Keita Mikami

Research Scientist of interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN
e-mail keita.mikami at-mark riken.jp

Research

I am interested in Schrödinger operators.

CV

Name : Keita Mikami
Born in Tokyo, Japan, October 1991

Position

May. 2019- Research Scientist of iTHEMS, Riken

Education

March. 2014 Bachelor of Sciences, the University of Tokyo
March. 2016 Master of Mathematical Science, the University of Tokyo
(Adviser : Shu Nakamura)
March. 2019 Ph.D. in Mathematical Science, the University of Tokyo
(Adviser : Shu Nakamura)

Fellowship

Oct. 2014-Mar. 2019 FMSP course student
Apr. 2018-Mar. 2019 JSPS Research Fellow (DC2), Japan Society for the Promotion of Science
Apr. 2019-Apr. 2019 JSPS Research Fellow (PD), Japan Society for the Promotion of Science (change of status from DC2)

Academic Visits

Sep. 2018-Oct. 2018 Aarhus University (Frontiers of Mathematical Sciences and Physics Program)
Sep. 2019-Nov. 2019 Universitiy California Berkeley (RIKEN iTHEMS - Berkeley Math Visiting Scholar Program)

Publications

Papers(with review, in English)

  1. Geometric Scattering for Schrödinger Operators with Asymptotically Homogeneous Potentials of Order Zero, Funkcialaj Ekvacioj, 61 (2018), no. 2, 267-284. article on J-STAGE

Papers(with review, in Japanese)

  1. 細胞培養における力学系的方法, 数理科学実践研究レター 2018.

Proceedings(without review)

  1. Observability estimates for Schrödinger operators on Euclidian sets minus tube, Recent developments in studies of resonances, RIMS Kôkyûroku No. 2192.
  2. ユークリッド空間から筒状の集合を除いた集合上でのシュレディンガー作用素の観測性不等式, RIMS Kôkyûroku No. 2200, 92-97.

Preprints

  1. Semiclassical Defect Measures and Observability Estimate for Schrödinger Operators with Homogeneous Potentials of Order Zero, preprint.

Talks

  1. ワイルの法則について, 第25回数理物理と微分方程式, 四季の湯強羅静雲荘, November 2014.
  2. Geometrical scattering of the Schrodinger operators with potentials of order 0, 第26回数理物理と微分方程式, ニューサンピア姫路ゆめさき, November 2015.
  3. Geometric Scattering for Schrödinger Operators with Asymptotically Homogeneous Potentials of Order Zero , Lectures on Semi-Classical Analysis, Ritsumeikan University, July 2016.
  4. Schrödinger operators with homogeneous potentials on manifolds, 第27回数理物理と微分方程式, かんぽの宿富山, November 2016.
  5. Geometric Scattering for Schrödinger Operators with Asymptotically Homogeneous Potentials of Order Zero, 2017 Symposium on Spectral and Scattering Theory in Matsumoto, Shinshu university, January 2017.
  6. On Schrödinger operators with homogeneous potentials of order zero on manifolds, Kobe university analysis seminar, Kobe university, November 2017.
  7. Geometric Scattering for Schrödinger Operators with Asymptotically Homogeneous Potentials of Order Zero, Summer School "Spectral Theory of Schrödinger operators”, Jena university, July 2018.
  8. Semiclassical measure for Schrödinger operators with homogeneous potentials of order zero, Math/Phys Seminar, Aarhus university, October 2018.
  9. Semiclassical measure for Schrödinger operators with homogeneous potentials of order zero, 第28回数理物理と微分方程式, KKRはこだて, November 2018.
  10. Semiclassical measure for Schrödinger operators with homogeneous potentials of order zero, スペクトル・散乱理論とその周辺, 京都大学数理解析研究所(RIMS), December 2018.
  11. Semiclassical measures and observability estimate for Schrödinger operators with homogeneous potentials of order zero, Himeji Conference on Partial Differential Equations, Egret Himeji, March 2019.
  12. 0次斉次なポテンシャルを持つシュレディンガー作用素の方向局所化現象, FMSP院生集中講義, The University of Tokyo, March 2019.
  13. 半古典解析と観測性不等式, RIKEN iTHEMSのアウトリーチについての研究集会2019, 東京大学玉原国際セミナーハウス, June 2019.
  14. Semiclassical methods and observability estimate for Schrödinger operators with homogeneous potentials of order zero, Osaka university differential equation seminar, Osaka university, June 2019.
  15. Semiclassical methods and observability estimate for Schrödinger operators with homogeneous potentials of order zero, Gakushuin university spectral theory seminar, Gakushuin university, June 2019.
  16. Introduction to Schroedinger Operators, iTHEMS Math seminar, Riken, July 2019.
  17. Semiclassical defect measures and observability estimate for Schrödinger operators with homogeneous potentials of order zero, Harmonic Analysis and Differential Equations Seminar, University California Berkeley, October 2019.
  18. From eigenvalues to resonances, iTHEMS Math seminar(online), Riken, May 2020.
  19. Observability estimates on Euclidian sets minus tube, スペクトル・散乱理論とその周辺, RIMS, December 2020.
  20. Observability estimates on Euclidian sets minus tube, Recent developments in studies of resonances, RIMS, Feburuary 2021.
  21. Observability estimates of Schrödinger operators on Euclidian sets minus tube, Op seminar, October 2021.

Link

My page at reserchmap
iTHEMS official page
iTHEMS Math Seminar
iTHEMS math-phys Working Group