Papers

[1] Tingley's problem through the facial structure of operator algebras.
J. Math. Anal. Appl. 466 (2018), no. 2, 1281--1298. doi:10.1016/j.jmaa.2018.06.050, arXiv:1712.09192, master's thesis.
[2] (with N. Ozawa) Mankiewicz's theorem and the Mazur--Ulam property for C*-algebras.
Studia Math. 250 (2020), 265--281. doi:10.4064/sm180727-14-11, arXiv:1804.10674.
[3] Isometries between projection lattices of von Neumann algebras.
J. Funct. Anal. 276 (2019), no. 11, 3511--3528. doi:10.1016/j.jfa.2018.10.011, arXiv:1805.04660.
[4] Order Isomorphisms of Operator Intervals in von Neumann Algebras.
Integral Equations Operator Theory 91 (2019), no. 2, Art. 11, 26 pp. doi:10.1007/s00020-019-2510-x, arXiv:1811.01647.
[5] On 2-local nonlinear surjective isometries on normed spaces and C*-algebras.
Proc. Amer. Math. Soc. 148 (2020), No. 6, 2477--2485. doi:10.1090/proc/14949, arXiv:1907.02172.
[6] (with P. Šemrl) Continuous coexistency preservers on effect algebras.
J. Phys. A 54 (2021), no. 1, 015303. doi:10.1088/1751-8121/abcb44, arXiv:1911.09490.
[7] (with P. Šemrl) Loewner's theorem for maps on operator domains.
Accepted for publication in Canad. J. Math., arXiv:2006.04488.
[8] Lattice isomorphisms between projection lattices of von Neumann algebras.
Forum Math. Sigma 8 (2020), e49. doi:10.1017/fms.2020.53, arXiv:2006.08959.
[9] (with G.P. Gehér) The structure of maps on the space of all quantum pure states that preserve a fixed quantum angle.
Accepted for publication in Int. Math. Res. Not. IMRN, doi:10.1093/imrn/rnab040, arXiv:2102.05780.
[10] On regular *-algebras of bounded linear operators: A new approach towards a theory of noncommutative Boolean algebras.
Accepted for publication in Tohoku Math. J., arXiv:2107.05806.
[11] Ring isomorphisms of type II_∞ locally measurable operator algebras.
Preprint, arXiv:2206.00875.

Others

[i] Preserver problems and isometries of operator algebras (JAPANESE).
RIMS Kôkyûroku No.2125, 11--27.
[ii] On the geometry of projections of von Neumann algebras.
My Ph.D. thesis, based on [3] and [8]. pdf.

BACK