∥φ̄∥2,
respectively. The right hand side is nothing but the normalized Donaldson–Futaki
invariant. As observed in [Don1, Ino4] (see also [Der1]), we have

sup
φ∈HNA(X,L)

CNA(φ) ≤ inf
ωϕ∈H(X,L)

C(ωϕ)

for smooth (X,L), which can be made into the equality by completing the domain
of the functionals [Xia1] in a suitable way.

Now as in [Ino2, Ino4], let us observe the extremal limit λ → −∞ of the non-
archimedean µ-entropy. As for σ̌, we can easily see the following.

Proposition 4.69. For φ ∈ EexpNA (X,L), we have

d

dρ

∣∣∣
ρ=+0

σ̌(φ;ρ) = lim
ρ→+0

ρ−1(σ̌(φ;ρ)− σ̌(φtriv)) = 0,

d2

dρ2

∣∣∣
ρ=+0

σ̌(φ;ρ) = 2 lim
ρ→+0

ρ−2(σ̌(φ;ρ)− σ̌(φtriv)) =
∥φ̄∥2

(eL)
.
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Proof. Recall

σ̌(φ;ρ) =

∫
R(n− ρt)e

−ρtDHφ∫
R e

−ρtDHφ
− log

∫
R
e−ρtDHφ.

We compute

d

dρ
σ̌(φ;ρ) = ρ

∫
R t

2e−ρtDHφ ·
∫
R e

−ρtDHφ − (
∫
R te

−ρtDHφ)
2

(
∫
R e

−ρtDHφ)2

and

d2

dρ2

∣∣∣
ρ=0

σ̌(φ;ρ) = lim
ρ→0

ρ−1 d

dρ
σ̌(φ;ρ)

=

∫
R t

2DHφ ·
∫
R DHφ − (

∫
R tDHφ)

2

(
∫
R DHφ)2

=
∥φ̄∥2

(eL)
.

□
To see the behavior of µ̌NA, we prepare some computations.

Lemma 4.70. Let f be a right continuous function on R such that f(σ)e−ρσ is
integrable for every small ρ > 0 and f(σ) = c for σ ≫ 0. Then we have

lim
ρ→0

ρ

∫
R
fe−ρσdσ = c

and

lim
ρ→0

ρ2
∫
R
fσe−ρσdσ = c

Proof. For

χ(σ) =


0 σ < τ

σ − τ τ ≤ σ ≤ τ + c

c σ > τ + c

,

we compute

ρ

∫
R
χe−ρσdσ = −ρ−1(e−ρ(τ+c) − e−ρτ )→ c

as ρ→ 0. Similarly,

ρ2
∫
R
χσe−ρσdσ = −((τ + c)e−ρ(τ+c) − τe−ρτ )− 2ρ−1(e−ρ(τ+c) − e−ρτ )→ c.

On the other hand, since f − χ and (f − χ)σ has left bounded support, |f −
χ|max{e−ρ0σ, 1} and |(f−χ)σ|max{e−ρ0σ, 1} are integrable. Thus we have uniform
bounds ∣∣∣ ∫

R
(f − χ)e−ρσdσ

∣∣∣ ≤ ∫
R
|f − χ|max{e−ρ0σ, 1}dσ <∞,∣∣∣ ∫

R
(f − χ)σe−ρσdσ

∣∣∣ ≤ ∫
R
|(f − χ)σ|max{e−ρ0σ, 1}dσ <∞.

It follows that

lim
ρ→0

ρ

∫
R
fe−ρσdσ = c+ lim

ρ→0
ρ

∫
R
(f − χ)e−ρσdσ = c,

lim
ρ→0

ρ2
∫
R
fσe−ρσdσ = c+ lim

ρ→0
ρ2

∫
R
(f − χ)σe−ρσdσ = c.

□
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Proposition 4.71. For φ ∈ EexpNA (X,L) and ψ ∈ E1NA(X,L) ∪ C0(XNA), we have

d

dρ

∣∣∣
ρ=+0

∫
XNA

ψ;ρ

∫
e−tDφ;ρ = lim

ρ→+0

∫
XNA

ψ

∫
e−ρtDφ =

∫
XNA

ψMA(φ).

For φ ∈ PSHbdd
NA (X,L), we have

d

dρ

∣∣∣
ρ=+0

∫
XNA

AX

∫
e−tDφ;ρ = lim

ρ→+0

∫
XNA

AX

∫
e−ρtDφ =

∫
XNA

AXMA(φ).

Proof. For ψ ∈ E1NA(X,L), using the above lemma, we compute∫
XNA

ψ

∫
e−ρtDφ = ρ−1

∫
XNA

ψ;ρ

∫
e−tDφ;ρ

= ρ−1
(∫

R
dτe−τ

∫
XNA

(ψ;ρ − ψ;ρ(vtriv))MA(φ;ρ ∧ τ) + ψ;ρ(vtriv)

∫
R
e−τDHφ;ρ

)
= ρ

∫
R
dσe−ρσ

∫
XNA

(ψ − ψ(vtriv))MA(φ ∧ σ) + ψ(vtriv)

∫
R
e−ρτDHφ

→
∫
XNA

ψMA(φ)

as ρ → 0. Since limρ→+0

∫
XNA ψ;ρ

∫
e−tDφ;ρ

= 0, we obtain the first line for

ψ ∈ E1NA(X,L). By uniform approximation, we can also check the same convergence
for ψ ∈ C0(XNA). In particular, the measure

∫
e−ρtDφ converges weakly to MA(φ)

as ρ→ 0.
We similarly have limρ→+0

∫
XNA AX

∫
e−tDφ;ρ = 0. We compute

ρ−1

∫
XNA

AX

∫
e−tDφ;ρ

= ρ−1

∫
XNA

AX(ρ.v)

∫
e−ρtDφ =

∫
XNA

AX

∫
e−ρtDφ.

Since AX is lsc, we get

lim
ρ→0

∫
XNA

AX

∫
e−ρtDφ ≥

∫
XNA

AXMA(φ).

On the other hand, for φ ∈ PSHbdd
NA (X,L), we have∫

e−ρtDφ ≤ e−ρ inf φMA(φ).

Indeed, we can directly check this for φ = φ(X ,L) ∈ HNA(X,L) by∫
R e

−ρtDH(E,L|E)∫
R DH(E,L|E)

≤ e−ρ inf φ.

The general case follows by passing to the limit: limi→∞ inf φi ≥ inf φ for any

convergent decreasing net φi ↘ φ ∈ PSHbdd
NA (X,L). It follows that we have

lim
ρ→0

∫
XNA

AX

∫
e−ρtDφ ≤ lim

ρ→0
e−ρ inf φ

∫
XNA

AXMA(φ) =

∫
XNA

AXMA(φ)

for φ ∈ PSHbdd
NA (X,L), which shows the claim. □

We speculate the latter equality holds for general φ ∈ EexpNA (X,L) with finite∫
XNA AX

∫
e−tDφ <∞.
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Proposition 4.72. For φ ∈ PSHbdd
NA (X,L), we have

d

dρ

∣∣∣
ρ=+0

µ̌NA(φ;ρ) = lim
ρ→+0

ρ−1(µ̌NA(φ;ρ)− µ̌NA(φtriv)) = −
2π

(eL)
MNA(φ).

Proof. Recall

µ̌NA(φ;ρ) = −2π
∫
XNA AX

∫
e−tDφ;ρ

+ EKX
exp (φ;ρ)∫

R e
−ρtDHφ

.

For φ ∈ EexpNA (X,L), we show

d

dρ

∣∣∣
ρ=+0

EM (φ;ρ) =
(M, 0) · (L,φ)·n

n!
.

From the proof of Proposition 4.58, we recall

EM
exp(φ;ρ) =

∫
R

(M, 0) · (L,φ;ρ ∧ τ − τ)·n

n!
e−τdτ

= ρ2
∫
R

(M, 0) · (L,φ ∧ σ − σ)·n

n!
e−ρσdσ.

Again by Lemma 4.70, we compute

d

dρ

∣∣∣
ρ=+0

EM
exp(φ;ρ) = lim

ρ→+0
2ρ

∫
R

(M, 0) · (L,φ ∧ σ − σ)·n

n!
e−ρσdσ

− lim
ρ→+0

ρ2
∫
R

(M, 0) · (L,φ ∧ σ − σ)·n

n!
σe−ρσdσ

=
(M, 0) · (L,φ)·n

n!
.

By Leibniz rule, we compute

d

dρ

∣∣∣
ρ=+0

µ̌NA(φ;ρ) = −2π
∫
XNA AXMA(φ) + (KX , 0) · (L,φ)·n/n!∫

R DHφ
+ 2π(KX .e

L)

∫
R tDHφ

(
∫
R DHφ)2

= − 2π

(eL)
MNA(φ).

□

For φ ∈ HNA(X,L), we can also compute these derivatives by the equivariant
intersection formulae.

Corollary 4.73. For φ ∈ PSHbdd
NA (X,L), we have

d

dρ

∣∣∣
ρ=0

µ̌λ
NA(φ;ρ) = −

2π

(eL)
MNA(φ).

For φ ∈ E2NA(X,L), we have

d

dρ

∣∣∣
ρ=0

CNA(φ;ρ) = −
2π

(eL)
MNA(φ).

Now we find the following as an expansion of [Ino2].

Theorem 4.74. For φ ∈ PSHbdd
NA (X,L), we have

lim
ρ→+0

ρ−1(µ̌−ρ−1

NA (φ;ρ)− µ̌−ρ−1

NA (0)) = CNA(φ).
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Proof. We compute

lim
ρ→+0

ρ−1(µ̌−ρ−1

NA (φ;ρ)− µ̌−ρ−1

NA (0)) =
d

dρ

∣∣∣
ρ=+0

µ̌NA(φ;ρ)−
1

2

d2

dρ2

∣∣∣
ρ=+0

σ̌(φ;ρ)

= −2π(eL)−1MNA(φ)−
1

2
(eL)−1∥φ̄∥2

□

If Conjecture 1.16 holds, then by Proposition 1.17 we have a maximizer φρ
opt of

µ̌−ρ−1

NA for ρ > 0 with supφρ
opt = 0. Then the rescaling φ̃ρ

opt := φρ
opt;ρ−1 gives a

maximizer of the normalized functional ρ−1(µ̌−ρ−1

NA (•;ρ) − µ̌−ρ−1

NA (0)). The author
speculates φ̃ρ

opt converges to a limit φext which maximizes CNA.

4.3.3. Maximizing non-archimedean Calabi energy. Here we discuss the maximiza-
tion problem for CNA, referring to various fundamental conjectures. It is studied in
[Xia1] that for smooth (X,L) the normalized Donaldson–Futaki invariant extends
to the space R2(X,ω) of geodesic rays in E2(X,L) in an (archimedean) analytic
way: we put

Cray(ℓ) := −
1

(eL)

(
2πM∞(ℓ) +

1

2
∥ℓ∥2

)
,

M∞(ℓ) := lim
t→∞

t−1M(ℓt),

∥ℓ∥ :=
(∫

X

|ℓ̇t|2
ωn
ℓt

n!

)1/2

for a geodesic ray ℓ in E2(X,L) normalized by
∫
X
ℓ̇tω

n
ℓt
/n! = 0. Here M denotes

the Mabuchi functional. Similarly as CNA, we have

sup
ρ≥0

Cray(ℓ;ρ) =

{
0 M∞(ℓ) > 0
2π2

(eL)
M∞(ℓ)2

∥ℓ∥2 M∞(ℓ) ≤ 0
,

where ℓ;ρ denotes the rescaled geodesic (ℓ;ρ)t = ℓρt. Then the main theorem of
[Xia1] shows thatCray admits a maximizing geodesic ray, and the following minimax
principle holds for the Calabi energy

(98) sup
ℓ∈R2(X,ω)

Cray(ℓ) = inf
ωϕ∈E2(X,L)

C(ωϕ).

See also [His] for a similar equality for Ding version of the Calabi energy.
On the other hand, it is shown by [Li2] that the maximizing geodesic ray is

maximal in the sense of [BBJ] (since it destabilizes the Mabuchi energy) and hence
is indeed subordinate to a non-archimedean psh metric φ ∈ E2NA(X,L). So we
actually have

sup
φ∈E2

NA(X,L)

Cray(ℓφ) = inf
ωϕ∈E2(X,L)

C(ωϕ).

Therefore, to conclude the existence of a maximizer φ ∈ E2NA(X,L) of CNA,
it suffices to compare Cray(ℓφ) and CNA(φ). By [Li2, Theorem 1.7], we know
M∞(ℓφ) ≥MNA(φ), so that at least we have

CNA(φ) ≥ Cray(ℓφ).

The reverse inequality for maximizing φ ∈ E2NA(X,L) can be reduced to one of the
following conjectures.
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Conjecture 4.75 (Minimax conjecture for Calabi energy). Suppose X has only
klt singularities. Then we have

sup
φ∈E2

NA(X,L)

CNA(φ) = inf
ωϕ∈E2(X,L)

C(ωϕ)

with an appropriate definition of the right hand side.

As for smooth X, this conjecture can be reduced to the following inequality from
what we observed.

sup
φ∈E2

NA(X,L)

CNA(φ) ≤ inf
ωϕ∈E2(X,L)

C(ωϕ)

We recall Donaldson’s inequality [Don1] states

(99) sup
φ∈HNA(X,L)

CNA(φ) ≤ inf
ωϕ∈H(X,L)

C(ωϕ).

If we can replace the right hand side with infωϕ∈E2(X,L) C(ωϕ), then this conjecture
can be reduced to another Conjecture 4.81. This replacement is related to the
smoothness of Calabi flow as remarked in [Xia1, Remark 4.2].

The following conjecture provides a more direct way to show CNA(φ) = Cray(ℓφ).
As observed in [Li2], this conjecture also follows from Conjecture 4.81.

Conjecture 4.76 (Slope formula for entropy [Li2]). The slope of the entropy

lim
t→∞

t−1

∫
X

log
MA(ℓφ,t)

MA(ℓφ,0)
MA(ℓφ,t)

along the maximal geodesic ray {ℓφ,t}t∈[0,∞) subordinate to φ ∈ E2NA(X,L) (cf.

[BBJ]) is equal to the non-archimedean entropy
∫
XNA AXMA(φ).

The following conjecture provides yet another approach for the maximization
problem on CNA, which does not relying on Xia’s existence result unlike the above
approaches. This approach is more close to what we proposed for the maximization
problem on the non-archimedean µ-entropy.

Conjecture 4.77 (Properness of Calabi energy). Assume (X,L) is klt. Consider
dp-topology for 1 ≤ p < 2 on E2NA(X,L). Then the subset

{φ ∈ E2NA(X,L) | E(φ) = 0, CNA(φ) ≥ C}
is compact in dp-topology.

We note the subset is not compact in d2-topology as we can see in the following
toric example. This is the reason we consider Eexp-topology in analogous Conjecture
1.16 rather than stronger dexp-topology.

Example 4.78. Consider a polarized toric normal variety (X,L) and the associated
toric polytope P . As explained in section 5.1, for a lower semi-continuous convex
function q on P , we can assign a non-archimedean psh metric φq on (X,L). Thanks
to [Li2, Proposition 6.3], we have

CNA(φq) = −
2π∫
P
dµ

(∫
∂P

qdσ +
(KX .e

L)

(eL)

∫
P

qdµ
)
− 1

2
∫
P
dµ

∫
P

(q − q̄)2dµ.

Now consider the toric polytope P = [0, 1]2 and the following sequence of convex
functions on P :

qn = max{0, n− n2(x+ y)} − 1

6n
.
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We can compute
∫
∂P

qndσ = 1− 2/3n,
∫
P
qndµ = 0 and

∫
P
q2ndµ = 1/12− (1/6n)2.

It follows that CNA(φqn) = −2π(1 − 2/3n) − (1/12 − (1/6n)2)/2 ≥ −2π − 1/24 is
bounded and E(φqn) = 0. Since d1(φqn , 0) =

∫
P
|qn|dµ ≤ 1/3n, the corresponding

sequence of non-archimedean psh metrics φqn converges to the trivial metric φtriv =
0 in d1-topology (or even dp-topology for p < 2), but it contains no subsequence
converging in d2-topology as d2(φqn , 0) ≥ 1/18.

This conjecture implies the existence of maximizers.

Proposition 4.79. Assuming Conjecture 4.77, there exists a maximizer φext ∈
E2NA(X,L) of CNA.

Proof. For a d1-convergent sequence φi → φ ∈ E2NA(X,L), we have limi→∞ ∥φ̄i∥ ≤
∥φ̄∥ by Proposition 4.28, so that

lim
i→∞

CNA(φi) ≤ CNA(φ).

Take a sequence φi ∈ E2NA(X,L) so that CNA(φi) ↗ supCNA. By Conjecture
4.77, we have a d1-convergent subsequence φj → φ. Then we get

supCNA = lim
j→∞

CNA(φj) ≤ CNA(φ) ≤ supCNA.

Thus the limit φ attains the maximum. □
In view of the following proposition, this conjecture is analogous to the following

fact: any Lp-bounded almost everywhere convergent sequence of measurable func-
tions on a finite measure space converges in Lq-topology for any q < p. Recall this
is a consequence of Egorov’s theorem.

Proposition 4.80. Suppose CNA is bounded from above on E2NA(X,L), and the
continuity of envelopes holds for (X,L). Then for any C ∈ R, the subset

{φ ∈ E2NA(X,L) | E(φ) = 0, CNA(φ) ≥ C}
is d2-bounded and relatively weakly compact.

Proof. Take φ in the subset. If MNA(φ) > 0, we have

−C ≥ −CNA(φ) ≥
∥φ̄∥2

2(eL)
.

If MNA(φ) ≤ 0, we have

sup
ρ≥0

CNA(φ;ρ) =
2π2

(eL)

MNA(φ)
2

∥φ̄∥2
.

Since CNA is bounded from above on E2NA(X,L), we have a constant C
′ ≥ max{0, C}

such that

−2πMNA(φ) ≤
√

2(eL)C ′ · ∥φ̄∥.
It follows that

−C ≥ −CNA(φ) ≥
1

(eL)

(
−

√
2(eL)C ′ · ∥φ̄∥+ 1

2
∥φ̄∥2

)
=

1

2(eL)

(
∥φ̄∥ −

√
2(eL)C ′

)2

− C ′,

hence we get √
2(eL)(C ′ − C) +

√
2(eL)C ′ ≥ ∥φ̄∥.
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Therefore, d2(0, φ) = ∥φ̄∥ is uniformly bounded on the subset in either cases.
Since Ī(φ, 0) ≤ Cnd1(0, φ) ≤ Cnd2(0, φ) by [BJ4, Lemma 5.5], supφ is uniformly

bounded on the subset. Therefore, under the continuity of envelopes, any sequence
in the subset contains a weakly convergent subnet by [BJ3, Corollary 4.58] (cf.
[BJ1, Corollary 6.5]). At the moment, we do not know if limi→∞E(φi) = E(φ) for
the d2-bounded weakly convergent net φi → φ. □

When X is smooth, we know the boundedness of CNA on HNA(X,L) thanks
to Donaldson’s inequality (99). The boundedness on E2NA(X,L), which is the as-
sumption of the proposition, holds especially when the following conjecture holds.
The conjecture is confirmed for T -invariant metrics on toric varieties (cf. [Li2,
Proposition 6.3]).

Conjecture 4.81 (Regularization of entropy [BJ2, Li2]). For any φ ∈ E1NA(X,L),
there exists a sequence {φi}i∈N ⊂ HNA(X,L) converging to φ in the strong topology
such that

lim
i→∞

∫
XNA

AXMA(φi) =

∫
XNA

AXMA(φ).

On the other hand, we know the continuity of envelopes holds for smooth X, so
that the assumptions of the above proposition are valid for smooth X under this
regularization conjecture. In conjunction with this conjecture, we can reduce Con-
jecture 4.77 for smooth X to the following more simple conjecture. The existence of
maximizers of CNA is related such fundamental conjectures in the non-archimedean
pluripotential theory.

Conjecture 4.82. Every d2-bounded weakly convergent sequence in E2NA(X,L) is
d1-convergent.

We note d2-bounded d1-convergent sequence is dp-convergent for 1 ≤ p < 2 by
Lebesgue interpolation as in the proof of Proposition 4.41:

dp(φi, φ)
p ≤ d1(φi, φ)

2−p(d2(φi, 0) + d2(φ, 0))
2(p−1).

4.3.4. Relation to normalized Ding invariant. Again we consider a Q-Fano variety
(X,L) = (X,−KX). The minimax equality for a Ricci potential version of the
Calabi energy is studied in [His]:

sup
φ∈HNA(X,L)

RNA(φ) = inf
ωϕ∈H(X,L)

R(ωϕ).

Here we put

R(ωϕ) :=
1

(eL)

∫
X

(ehϕ − 1)2ωn
ϕ/n!

using the Ricci potential Ric(ωϕ)−2πωϕ =
√
−1∂∂̄hϕ normalized by

∫
X
ehϕωn

ϕ/n! =

(eL). The critical points of this functional are Mabuchi soliton (cf. [Mab]). The
existence of Mabuchi soliton is studied in [His2].

Similarly as CNA, we put

RNA(φ) := −
1

(eL)

(
2πDNA(φ) +

1

2
∥φ̄∥2

)
,

using the non-archimedean Ding functional

DNA(φ) = (eL) inf
x∈Xqm

(AX(x) + φ(x))− E(φ).
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We note

RNA(φ;ρ) = −
1

(eL)

(
2πDNA(φ) · ρ+

1

2
∥φ̄∥2 · ρ2

)
= − ∥φ̄∥

2

2(eL)

(
ρ+ 2πDNA(φ)

)2

+
2π2

(eL)

DNA(φ)
2

∥φ̄∥2
,

so that we have

sup
ρ≥0

RNA(φ;ρ) =

{
0 DNA(φ) > 0
2π2

(eL)
DNA(φ)2

∥φ̄∥2 DNA(φ) ≤ 0
.

Compared to the Calabi flow, we have a smooth solution to the gradient flow of
R by [CHT], so that we can restrict things to HNA(X,L) and H(X,L), rather than
E2NA(X,L) and E2(X,L).

Now the non-archimedean Ding functional is known to be continuous along de-
creasing net. This is an alternative of Conjecture 4.81 for RNA. It follows that RNA

is bounded from above on E2NA(X,L) when X is smooth. Thus we can reduce the
maximization problem for RNA to Conjecture 4.82, following what we observed for
CNA.

5. Appendix: Toric illustration

5.1. Non-archimedean µ-entropy via Legendre dual.

5.1.1. Legendre transform of T -invariant non-archimedean metric. We firstly re-
view [BJ3, Appendix B].

Let (X,L) be a polarized normal toric variety and P ⊂ t∨ be the moment
polytope:

P := l−1{µ ∈M | H0(X, lL)µ ̸= 0}
conv

,

where l ∈ N+ is taken so that lL is a line bundle. On P , we consider the restriction
of Lebesgue measure dµ normalized by the lattice N . (Since |detA| = 1 for A ∈
GL(N), the measure is uniquely determined. )

On the boundary ∂P , we consider the measure dσ which is characterized on each
face ∂P ∩ {µ ∈ t | ⟨µ, η⟩ − λ = 0} by

dσ(B) = dµKerη(B − µ0)

for a Borel subset B of the face. Here µ0 ∈ t is a point with ⟨µ0, η⟩ − λ = 0 and
dµKerη is the Lebesgue measure on Kerη normalized by the lattice N ∩Kerη.

Consider a normal toric test configuration (X ,L) of (X,L). Take sufficiently
large c > 0 so that the line bundle L̄c := L̄ + c.[X0] over X̄ is ample. Then the
moment polytope Qc associated to the polarized toric T ×Gm-variety (X̄ , L̄c) can
be written as

Qc = {(µ, t) ∈ t∨ × R | µ ∈ P, 0 ≤ t ≤ −q(µ) + c},
using a continuous convex function q(X ,L) : P → R of the form

q(X ,L)(µ) = max
E
{⟨µ, ηE⟩ − λE}

for some ηE ∈ (ordEX0)
−1N and λE ∈ Q assigned to each irreducible component

E of X0 (cf. [CLS, Proposition 4.1.1]). This q(X ,L) is independent of the choice
of c > 0. By putting q(X ,L)(µ) = +∞ for µ /∈ P , we can regard q(X ,L) as a lower
semi-continuous convex function on t∨.
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Recall the Legendre dual of a function q : t∨ → [−∞,∞] is a function q∗ : t →
[−∞,∞] given by

q∗(ξ) := sup{⟨µ, ξ⟩ − q(µ) | µ ∈ t∨}.
Since {⟨µ, ξ⟩−q(µ)}µ∈t∨ is a family of linear functions, the supremum gives a lower
semi-continuous convex function on t. We have (q∗)∗ = q if and only if q is a lower
semi-continuous convex function.

Proposition 5.1. We have

q∗(X ,L)(ξ) = φ(X ,L)(v−ξ) + sup
µ∈P
⟨µ, ξ⟩.

In particular, φ(X ,L)(v−ξ) + supµ∈P ⟨µ, ξ⟩ is a convex function on t.

Proof. We recall H0(X,L⊗m) =
⊕

µ∈mP∩M H0(X,L⊗m)µ and H0(X,L⊗m)µ =

C.sµ. The basis {sµ} is diagonal with respect to ∥ · ∥(X ,L), so we have

φ(X ,L)(v−ξ) =
1

m
sup

µ∈mP∩M
{−v−ξ(sµ)− log ∥sµ∥(X ,L)}

=
1

m
sup

µ∈mP∩M
{−(⟨µ,−ξ⟩ −mσmin,m(F−ξ))− log ∥sµ∥(X ,L)}

= sup
µ∈P∩m−1M

{⟨µ, ξ⟩ − 1

m
log ∥smµ∥(X ,L)} − sup

µ∈P
⟨µ, ξ⟩,

where the last equality follows by σmin,m(F−ξ) = inf suppDHF−ξ
= infµ∈P ⟨µ,−ξ⟩ =

− supµ∈P ⟨µ, ξ⟩.
It suffices to show

q∗(X ,L) = sup
µ∈P∩m−1M

{⟨µ, ξ⟩ − 1

m
log ∥smµ∥(X ,L)}

for sufficiently divisible m. Since

− 1

m
log ∥smµ∥(X ,L) =

1

m
sup{λ ∈ Z | ϖ−λ.s̄mµ ∈ H0(X ,L⊗m)}

= sup{λ ∈ m−1Z | (µ, λ+ c) ∈ Qc ∪ P × (−∞, 0)}
= sup{λ ∈ m−1Z | λ ≤ −q(µ)},

we have

q∗(X ,L) ≥ sup
µ∈P∩m−1M

{⟨µ, ξ⟩ − 1

m
log ∥smµ∥(X ,L)}.

The equality for sufficiently divisible m is a consequence of the finite expression of
q = maxE{⟨µ, ηE⟩ − λE}. □

Let HNA(X,L)T denote the set of non-archimedean psh metrics associated to
toric test configurations. We call a non-archimedean psh metric φ on (X,L) T -
invariant if it is the limit of some decreasing net {φi}i∈I ⊂ HNA(X,L)T . We
denote by PSHNA(X,L)T the set of T -invariant non-archimedean psh metrics. For
φ ∈ PSHNA(X,L)T , we put

fφ(ξ) := φ(v−ξ) + sup
µ∈P
⟨µ, ξ⟩.

Since vξ is quasi-monomial, each fφ(ξ) is finite. For a convergent decreasing net
φi ↘ φ in PSHNA(X,L)T , we have fφi ↘ fφ. Thanks to the above proposition,
fφ is convex for φ ∈ HNA(X,L), which implies the convexity of fφ for general φ ∈
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PSHNA(X,L)T . Therefore, fφ is finite valued convex function on t, in particular,
it is continuous.

Similarly, we put qφ := f∗φ : t∨ → (−∞,∞] for φ ∈ PSHNA(X,L)T . Again by
the above proposition, we have qφ(X ,L)

= q(X ,L). For φi ↘ φ, we have qφi
↗ qφ.

Proposition 5.2. For φ ∈ C0 ∩ PSHNA(X,L)T , we have

Fλ
φRm = {s ∈ Rm | λ ≤ −mqφ(µ/m) if sµ ̸= 0}.

Proof. Since Fφ is T -invariant, we have Fφ =
∩

ξ∈t Fvξ [φ(vξ)]. It follows that

s ∈ Fλ
φRm iff

vξ(sµ) +mφ(vξ) ≥ λ
for every ξ ∈ t and µ with sµ ̸= 0. We compute

vξ(s)+mφ(vξ) = inf{⟨µ, ξ⟩ | sµ ̸= 0}+m sup
µ∈P
⟨µ,−ξ⟩+mφ(vξ) = inf{⟨µ, ξ⟩ | sµ ̸= 0}+mfφ(−ξ).

On the other hand, by the convex duality, we have

mqφ(µ/m) = sup{⟨µ, ξ⟩ −mfφ(ξ) | ξ ∈ t} = − inf{v−ξ(sµ) +mφ(v−ξ) | ξ ∈ t}
for 0 ̸= sµ ∈ H0(X,L⊗m)µ. This proves the claim. □
Proposition 5.3. For φ ∈ PSHNA(X,L)T , we have

qφ∧τ = max{qφ,−τ}

Proof. We note qτ = −τ for τ ∈ R. By the above proposition, for φ ∈ C0 ∩
PSHNA(X,L)T , we have

{s ∈ Rm | λ ≤ −qφ∧τ (µ/m) if sµ ̸= 0} = Fλ
φ∧τRm = (Fλ

φ ∩ Fλ
τ )Rm

= {s ∈ Rm | λ ≤ −max{qφ(µ/m),−τ} if sµ ̸= 0}.

This shows the claim for φ ∈ C0 ∩PSHNA(X,L)T . The general case follows by the
limit argument φi ↘ φ. □
Proposition 5.4. For φ ∈ PSHNA(X,L)T and φ′ ∈ HNA(X,L)T , we have

DHφ,φ′ = ((qφ′ − qφ)∗dµ)|R.
Here we note (qφ′ − qφ)∗dµ is a measure on [−∞,∞) and may charge {−∞}, in
which case we have

∫
R DHφ,φ′ < (eL).

Proof. We firstly assume φ ∈ HNA(X,L)T . Take a basis {sm,µ}µ∈mP∩M ofH0(X,L⊗m) =⊕
µ∈mP∩M H0(X,L⊗m)µ so that H0(X,L⊗m)µ = C.sµ. Then it is codiagonal with

respect to φ,φ′, so we have

DHφ,φ′ = lim
m→∞

1

mn

∑
µ∈mP∩M

δλφ(sm,µ)/m−λφ′ (sm,µ)/m
.

By Proposition 5.2, we have λφ(sm,µ) = −mqφ(µ/m), so that we get

DHφ,φ′ = lim
m→∞

1

mn

∑
µ∈P∩m−1M

δ−qφ(µ)+qφ′ (µ).

By the Riemannian integral, the limit can be identified with ((qφ′ − qφ)∗dµ)|R.
Now consider the general case φ ∈ PSHNA(X,L)T . It suffices to check∫

[τ,∞)

DHφ,φ′ =

∫
[τ,∞)

(qφ′ − qφ)∗dµ = µ({qφ′ − qφ ≥ τ})
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for general φ ∈ PSHNA(X,L)T . The left hand side is continuous along decreasing
nets φi ↘ φ by our construction of the Duistermaat–Heckman measure. On the
other hand, the right hand side is continuous as Fi := {qφ′ − qφi ≥ τ} gives an
decreasing net of closed sets for which we have

∩
i Fi = {qφ′ − qφ ≥ τ}. □

It follows that for φ ∈ PSHNA(X,L)T we have φ ∈ ENA(X,L) iff µ({qφ =∞}) =
0, and φ ∈ E1NA(X,L) iff

∫
P
qφdµ < ∞. In particular, for φ ∈ ENA(X,L)T =

ENA(X,L) ∩ PSHNA(X,L)T , qφ is continuous on P ◦. If qφ is finite valued on P ,
then it is continuous on P by [GKR].

5.1.2. dexp-metric via Legendre dual. We observe the Legendre dual of

EexpNA (X,L)T := EexpNA (X,L) ∩ PSHNA(X,L)T .

We consider

Convexp(P ) := {q : P → (−∞,∞] | q is lsc convex and

∫
P

eρqdµ <∞ for ∀ρ > 0}.

Since q is finite valued on a dense subset, it is automatically continuous on the
interior P ◦. By the convexity and the lower semi-continuity, for µo ∈ P ◦ and
µ ∈ ∂P , the convex function q((1 − t)µo + tµ) is continuous on t ∈ [0, 1] (possibly
+∞ at t = 1), hence q is uniquely determined by q|P◦ . We consider the following
distance on Convexp(P ):

dexp(q, q′) := inf{β > 0 |
∫
P

(e|q−q′|/β − 1)dµ ≤ 1}.

Proposition 5.5. (Convexp(P ), dexp) is a complete metric space. If qi → q in
dexp, then qi converges uniformly to q on every compact set K ⊂ P ◦ and we have
q ≤ lim qi everywhere on P .

Convexp(P )→ [0,∞] : q 7→ lim
t→1

∫
∂P

eq((1−t)µo+tµ)dσ

Proof. Let qi be a Cauchy sequence. By the completeness of the small Orlicz space
Lexp(P ) = {f : P → [−∞,∞] |

∫
P
eρfdµ < ∞ for ∀ρ > 0}, we have a Lebesgue

measurable function q̃ : P → [−∞,∞] such that qi → q̃ in the Lexp-norm. Since qi
converges to q̃ on a dense subset, it uniformly converges to a convex function q◦ on
any compact set K of P ◦ by a general argument on convex function. Fix a point
µo ∈ P ◦ and put q(µ) := limt→1 q

◦((1 − t)µo + tµ) for µ ∈ P . As we have q = q̃
on P ◦, qi → q in the Lexp-norm. In particular, we get q ∈ Convexp(P ) and hence
qi → q in dexp.

We show that q is lower semi-continuous. The argument mimics [Don2]. Take
a convergent sequence µi → µ ∈ P . Put fi(t) := q((1 − t)µo + tµi) and f(t) :=
q((1 − t)µo + tµ), then by the continuity of q|P◦ , fi converges to f pointwisely on
[0, 1). Since

fi(t) ≤ (1− t)q(µo) + tq(µi)

we have

f(t) ≤ (1− t)q(µo) + t lim
i→∞

q(µi)

for t ∈ [0, 1). Taking the limit t→ 1, we get

q(µ) = f(1) ≤ lim
i→∞

q(µi).



128 EIJI INOUE

The rest claim is q ≤ limi→∞ qi. We have

qi((1− t)µo + tµ) ≤ (1− t)qi(µo) + tqi(µ)

Since qi((1− t)µo + tµ)→ q((1− t)µo + tµ) for t ∈ [0, 1), we have

q((1− t)µo + tµ) ≤ (1− t)q(µo) + t lim
i→∞

qi(µ)

for t ∈ [0, 1). Taking the limit t→ 1, we get

q(µ) ≤ lim
i→∞

qi(µ).

□

For φ ∈ EexpNA (X,L)T , we have

Eexp(φ;ρ) =

∫
R
e−ρtDHφ =

∫
P

eρqφdµ,

so that qφ ∈ Convexp(P ).

Proposition 5.6. The map

(EexpNA (X,L)T , dexp)→ (Convexp(P ), dexp) : φ 7→ qφ

is an isometry. Assuming the continuity of envelopes, the map is bijective.

Proof. By Proposition 5.4, for φ ∈ EexpNA (X,L)T and φ′ ∈ HNA(X,L)T , we have∫
R
(e|t|/β − 1)DHφ,φ′ =

∫
P

(e|qφ−qφ′ |/β − 1)dµ.

Then by Proposition 4.14, we get

dexp(φ,φ
′) = dexp(qφ, qφ′).

To see this for general φ′ ∈ EexpNA (X,L)T , take a decreasing net φ′
i ⊂ HNA(X,L)T

so that φ′
i ↘ φ′, then the monotone convergence theorem shows dexp(qφ′

i
, qφ′)→ 0.

It follows that dexp(qφ, qφ′
i
) → dexp(qφ, qφ′). Since we already know dexp(φ,φ

′
i) →

dexp(φ,φ
′), this shows the above map is an isometry.

To see the surjectivity, we want to assign φq ∈ EexpNA (X,L)T to q ∈ Convexp(P ).
Since q = sup{ℓ : P → R | q ≥ ℓ : rational affine function }, we can find an
increasing net of convex functions qi on P of the form qi = qφi

for φi ∈ HNA(X,L)T
so that qi ↗ q. It is not evident if φi gives a decreasing net, so we instead use the
completeness of EexpNA (X,L)T as follows. By the monotone convergence theorem, we
have dexp(qi, q) → 0. Since dexp(φi, φj) = dexp(qi, qj), {φi} ⊂ EexpNA (X,L)T gives
a Cauchy net. Under the continuity of envelopes, EexpNA (X,L)T ⊂ EexpNA (X,L) is
complete, so that the Cauchy net converges to some φ ∈ EexpNA (X,L)T . Since

dexp(q, qφ) ≤ dexp(q, qi) + dexp(qi, qφ) = dexp(q, qi) + dexp(φi, φ)→ 0,

we have qφ = q. □
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5.1.3. Non-archimedean µ-entropy via Legendre dual. For q ∈ Convexp(P ), we put

µ̌∗
NA(q) := −2π

∫
∂P

eqdσ∫
P
eqdµ

,(100)

σ̌∗(q) :=

∫
P
(n+ q)eqdµ∫

P
eqdµ

− log

∫
P

eqdµ,(101)

µ̌∗,λ
NA(q) := µ̌∗

NA(q) + λσ̌∗(q).(102)

Proposition 5.7. For a normal test configuration (X ,L) and ρ > 0, we have

µ̌λ
NA(φ(X ,L;ρ)) = µ̌∗,λ

NA(ρq(X ,L)).

Proof. We firstly note the canonical divisor formula for toric varietyKX̄ = −
∑

F DF ,
where DF denote the prime divisor corresponding to a face F ⊂ ∂Q (cf. [CLS, The-
orem 8.2.3]). Since DF is T ×Gm-invariant, we have a T ×Gm-equivariant Chow
class −

∑
F [DF ]

T×Gm . The above formula indeed gives the equality of T × Gm-

equivariant Chow classes KT×Gm

X̄ = −
∑

F [DF ]
T×Gm by [CLS, Theorem 13.3.1].

Let uF = (uNF , aF ) ∈ N × Z denote the minimal generator of the normal ray

of the face F . Since we have π∗KGm

P1 = −[X0]
Gm − [X∞] = −

∑
F |aF |[DF ]

Gm (cf.

[CLS, Proposition 4.1.1]) with X∞ = π−1(0 : 1) = X, we have

K log,T×Gm

X̄/P1 = KT×Gm

X̄/P1 + ([X red
0 ]Gm − [X0]

Gm)

= −
∑
F

(1− |aF |)[DF ]
Gm +

∑
F,aF ̸=0

(1− |aF |)[DF ]
Gm = −

∑
F,aF=0

[DF ]
Gm .

Thus we get

(K log
X̄/P1 .e

L̄; ρ) = −
∑

F,aF=0

∫
F

e−ρtdσ ⊗ dt.

Now we compute

(eL̄; ρ) =

∫
Q

e−ρtdµ⊗ dt =
∫
P

dµ

∫ −q(µ)

0

e−ρtdt =

∫
P

1− eρq(µ)

ρ
dµ,

(L̄.eL̄; ρ) =
∫
Q

((n+ 1)− ρt)e−ρtdµ⊗ dt =
∫
P

dµ

∫ −q(µ)

0

(−ρt)e−ρtdt =

∫
P

n− (n− ρq(µ))eρq(µ)

ρ
dµ,

(K log
X̄/P1 .e

L̄; ρ) =
∑

F,aF=0

∫
F

e−ρtdσ ⊗ dt =
∫
∂P

dσ

∫ −q(µ)

0

e−ρtdt =

∫
∂P

1− eρq(µ)

ρ
dµ,

which shows the claim in conjunction with Lemma 2.33. □

Proposition 5.8. The functional µ̌∗,λ
NA is upper semi-continuous with respect to

the dexp-topology on Conv(P ) and is continuous along increasing nets qi ↗ q.

Proof. We can check the continuity of σ̌∗ in the same way as σ̌. As for µ̌∗
NA, it

suffices to check the lower semi-continuity of the map

Convexp(P )→ [0,∞] : q 7→
∫
∂P

eqdσ.

Suppose qi → q in dexp. By Proposition 5.5, we have q ≤ lim qi, so we get∫
∂P

eqdσ ≤
∫
∂P

lim eqidσ ≤ lim

∫
∂P

eqidσ
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by Fatou’s lemma.
If qi ↗ q, then by the monotone convergence theorem

lim

∫
∂P

eqidσ =

∫
∂P

eqdσ,

which proves the continuity along qi ↗ q. □

In particular, µ̌∗,λ
NA(qφ) is continuous along decreasing sequence φi ↘ φ. By the

upper semi-continuity of µ̌λ
NA(φ), we get

µ̌λ
NA(φ) ≥ µ̌∗,λ

NA(qφ)

for φ ∈ EexpNA (X,L)T . The equality holds under Conjecture 1.13 for EexpNA (X,L)T .

Question 5.9. Can we prove the existence of maximizers of µ̌∗,λ
NA for λ ≤ 0? Can

we find a polytope P for which we can show the existence of a piecewise affine
maximizer?

5.2. Illustrations. Here we compute the µ-entropy for proper vectors in explicit
examples and give illustrations of the graphs. We compute integration of exponen-
tial by localization to vertices (cf. [CLS, Theorem 13.5.2]: let P ⊂ Rn be a simple
polytope, i.e. for each vertex v, the cone Cv = Cone(P − v) is spanned by precisely
n-vectors µv,1, . . . , µv,n ∈ M . Assume µv,i is primitive, i.e. d−1µv,i /∈ M for every
integer d ≥ 2. Then we have∫

P

eµ,ξdµ = (−1)n
∑

v: vertex

e⟨v,ξ⟩ · [M : Zµv,1 + · · ·+ Zµv,n]∏n
i=1⟨µv,i, ξ⟩

.

Here we can compute the index by

index(v) := [M : Zµv,1 + · · ·+ Zµv,n] = |det(aij)|

if µv,i =
∑n

j=1 aijµj for a basis (µ1, . . . , µn) of M .

5.2.1. Kähler classes on the two points blowing-up of CP 2. For 0 < δ < 3/2, con-
sider the polytope Pδ ⊂ R2 given by the convex hull of the following five vertices:

v1 = (−1,−1), v2 = (2−δ,−1), v3 = (2−δ,−1+δ), v4 = (−1+δ, 2−δ), v5 = (−1, 2−δ).

The associated toric variety is the two points blowing-up X = CP 2#2CP 2 of the
projective space. The associated polarization is Lδ = δ(−KX)+(1−δ)β∗(−KCP 2),
where β : X → CP 2 is the blowing-up morphism.

For a generic ηϵ = (1, ϵ) (ϵ ̸= 0, 1), we will compute∫
Pδ

e⟨µ,xηϵ⟩dµ = x−2
∑

v:vertex

ex⟨v,ηϵ⟩

⟨µv,+, ηϵ⟩⟨µv,−, ηϵ⟩

and ∫
∂Pδ

e⟨µ,xηϵ⟩dσ = −x−1
∑

v:vertex

ex⟨v,ηϵ⟩ · ⟨µv,+ + µv,−, ηϵ⟩
⟨µv,+, ηϵ⟩⟨µv,−, ηϵ⟩

.
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Substituting

µv1,+ = (1, 0), µv1,− = (0, 1),

µv2,+ = (0, 1), µv2,− = (−1, 0),
µv3,+ = (−1, 1), µv3,− = (0,−1),
µv4,+ = (−1, 0), µv4,− = (1,−1),
µv5,+ = (0,−1), µv5,− = (1, 0),

we get∫
Pδ

e⟨µ,xηϵ⟩dµ = x−2
(
ϵ−1e−(1+ϵ)x − ϵ−1e(2−δ−ϵ)x +

1

ϵ(1− ϵ)
e(2−δ−ϵ+δϵ)x

− 1

1− ϵ
e(−1+δ+2ϵ−δϵ)x − ϵ−1e(−1+2ϵ−δϵ)x

)
and∫

∂Pδ

e⟨µ,xηϵ⟩dσ = −x−1
(1 + ϵ

ϵ
e−(1+ϵ)x +

1− ϵ
ϵ

e(2−δ−ϵ)x − 1

ϵ(1− ϵ)
e(2−δ−ϵ+δϵ)x

+
ϵ

1− ϵ
e(−1+δ+2ϵ−δϵ)x − 1− ϵ

ϵ
e(−1+2ϵ−δϵ)x

)
.

Taking the limit ϵ→ 1, we get∫
Pδ

e⟨µ,xη1⟩dµ = x−2
(
e−2x − e(1−δ)x + (1 + (3− 2δ)x)ex − e(1−δ)x

)
and ∫

∂Pδ

e⟨µ,xη1⟩dσ = −x−1
(
2e−2x − (2 + (3− 2δ)x)ex

)
.

The following is the graph of − 1
2π µ̌NA(x.η1) for δ = 1. The minimizer is not

x = 0, which implies there is no cscK metrics while there exists a Kähler–Ricci
soliton (= µ-cscK metric).

-1.0 -0.5 0.0 0.5 1.0

2.0

2.1

2.2

2.3

2.4

2.5

5.2.2. Donaldson’s example. We recall Donaldson’s example of toric orbifolds which
are not K-semistable while its Futaki invariant vanishes for equivariant product
configurations (cf. [Don2]). The polytope Pn is defined as the convex hull of the
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following nine vertices:

v+1 = (1, 0), v−1 = (0, 1), v1 = v1 = rn(1, 1),

v+2 = (4, 0) + (−1, 1), v−2 = (4, 0) + (−1, 0), v2 = (4, 0) + rn(−2, 1),
v+3 = (0, 4) + (0,−1), v−3 = (0, 4) + (1,−1), v3 = (0, 4) + rn(1,−2),

where rn := (n− 2)/(3n− 5).

For r5 = 3/10, we have

v+1 = (1, 0), v−1 = (0, 1), v1 = (3/10, 3/10),

v+2 = (3, 1), v−2 = (3, 0), v2 = (34/10, 3/10),

v+3 = (0, 3), v−3 = (1, 3), v3 = (3/10, 34/10)

and

µv+
1 ,+ = (1, 0), µv+

1 ,− = (−7, 3),
µv−

1 ,+ = (3,−7), µv−
1 ,− = (0, 1),

µv1,+ = (7,−3), µv1,− = (−3, 7),

µv+
2 ,+ = (−1, 1), µv+

2 ,− = (4,−7),
µv−

2 ,+ = (4, 3), µv−
2 ,− = (−1, 0),

µv2,+ = (−4, 7), µv2,− = (−4,−3),

µv+
3 ,+ = (0,−1), µv+

3 ,− = (3, 4),

µv−
3 ,+ = (−7, 4), µv−

3 ,− = (1,−1),
µv3,+ = (−3,−4), µv3,− = (7,−4).

In particular, we have

index(v+i ) = 3, index(v−i ) = 3, index(vi) = 40

for i = 1, 2, 3.
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For generic ηϵ = (1, ϵ), we will compute∫
P

e⟨µ,xηϵ⟩dµ = x−2
∑

v:vertex

ex⟨µ,ηϵ⟩ · index(v)
⟨µv,+, ηϵ⟩⟨µv,−, ηϵ⟩

and ∫
∂P

e⟨µ,xηϵ⟩dσ = −x−1
∑

v:vertex

ex⟨µ,ηϵ⟩ · ⟨µv,+ + µv,−, ηϵ⟩
⟨µv,+, ηϵ⟩⟨µv,−, ηϵ⟩

.

We have

⟨v+1 , η⟩ = 1, ⟨v−1 , η⟩ = ϵ, ⟨v1, η⟩ = 3/10 + 3/10 · ϵ,
⟨v+2 , η⟩ = 3 + ϵ, ⟨v−2 , η⟩ = 3, ⟨v2, η⟩ = 34/10 + 3/10 · ϵ,
⟨v+3 , η⟩ = 3ϵ, ⟨v−3 , η⟩ = 1 + 3ϵ, ⟨v3, η⟩ = 3/10 + 34/10 · ϵ,

and

⟨µv+
1 ,+, η⟩ = 1, ⟨µv+

1 ,−, η⟩ = −7 + 3ϵ,

⟨µv−
1 ,+, η⟩ = 3− 7ϵ, ⟨µv−

1 ,−, η⟩ = ϵ,

⟨µv1,+, η⟩ = 7− 3ϵ, ⟨µv1,−, η⟩ = −3 + 7ϵ,

⟨µv+
2 ,+, η⟩ = −1 + ϵ, ⟨µv+

2 ,−, η⟩ = 4− 7ϵ

⟨µv−
2 ,+, η⟩ = 4 + 3ϵ, ⟨µv−

2 ,−, η⟩ = −1
⟨µv2,+, η⟩ = −4 + 7ϵ, ⟨µv2,−, η⟩ = −4− 3ϵ

⟨µv+
3 ,+, η⟩ = −ϵ, ⟨µv+

3 ,−, η⟩ = 3 + 4ϵ

⟨µv−
3 ,+, η⟩ = −7 + 4ϵ, ⟨µv−

3 ,−, η⟩ = 1− ϵ
⟨µv3,+, η⟩ = −3− 4ϵ, ⟨µv3,−, η⟩ = 7− 4ϵ.

It follows that∫
P

e⟨µ,xη⟩dµ = x−2
( 3

−7 + 3ϵ
ex +

3

(3− 7ϵ)ϵ
eϵx +

40

(7− 3ϵ)(−3 + 7ϵ)
e(3/10+3/10·ϵ)x

− 3

(1− ϵ)(4− 7ϵ)
e(3+ϵ)x − 3

4 + 3ϵ
e3x +

40

(4− 7ϵ)(4 + 3ϵ)
e(34/10+3/10·ϵ)x

− 3

ϵ(3 + 4ϵ)
e3ϵx − 3

(7− 4ϵ)(1− ϵ)
e(1+3ϵ)x − 40

(3 + 4ϵ)(7− 4ϵ)
e(3/10+34/10·ϵ)x

)
and∫
∂P

e⟨µ,xη⟩dσ = −x−1
(−6 + 3ϵ

−7 + 3ϵ
ex +

3− 6ϵ

(3− 7ϵ)ϵ
eϵx +

4 + 4ϵ

(7− 3ϵ)(−3 + 7ϵ)
e(3/10+3/10·ϵ)x

− 3− 6ϵ

(1− ϵ)(4− 7ϵ)
e(3+ϵ)x − 3 + 3ϵ

4 + 3ϵ
e3x +

−8 + 4ϵ

(4− 7ϵ)(4 + 3ϵ)
e(34/10+3/10·ϵ)x

− 3 + 3ϵ

ϵ(3 + 4ϵ)
e3ϵx − −6 + 3ϵ

(7− 4ϵ)(1− ϵ)
e(1+3ϵ)x − 4− 8ϵ

(3 + 4ϵ)(7− 4ϵ)
e(3/10+34/10·ϵ)x

)
.

Taking the limit ϵ→ 0, we get∫
P

e⟨µ,xη0⟩ = x−2
(
− 6

7
ex − 80

21
e3/10·x − 3

2
e3x +

5

2
e34/10·x +

11

3
− 2x

)
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and ∫
∂P

e⟨µ,xη0⟩dσ = −x−1
(12
7
ex − 8

21
e3/10·x − 3

2
e3x − 1

2
e34/10·x +

2

3
− 2x

)
.

The following are the graphs of− 1
2π µ̌NA(x.η0) and its derivative− 1

2π
d
dx µ̌NA(x.η0) =

− 1
2πFutx.η0

(η0), respectively. This illustration shows the µ-entropy for proper vec-
tors is not concave even for λ = 0. The author speculates the µ-entorpy is quasi-
concave for λ ≤ 0.
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