Keita Mikami
Research Scientist of interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN
e-mail keita.mikami at-mark riken.jp
Research
I am interested in Schrödinger operators.
CV
Name : Keita Mikami
Born in Tokyo, Japan, October 1991
Position
May. 2019- |
Research Scientist of iTHEMS, Riken |
Education
March. 2014 |
Bachelor of Sciences, the University of Tokyo |
March. 2016 |
Master of Mathematical Science, the University of Tokyo
(Adviser : Shu Nakamura) |
March. 2019 |
Ph.D. in Mathematical Science, the University of Tokyo
(Adviser : Shu Nakamura) |
Fellowship
Oct. 2014-Mar. 2019 |
FMSP course student |
Apr. 2018-Mar. 2019 |
JSPS Research Fellow (DC2), Japan Society for the Promotion of Science |
Apr. 2019-Apr. 2019 |
JSPS Research Fellow (PD), Japan Society for the Promotion of Science (change of status from DC2) |
Academic Visits
Sep. 2018-Oct. 2018 |
Aarhus University (Frontiers of Mathematical Sciences and Physics Program) |
Sep. 2019-Nov. 2019 |
Universitiy California Berkeley (RIKEN iTHEMS - Berkeley Math Visiting Scholar Program) |
Publications
Papers(with review, in English)
- Geometric Scattering for Schrödinger Operators with
Asymptotically Homogeneous Potentials of Order Zero, Funkcialaj Ekvacioj, 61 (2018), no. 2, 267-284. article on J-STAGE
Papers(with review, in Japanese)
- 細胞培養における力学系的方法, 数理科学実践研究レター 2018.
Proceedings(without review)
- Observability estimates for Schrödinger
operators on Euclidian sets minus tube, Recent developments in studies of resonances, RIMS Kôkyûroku No. 2192.
- ユークリッド空間から筒状の集合を除いた集合上でのシュレディンガー作用素の観測性不等式, RIMS Kôkyûroku No. 2200, 92-97.
Preprints
- Semiclassical Defect Measures and Observability Estimate for Schrödinger Operators with Homogeneous Potentials of Order Zero, preprint.
Talks
- ワイルの法則について, 第25回数理物理と微分方程式, 四季の湯強羅静雲荘, November 2014.
- Geometrical scattering of the Schrodinger operators with potentials of order 0, 第26回数理物理と微分方程式, ニューサンピア姫路ゆめさき, November
2015.
- Geometric Scattering for Schrödinger Operators with
Asymptotically Homogeneous Potentials of Order Zero , Lectures
on Semi-Classical Analysis, Ritsumeikan University, July 2016.
- Schrödinger operators with homogeneous potentials on manifolds, 第27回数理物理と微分方程式, かんぽの宿富山, November 2016.
- Geometric Scattering for Schrödinger Operators with
Asymptotically Homogeneous Potentials of Order Zero, 2017 Symposium on
Spectral and Scattering Theory in Matsumoto, Shinshu university, January
2017.
- On Schrödinger operators with homogeneous potentials of order
zero on manifolds, Kobe university analysis seminar, Kobe university,
November 2017.
- Geometric Scattering for Schrödinger Operators with
Asymptotically Homogeneous Potentials of Order Zero, Summer School
"Spectral Theory of Schrödinger operators”, Jena university, July 2018.
- Semiclassical measure for Schrödinger operators with homogeneous
potentials of order zero, Math/Phys Seminar, Aarhus university, October
2018.
- Semiclassical measure for Schrödinger operators with homogeneous
potentials of order zero, 第28回数理物理と微分方程式, KKRはこだて, November 2018.
- Semiclassical measure for Schrödinger operators with homogeneous
potentials of order zero, スペクトル・散乱理論とその周辺, 京都大学数理解析研究所(RIMS), December
2018.
- Semiclassical measures and observability estimate for Schrödinger
operators with homogeneous potentials of order zero, Himeji Conference
on Partial Differential Equations, Egret Himeji, March 2019.
- 0次斉次なポテンシャルを持つシュレディンガー作用素の方向局所化現象, FMSP院生集中講義, The University of Tokyo, March 2019.
- 半古典解析と観測性不等式, RIKEN iTHEMSのアウトリーチについての研究集会2019, 東京大学玉原国際セミナーハウス, June 2019.
- Semiclassical methods and observability estimate for Schrödinger
operators with homogeneous potentials of order zero, Osaka university
differential equation seminar, Osaka university, June 2019.
- Semiclassical methods and observability estimate for Schrödinger
operators with homogeneous potentials of order zero, Gakushuin
university spectral theory seminar, Gakushuin university, June 2019.
- Introduction to Schroedinger Operators, iTHEMS Math seminar, Riken, July 2019.
- Semiclassical defect measures and observability estimate for
Schrödinger
operators with homogeneous potentials of order zero, Harmonic Analysis
and Differential Equations Seminar, University California Berkeley,
October 2019.
- From eigenvalues to resonances, iTHEMS Math seminar(online), Riken,
May 2020.
- Observability estimates on Euclidian sets minus tube, スペクトル・散乱理論とその周辺, RIMS,
December 2020.
- Observability estimates on Euclidian sets minus tube, Recent developments in studies of resonances, RIMS,
Feburuary 2021.
- Observability estimates of Schrödinger
operators on Euclidian sets minus tube, Op seminar,
October 2021.
Link
My page at reserchmap
iTHEMS official page
iTHEMS Math Seminar
iTHEMS math-phys Working Group